Displaying publications 41 - 50 of 50 in total

Abstract:
Sort:
  1. Chen BC, Ngu LH, Zabedah MY
    Malays J Pathol, 2010 Dec;32(2):87-95.
    PMID: 21329179 MyJurnal
    Argininosuccinic aciduria is an inborn error of the urea cycle caused by deficiency of argininosuccinate lyase (ASL). ASL-deficient patients present with progressive intoxication due to accumulation of ammonia in the body. Early diagnosis and treatment of hyperammonemia are necessary to improve survival and prevent long-term handicap. Two clinical phenotypes have been recognized--neonatal acute and milder late-onset form. We investigated patients with hyperammonemia by a stepwise approach in which quantitative amino acids analysis was the core diagnostic procedure. Here, we describe the clinical phenotypes and biochemical characteristics in diagnosing this group of patients. We have identified 13 patients with argininosuccinic aciduria from 2003 till 2009. Ten patients who presented with acute neonatal hyperammonemic encephalopathy had markedly elevated blood ammonia (> 430 micromol/L) within the first few days of life. Three patients with late-onset disease had more subtle clinical presentations and they developed hyperammonemia only during the acute catabolic state at two to twelve months of age. Their blood ammonia was mild to moderately elevated (> 75-265 micromol/L). The diagnosis was confirmed by detection of excessive levels of argininosuccinate in the urine and/or plasma. They also have moderately increased levels of citrulline and, low levels of arginine and ornithine in their plasma. Two patients succumbed to the disease. To date, eleven patients remained well on a dietary protein restriction, oral ammonia scavenging drugs and arginine supplementation. The majority of them have a reasonable good neurological outcome.
    Matched MeSH terms: Amino Acids/analysis
  2. Tham SY, Agatonovic-Kustrin S
    J Pharm Biomed Anal, 2002 May 15;28(3-4):581-90.
    PMID: 12008137
    Quantitative structure-retention relationship(QSRR) method was used to model reversed-phase high-performance liquid chromatography (RP-HPLC) separation of 18 selected amino acids. Retention data for phenylthiocarbamyl (PTC) amino acids derivatives were obtained using gradient elution on ODS column with mobile phase of varying acetonitrile, acetate buffer and containing 0.5 ml/l of triethylamine (TEA). Molecular structure of each amino acid was encoded with 36 calculated molecular descriptors. The correlation between the molecular descriptors and the retention time of the compounds in the calibration set was established using the genetic neural network method. A genetic algorithm (GA) was used to select important molecular descriptors and supervised artificial neural network (ANN) was used to correlate mobile phase composition and selected descriptors with the experimentally derived retention times. Retention time values were used as the network's output and calculated molecular descriptors and mobile phase composition as the inputs. The best model with five input descriptors was chosen, and the significance of the selected descriptors for amino acid separation was examined. Results confirmed the dominant role of the organic modifier in such chromatographic systems in addition to lipophilicity (log P) and molecular size and shape (topological indices) of investigated solutes.
    Matched MeSH terms: Amino Acids/analysis*
  3. Zakaria ZA, Kumar GH, Mat Jais AM, Sulaiman MR, Somchit MN
    Methods Find Exp Clin Pharmacol, 2008 Jun;30(5):355-62.
    PMID: 18806894 DOI: 10.1358/mf.2008.30.5.1186084
    The present study was carried out to elucidate the antinociceptive, antiinflammatory and antipyretic properties of the aqueous and lipid-based extracts of Channa striatus fillet in rats. The antinociceptive activity was assessed using the formalin test, and the antiinflammatory and antipyretic activities were assessed using the carrageenan-induced paw edema and brewer's yeast-induced pyrexia tests, respectively. Both types of extracts were prepared in concentrations of 10%, 50% and 100% by serial dilution in distilled water or dimethyl sulfoxide, respectively, and were administered subcutaneously 30 min prior to each test. Except for the 10% aqueous extract which exhibits activity only in the early phase, the extracts were found to exhibit significant (P < 0.05) activity in the early and late phases of the formalin test. Furthermore, the aqueous and lipid-based extracts were also found to show significant (P < 0.05) antiinflammatory activity, with the former showing a greater effect at the lowest concentration used. The lipidbased, but not the aqueous, extract was found to have significant (P < 0.05) activity in the pyrexia test. In conclusion, the present study demonstrated that C. striatus extracts possess antinociceptive, antiinflammatory and antipyretic activities.
