Displaying publications 41 - 60 of 69 in total

Abstract:
Sort:
  1. Liat LB, Wah MJ, Nalim S
    PMID: 751219
    Breinlia booliati Singh & Ho, 1973 first described from Peninsular Malaysia has been shown to infect a large range of murids ranging in distribution from southern Thailand, Peninsular Malaysia, Sarawak to Ciloto, Indonesia. Probably further work will reveal a greater host range as well as its geographical distribution. The vectors involved in its transmission need to be elucidated.
    Matched MeSH terms: Filarioidea*
  2. Leong AS
    Am J Trop Med Hyg, 1976 Jul;25(4):655-6.
    PMID: 961988
    A microfilaria, identified as that of Brugia malayi, was found in a routine cervical smear from a healthy, 38-year-old female Malaysian aborigine.
    Matched MeSH terms: Filarioidea*
  3. Lefoulon E, Bain O, Makepeace BL, d'Haese C, Uni S, Martin C, et al.
    PeerJ, 2016;4:e1840.
    PMID: 27069790 DOI: 10.7717/peerj.1840
    Wolbachia is an alpha-proteobacterial symbiont widely distributed in arthropods. Since the identification of Wolbachia in certain animal-parasitic nematodes (the Onchocercidae or filariae), the relationship between arthropod and nematode Wolbachia has attracted great interest. The obligate symbiosis in filariae, which renders infected species susceptible to antibiotic chemotherapy, was held to be distinct from the Wolbachia-arthropod relationship, typified by reproductive parasitism. While co-evolutionary signatures in Wolbachia-arthropod symbioses are generally weak, reflecting horizontal transmission events, strict co-evolution between filariae and Wolbachia has been reported previously. However, the absence of close outgroups for phylogenetic studies prevented the determination of which host group originally acquired Wolbachia. Here, we present the largest co-phylogenetic analysis of Wolbachia in filariae performed to date including: (i) a screening and an updated phylogeny of Wolbachia; (ii) a co-phylogenetic analysis; and (iii) a hypothesis on the acquisition of Wolbachia infection. First, our results show a general overestimation of Wolbachia occurrence and support the hypothesis of an ancestral absence of infection in the nematode phylum. The accuracy of supergroup J is also underlined. Second, although a global pattern of coevolution remains, the signal is derived predominantly from filarial clades associated with Wolbachia in supergroups C and J. In other filarial clades, harbouring Wolbachia supergroups D and F, horizontal acquisitions and secondary losses are common. Finally, our results suggest that supergroup C is the basal Wolbachia clade within the Ecdysozoa. This hypothesis on the origin of Wolbachia would change drastically our understanding of Wolbachia evolution.
    Matched MeSH terms: Filarioidea
  4. Junaid OQ, Wong KT, Khaw LT, Mahmud R, Vythilingam I
    Trop Biomed, 2018 Dec 01;35(4):981-998.
    PMID: 33601846
    Co-infection with multiple different parasites is a common phenomenon in both human and animals. Among parasites that frequently co-infect the same hosts, are the filarial worms and malaria parasites. Despite this, the mechanisms underlying the interactions between these parasites is still relatively unexplored with very few studies available on the resulting pathologies due to co-infection by filarial nematodes and malaria parasites. Hence, this study investigated the histopathological effect of Brugia pahangi and Plasmodium berghei ANKA (PbA) infections in gerbil host. Gerbils grouped into B. pahangi-infected, PbA-infected, B. pahangi and PbA-coinfected, and uninfected control, were necropsied at different time points of post PbA infections. Brugia pahangi infections in the gerbils were first initiated by subcutaneous inoculation of 50 infective larvae, while PbA infections were done by intraperitoneal injection of 106 parasitized red blood cells after 70 days patent period of B. pahangi. Organs such as the lungs, kidneys, spleen, heart and liver were harvested aseptically at the point of necropsy. There was significant hepatosplenomegaly observed in both PbA-infected only and coinfected gerbils. The spleen, liver and lungs were heavily pigmented. Both B. pahangi and PbA infections (mono and coinfections) resulted in pulmonary edema, while glomerulonephritis was associated with PbA infections. The presence of both parasites induced extramedullary hematopoiesis in the spleen and liver. These findings suggest that the pathologies associated with coinfected gerbils were synergistically induced by both B. pahangi and PbA infections.
    Matched MeSH terms: Filarioidea
  5. Ho CC, Ideris N
    Infection, 2013 Aug;41(4):893-6.
    PMID: 23471824 DOI: 10.1007/s15010-013-0443-x
    Parasite infestation of the testicular tunica and spermatic cord by filariae are rarely reported and may present with few clinical signs, depending upon the stage. Occasionally, it may mimic a testicular tumor. We present a case of a 29-year-old man who presented with left testicular swelling and discomfort for 4 months. Clinical examination and imaging suggested an intrascrotal cystic lesion with a normal left testis. However, the intraoperative findings revealed a tumor-like mass; hence, a left orchidectomy was performed. However, histopathology reported a diagnosis of a cystic testicular tunica and spermatic cord with parasite infection. Here, we review the literature of scrotal and testicular parasite disease and discuss the course of the appropriate management involved.
    Matched MeSH terms: Filarioidea/isolation & purification*
  6. Guest MF, Wong MM
    Med J Malaya, 1965 Dec;20(2):146-8.
    PMID: 4159506
    Matched MeSH terms: Filarioidea
  7. Guest MF, Cheong WH, Fredericks H, Chin LK, Sulzer AJ
    Med J Malaya, 1968 Mar;22(3):248-9.
