Displaying publications 41 - 44 of 44 in total

Abstract:
Sort:
  1. Wan Mohd Shukri WN, Bakhtiar H, Islam S, Bidin N, Baba S, Hamdan S, et al.
    Biomed Environ Sci, 2021 Feb 20;34(2):119-123.
    PMID: 33685570 DOI: 10.3967/bes2021.017
    Matched MeSH terms: Metal Nanoparticles/therapeutic use*
  2. Yu L, Lu M, Zhang W, Alarfaj AA, Hirad AH, Zhang H
    Microb Pathog, 2020 Apr;141:103960.
    PMID: 31953224 DOI: 10.1016/j.micpath.2019.103960
    BACKGROUND: Mycoplasma pneumoniae (MP) is a common cause of community-acquired pneumonia (CAP) among the children and adults that results upper and lower respiratory tract infections.

    OBJECTIVE: This study was aimed to inspect the ameliorative action of A. chinensis synthesized ZnONPs against M. pneumoniae infected pneumonia mice model.

    MATERIALS AND METHODS: ZnO NPs was synthesized from Albizia chinensis bark extract and characterized by UV-Vis spectroscopy, Fourier Transform Infrared (FTIR), Transmission Electron Microscopy (TEM), energy dispersive X-ray (EDX) and atomic force microscope (AFM) analyses. The antibacterial effectual of synthesized ZnONPs were examined against clinical pathogens. The pneumonia was induced to BALB/c mice via injecting the M. pneumoniae and treated with synthesized ZnONPs, followed by the total protein content, total cell counts and inflammatory mediators level was assessed in the BALF of experimental animals. The Histopathological investigation was done in the lung tissues of test animals.

    RESULTS: The outcomes of this work revealed that the formulated ZnONPs was quasi-spherical, radial and cylindrical; the size was identified as 116.5 ± 27.45 nm in diameter. The in vitro antimicrobial potential of formulated ZnO-NPs displayed noticeable inhibitory capacity against the tested fungal and bacterial strains. The administration of synthesized ZnO-NPs in MP infected mice model has significantly reduced the levels of total protein, inflammatory cells, inflammatory cytokines such as IL-1, IL-6, IL-8, tumour necrosis factor-alpha (TNF-a) and transforming growth factor (TGF). Besides, the histopathological examination of MP infected mice lung tissue showed the cellular arrangements were effectively retained after administration of synthesized ZnO-NPs.

    CONCLUSION: In conclusion, synthesized ZnO-NPs alleviate pneumonia progression via reducing the level of inflammatory cytokines and inflammatory cells in MP infected mice model.

    Matched MeSH terms: Metal Nanoparticles/therapeutic use
  3. Zaman R, Islam RA, Ibnat N, Othman I, Zaini A, Lee CY, et al.
    J Control Release, 2019 05 10;301:176-189.
    PMID: 30849445 DOI: 10.1016/j.jconrel.2019.02.016
    Macromolecular protein and peptide therapeutics have been proven to be effective in treating critical human diseases precisely. Thanks to biotechnological advancement, a huge number of proteins and peptide therapeutics were made their way to pharmaceutical market in past few decades. However, one of the biggest challenges to be addressed for protein therapeutics during clinical application is their fast degradation in serum and quick elimination owing to enzymatic degradation, renal clearance, liver metabolism and immunogenicity, attributing to the short half-lives. Size and hydrophobicity of protein molecules make them prone to kidney filtration and liver metabolism. On the other hand, proteasomes responsible for protein destruction possess the capability of specifically recognizing almost all kinds of foreign proteins while avoiding any unwanted destruction of cellular components. At present almost all protein-based drug formulations available in market are administered intravenously (IV) or subcutaneously (SC) with high dosing at frequent interval, eventually creating dose-fluctuation-related complications and reducing patient compliance vastly. Therefore, artificially increasing the therapeutic half-life of a protein by attaching to it a molecule that increases the overall size (eg, PEG) or helps with receptor mediated recycling (eg, albumin), or manipulating amino acid chain in a way that makes it more prone towards aggregate formation, are some of the revolutionary approaches to avoid the fast degradation in vivo. Half-life extension technologies that are capable of dramatically enhancing half-lives of proteins in circulation (2-100 folds) and thus improving their overall pharmacokinetic (PK) parameters have been successfully applied on a wide range of protein therapeutics from hormones and enzymes, growth factor, clotting factor to interferon. The focus of the review is to assess the technological advancements made so far in enhancing circulatory half-lives and improving therapeutic potency of proteins.
    Matched MeSH terms: Nanoparticles/therapeutic use
  4. Zhang T, Dang M, Zhang W, Lin X
    J. Photochem. Photobiol. B, Biol., 2020 Jan;202:111705.
    PMID: 31812087 DOI: 10.1016/j.jphotobiol.2019.111705
    The procurance of gold nanoparticles in the plant extracts is an excellent way to attain nanomaterials natural and eco-friendly nanomaterials. The Dehydrated roots of Chinese Euphorbia fischeriana flowering plant are called "Lang-Du". In this study, the retrieving of gold nanoparticles from Euphorbia fischeriana root was amalgamated by standard procedure. Fabricated gold nanoparticles were portrayed through the investigations of ultraviolet and visible spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The UV-Vis and FTIR results explicated the obtained particles were sphere-shaped and the terpenoids of Euphorbia fischeriana had strong communications with gold surface. The HRTEM and XRD images exposed the produced gold nanoparticles had an extreme composition of crystal arrangement and excellent uniformed size of particles. In our study, the Isoprenaline induced myocardial damage established the elevation in TBARS, LOOH of heart tissues and notable decline in antioxidant enzymes SOD, CAT, GPx, and GSH. This biochemical result was additionally proved by histopathological assessment. Remarkably, the pretreatment with EF-AuNps(50 mg/kg b.w) illustrated stabilized levels of serum creatine and cardiotropins in myocardial infarcted animals. And further we understood the essential function of NF-ƙB, TNF-α, IL-6 signaling molecules and its way progression in the development of vascular tenderness.
    Matched MeSH terms: Metal Nanoparticles/therapeutic use*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links