    Matched MeSH terms: Amino Acids/analysis
  4. Bisseru B, Lim KG
    Med J Malaya, 1968 Mar;22(3):236.
    PMID: 4234371
    Matched MeSH terms: Amino Acids/analysis*
  5. Zakaria ZA, Mat Jais AM, Goh YM, Sulaiman MR, Somchit MN
    Clin Exp Pharmacol Physiol, 2007 Mar;34(3):198-204.
    PMID: 17250639
    1. The present study was performed in order to determine the amino acid and fatty acid composition of an aqueous extract of the freshwater fish Channa striatus, obtained by soaking (1:2, w/v) fresh fillets overnight in a chloroform:methanol (2:1, v/v) solvent, to elucidate the mechanism responsible for its antinociceptive activity and to clarify the relationship between the presence of the amino and fatty acids and the expected activity. 2. The aqueous extract was found to contain all amino acids with the major amino acids glycine, alanine, lysine, aspartic acid and proline making up 35.77 +/- 0.58, 10.19 +/- 1.27, 9.44 +/- 0.56, 8.53 +/- 1.15 and 6.86 +/- 0.78% of the total protein, respectively. 3. In addition, the aqueous extract was found to have a high palmitic acid (C16:0) content, which contributed approximately 35.93 +/- 0.63% to total fatty acids. The other major fatty acids in the aqueous extract were oleic acid (C18:1), stearic acid (C18:0), linoleic acid (C18:2) and arachidonic acid (C20:4), contributing 22.96 +/- 0.40, 15.31 +/- 0.33, 11.45 +/- 0.31 and 7.44 +/- 0.83% of total fatty acids, respectively. 4. Furthermore, the aqueous extract was demonstrated to possess concentration-dependent antinociceptive activity, as expected, when assessed using the abdominal constriction test in mice. 5. It is concluded that the aqueous extract of C. striatus contains all the important amino acids, but only some of the important fatty acids, which are suggested to play a key role in the observed antinociceptive activity of the extract, as well as in the traditionally claimed wound healing properties of the extract.
    Matched MeSH terms: Amino Acids/analysis*
  6. Karami A, Karbalaei S, Zad Bagher F, Ismail A, Simpson SL, Courtenay SC
    Environ Pollut, 2016 Aug;215:170-177.
    PMID: 27182978 DOI: 10.1016/j.envpol.2016.05.014
    Skin is a major by-product of the fisheries and aquaculture industries and is a valuable source of gelatin. This study examined the effect of triploidization on gelatin yield and proximate composition of the skin of African catfish (Clarias gariepinus). We further investigated the effects of two commonly used pesticides, chlorpyrifos (CPF) and butachlor (BUC), on the skin gelatin yield and amino acid composition in juvenile full-sibling diploid and triploid African catfish. In two separate experiments, diploid and triploid C. gariepinus were exposed for 21 days to graded CPF [mean measured: 10, 16, or 31 μg/L] or BUC concentrations [Mean measured: 22, 44, or 60 μg/L]. No differences in skin gelatin yield, amino acid or proximate compositions were observed between diploid and triploid control groups. None of the pesticide treatments affected the measured parameters in diploid fish. In triploids, however, gelatin yield was affected by CPF treatments while amino acid composition remained unchanged. Butachlor treatments did not alter any of the measured variables in triploid fish. To our knowledge, this study is the first to investigate changes in the skin gelatin yield and amino acid composition in any animal as a response to polyploidization and/or contaminant exposure.
    Matched MeSH terms: Amino Acids/analysis
  7. Khayoon MS, Hameed BH
    Bioresour Technol, 2011 Oct;102(19):9229-35.
    PMID: 21840708 DOI: 10.1016/j.biortech.2011.07.035
    Oxygenated fuel additives can be produced by acetylation of glycerol. A 91% glycerol conversion with a selectivity of 38%, 28% and 34% for mono-, di- and triacetyl glyceride, respectively, was achieved at 120 °C and 3 h of reaction time in the presence of a catalyst derived from activated carbon (AC) treated with sulfuric acid at 85 °C for 4h to introduce acidic functionalities to its surface. The unique catalytic activity of the catalyst, AC-SA5, was attributed to the presence of sulfur containing functional groups on the AC surface, which enhanced the surface interaction between the glycerol molecule and acyl group of the acetic acid. The catalyst was reused in up to four consecutive batch runs and no significant decline of its initial activity was observed. The conversion and selectivity variation during the acetylation is attributed to the reaction time, reaction temperature, catalyst loading and glycerol to acetic acid molar ratio.