    PMID: 4234386
    Matched MeSH terms: Filarioidea/immunology*
  8. Guerrero R, Bain O
    Parasite, 2011 May;18(2):151-61.
    PMID: 21678791
    Parasitic nematodes from the Berlin (ZMB) and Vienna (NMW) Museum collections referred to the genus Filaria Mueller, 1787 by von Linstow or Molin were studied. Three samples were in good condition and the specimens redescribed. Litomosa hepatica (von Linstow, 1897) n. comb., sample ZMB Vermes Entozoa 3368, from the megachiropteran Pteropus neohibernicus, Bismarck Archipelago, resembles L. maki Tibayrenc, Bain & Ramanchandran, 1979, from Pteropus vampyrus, in Malaysia, but the buccal capsule differs. Both species display particular morphological characters which differ from species of Litomosa parasitic in microchiropterans. The remaining material originates from Brazil. The spicule morphology of Litomosoides circularis (von Linstow, 1899) Chandler, 1931, sample ZMB Vermes Entozoa 1059 from Hesperomys spec. (= Holochilus brasiliensis), Porto Alegre, confirms that it belongs to the sigmodontis group; the microfilaria presents characters of the genus Litomosoides, e.g. body attenuated at both extremities and salient cephalic hook. Taxonomic discussions by others confirm that species of Litomosoides belonging to the sigmodontis group and described subsequently are distinct from L. circularis. Litomosoides serpicula (Molin, 1858) Guerrero, Martin, Gardner & Bain, 2002, is redescribed, sample NMW 6323 from the bat Phyllostoma spiculatum (= Sturnira lilium), Ypanema. It is very close to L. brasiliensis Almeida, 1936, type host Moytis sp., but distinguished by a single ring in the buccal capsule, rather than two, supporting previous conclusions that the taxon L. brasiliensis, as generally regarded, may represent a complex of species. Samples NMW 6322 and NMW 6324, from other bats and also identified by Molin (1858) as Filaria serpicula, contain unidentifiable fragments of Litomosoides incertae sedis. Filaria hyalina von Linstow, 1890, sample ZMB Vermes Entozoa Q 3905 from Sorer vulgaris (= Sorex araneus), is incertae sedis because it contains two unidentifiable posterior parts of male, which might be an acuarid, Stammerinema sp. Filaria vesperuginis von Linstow, 1885, sample ZMB Vermes Entozoa Q 3929, from the bat Vesperugo serotinus (= Eptesicus serotinus), contains encysted nematode larvae and is a nomen dubium.
    Matched MeSH terms: Filarioidea/anatomy & histology*; Filarioidea/classification*
  9. Fadzil M, Cheah TS, Subramaniam P
    Vet Rec, 1973 Mar 24;49(12):316-8.
    PMID: 4716635
    Matched MeSH terms: Filarioidea/isolation & purification
  10. Dondero TJ, Ramachandran CP, Bin Yusoff O
    PMID: 5144151
    Matched MeSH terms: Filarioidea/isolation & purification*
  11. Dondero TJ, Sivanandam S
    Med J Malaysia, 1973 Jun;27(4):306-9.
    PMID: 4270791
    Matched MeSH terms: Filarioidea/isolation & purification*
  12. Dondero TJ, Sivanandam S
    Trans R Soc Trop Med Hyg, 1971;65(5):691-3.
    PMID: 5159155
    Matched MeSH terms: Filarioidea
  13. Dondero TJ, Ramachandran CP
    PMID: 5028861
    Matched MeSH terms: Filarioidea/immunology
  14. Dissanike AS, Fernando MA
    J Helminthol, 1974 Sep;48(3):199-203.
    PMID: 4430828
    Matched MeSH terms: Filarioidea/anatomy & histology; Filarioidea/classification*
  15. Dissanaike AS, Hock QC, Min TS
    Am J Trop Med Hyg, 1974 Nov;23(6):1023-6.
    PMID: 4429177
    Matched MeSH terms: Filarioidea/isolation & purification*
  16. Chiang GL, Samarawickrema WA, Eng KL, Cheong WH, Sulaiman I, Yap HH
    Ann Trop Med Parasitol, 1986 Apr;80(2):235-44.
    PMID: 2875691
    Surveillance methods for Coquillettidia crassipes were studied in an open housing estate near Kuala Lumpur using three types of traps Trinidad 10 trap, modified Lard can trap and IMR trap, each baited with chicken or pigeon. All traps attracted Cq. crassipes. There was no significant difference in the catches in the three traps. There was also no significant difference between chicken and pigeon as bait. Catches at heights of 1.5, 3, 4.5 and 6 m did not show any significant difference in density. Cq. crassipes was active at night with an early peak during the first hour of the night and a minor peak between 0100 and 0200 hours. The activity of the parous and nulliparous sections of the population was similar, except that a higher proportion of the parous females was active during the second peak compared with the nulliparous females. The parous rate was 22.3%, and the probability of survival through one day for two gonotrophic cycles was 0.711 and 0.650. The infection rate for Cardiofilaria was 29 out of 1052 (2.76%) and the infective rate (L3 larvae) was 13 out of 1052 (1.24%). 48.3% of the infected Cq. crassipes had a worm burden of more than ten larvae. One of the chickens in the traps was positive for microfilariae of Cardiofilaria four weeks after exposure as bait. Laboratory bred Cq. crassipes fed on this chicken produced infective larvae in ten days, and these were inoculated into clean chickens and pigeons. Microfilariae appeared in the chickens but not in pigeons. The adult worms recovered await identification.
    Matched MeSH terms: Filarioidea*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links