    Matched MeSH terms: Amino Acids/analysis
  8. Tan ES, Ying-Yuan N, Gan CY
    Food Chem, 2014;152:447-55.
    PMID: 24444960 DOI: 10.1016/j.foodchem.2013.12.008
    Optimisation of protein extraction yield from pinto bean was investigated using response surface methodology. The maximum protein yield of 54.8 mg/g was obtained with the optimal conditions of: temperature=25 °C, time=1 h and buffer-to-sample ratio=20 ml/g. PBPI was found to obtain high amount of essential amino acids such as leucine, lysine, and phenylalanine compared to SPI. The predominant proteins of PBPI were vicilin and phytohemagglutinins whereas the predominant proteins of SPI were glycinin and conglycinins. Significantly higher emulsifying capacity was found in PBPI (84.8%) compared to SPI (61.9%). Different isoelectric points were found in both PBPI (4.0-5.5) and SPI (4.0-5.0). Also, it was found that PBPI obtained a much higher denaturation temperature of 110.2 °C compared to SPI (92.5 °C). Other properties such as structural information, gelling capacity, water- and oil-holding capacities, emulsion stability as well as digestibility were also reported.
    Matched MeSH terms: Amino Acids/analysis
  9. Shamsudin S, Selamat J, Sanny M, A R SB, Jambari NN, Khatib A
    Molecules, 2019 Oct 29;24(21).
    PMID: 31671885 DOI: 10.3390/molecules24213898
    Stingless bee honey produced by Heterotrigona itama from different botanical origins was characterised and discriminated. Three types of stingless bee honey collected from acacia, gelam, and starfruit nectars were analyzed and compared with Apis mellifera honey. The results showed that stingless bee honey samples from the three different botanical origins were significantly different in terms of their moisture content, pH, free acidity, total soluble solids, colour characteristics, sugar content, amino acid content and antioxidant properties. Stingless bee honey was significantly different from Apis mellifera honey in terms of physicochemical and antioxidant properties. The amino acid content was further used in the chemometrics analysis to evaluate the role of amino acid in discriminating honey according to botanical origin. Partial least squares-discriminant analysis (PLS-DA) revealed that the stingless bee honey was completely distinguishable from Apis mellifera honey. Notably, a clear distinction between the stingless bee honey types was also observed. The specific amino acids involved in the distinction of honey were cysteine for acacia and gelam, phenylalanine and 3-hydroxyproline for starfruit, and proline for Apis mellifera honey. The results showed that all honey samples were successfully classified based on amino acid content.
    Matched MeSH terms: Amino Acids/analysis
  10. Akhtar MT, Samar M, Shami AA, Mumtaz MW, Mukhtar H, Tahir A, et al.
    Molecules, 2021 Jul 30;26(15).
    PMID: 34361796 DOI: 10.3390/molecules26154643
    Meat is a rich source of energy that provides high-value animal protein, fats, vitamins, minerals and trace amounts of carbohydrates. Globally, different types of meats are consumed to fulfill nutritional requirements. However, the increasing burden on the livestock industry has triggered the mixing of high-price meat species with low-quality/-price meat. This work aimed to differentiate different meat samples on the basis of metabolites. The metabolic difference between various meat samples was investigated through Nuclear Magnetic Resonance spectroscopy coupled with multivariate data analysis approaches like principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA). In total, 37 metabolites were identified in the gluteal muscle tissues of cow, goat, donkey and chicken using 1H-NMR spectroscopy. PCA was found unable to completely differentiate between meat types, whereas OPLS-DA showed an apparent separation and successfully differentiated samples from all four types of meat. Lactate, creatine, choline, acetate, leucine, isoleucine, valine, formate, carnitine, glutamate, 3-hydroxybutyrate and α-mannose were found as the major discriminating metabolites between white (chicken) and red meat (chevon, beef and donkey). However, inosine, lactate, uracil, carnosine, format, pyruvate, carnitine, creatine and acetate were found responsible for differentiating chevon, beef and donkey meat. The relative quantification of differentiating metabolites was performed using one-way ANOVA and Tukey test. Our results showed that NMR-based metabolomics is a powerful tool for the identification of novel signatures (potential biomarkers) to characterize meats from different sources and could potentially be used for quality control purposes in order to differentiate different meat types.
    Matched MeSH terms: Amino Acids/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links