Displaying publications 41 - 45 of 45 in total

Abstract:
Sort:
  1. Kouhi M, Jayarama Reddy V, Ramakrishna S
    Appl Biochem Biotechnol, 2019 Jun;188(2):357-368.
    PMID: 30456599 DOI: 10.1007/s12010-018-2922-0
    Bioceramic nanoparticles with high specific surface area often tend to agglomerate in the polymer matrix, which results in undesirable mechanical properties of the composites and poor cell spreading and attachment. In the present work, bredigite (BR) nanoparticles were modified with an organosilane coupling agent, 3-glycidoxypropyltrimethoxysilane (GPTMS), to enhance its dispersibility in the polymer matrix. The polyhydroxybutyrate-co-hydroxyvaletare (PHBV) nanofibrous scaffolds containing either bredigite or GPTMS-modified bredigite (G-BR) nanoparticles were fabricated using electrospinning technique and characterized using scanning electron microscopy, transmission electron microscopy, and tensile strength. Results demonstrated that modification of bredigite was effective in enhancing nanoparticle dispersion in the PHBV matrix. PHBV/G-BR scaffold showed improved mechanical properties compared to PHBV and PHBV/BR, especially at the higher concentration of nanoparticles. In vitro bioactivity assay performed in the simulated body fluid (SBF) indicated that composite PHBV scaffolds were able to induce the formation of apatite deposits after incubation in SBF. From the results of in vitro biological assay, it is concluded that the synergetic effect of BR and GPTMS provided an enhanced hFob cells attachment and proliferation. The developed PHBV/G-BR nanofibrous scaffolds may be considered for application in bone tissue engineering.
    Matched MeSH terms: Osteoblasts/cytology
  2. Hapidin H, Romli NAA, Abdullah H
    Microsc Res Tech, 2019 Nov;82(11):1928-1940.
    PMID: 31423711 DOI: 10.1002/jemt.23361
    Tannic acid (TA) is a phenolic compound that might act directly on osteoblast metabolism. The study was performed to investigate the effects of TA on the proliferation, mineralization, and morphology of human fetal osteoblast cells (hFOB 1.19). The cells were divided into TA-treated, untreated, and pamidronate-treated (control drug) groups. Half maximal effective concentration (EC50 ) values for TA and pamidronate were measured using MTT assay. The EC50 of hFOB 1.19 cells treated with TA was 2.94 M. This concentration was more effective compared to the pamidronate (15.27 M). Cell proliferation assay was performed to compare cell viability from Day 1 until Day 14. The morphology of hFOB 1.19 was observed via inverted microscope and scanning electron microscope. Calcium (Ca) and phosphate (P) were assessed using energy-dispersive X-ray (EDX) analysis. Furthermore, the mineralization of hFOB 1.19 was determined by von Kossa staining (P depositions) and Alizarin Red S staining (Ca depositions). The number of cells treated with TA was significantly higher than the two control groups at Day 10 and Day 14. The morphology of cells treated with TA was uniformly fusiform-shaped with filopodia extensions. Besides, globular-like structures of deposited minerals were observed in the TA-treated group. In line with other findings, EDX spectrum analysis confirmed the presence of Ca and P. The cells treated with TA had significantly higher percentage of both minerals at Day 3 and Day 10 compared to the two control groups. In conclusion, TA enhances cell proliferation and causes cell morphology changes, as well as improved mineralization.
    Matched MeSH terms: Osteoblasts/cytology
  3. Megat Abdul Wahab R, Abdullah N, Zainal Ariffin SH, Che Abdullah CA, Yazid F
    Molecules, 2020 Jul 08;25(14).
    PMID: 32650572 DOI: 10.3390/molecules25143129
    A hydroxyapatite scaffold is a suitable biomaterial for bone tissue engineering due to its chemical component which mimics native bone. Electronic states which present on the surface of hydroxyapatite have the potential to be used to promote the adsorption or transduction of biomolecules such as protein or DNA. This study aimed to compare the morphology and bioactivity of sinter and nonsinter marine-based hydroxyapatite scaffolds. Field emission scanning electron microscopy (FESEM) and micro-computed tomography (microCT) were used to characterize the morphology of both scaffolds. Scaffolds were co-cultured with 5 × 104/cm2 of MC3T3-E1 preosteoblast cells for 7, 14, and 21 days. FESEM was used to observe the cell morphology, and MTT and alkaline phosphatase (ALP) assays were conducted to determine the cell viability and differentiation capacity of cells on both scaffolds. Real-time polymerase chain reaction (rtPCR) was used to identify the expression of osteoblast markers. The sinter scaffold had a porous microstructure with the presence of interconnected pores as compared with the nonsinter scaffold. This sinter scaffold also significantly supported viability and differentiation of the MC3T3-E1 preosteoblast cells (p < 0.05). The marked expression of Col1α1 and osteocalcin (OCN) osteoblast markers were also observed after 14 days of incubation (p < 0.05). The sinter scaffold supported attachment, viability, and differentiation of preosteoblast cells. Hence, sinter hydroxyapatite scaffold from nacreous layer is a promising biomaterial for bone tissue engineering.
    Matched MeSH terms: Osteoblasts/cytology
  4. Tan KL, Chia WC, How CW, Tor YS, Show PL, Looi QHD, et al.
    Mol Biotechnol, 2021 Sep;63(9):780-791.
    PMID: 34061307 DOI: 10.1007/s12033-021-00339-2
    The objective of this study is to develop a simple protocol to isolate and characterise small extracellular vesicles (sEVs) from human umbilical cord-derived MSCs (hUC-MSCs). hUC-MSCs were characterised through analysis of morphology, immunophenotyping and multidifferentiation ability. SEVs were successfully isolated by ultrafiltration from the conditioned medium of hUC-MSCs. The sEVs' size distribution, intensity within a specific surface marker population were measured with zetasizer or nanoparticle tracking analysis. The expression of surface and internal markers of sEVs was also assessed by western blotting. Morphology of hUC-MSCs displayed as spindle-shaped, fibroblast-like adherent cells. Phenotypic analysis by flow cytometry revealed that hUC-MSCs expressed MSC surface marker, including CD90, CD73, CD105, CD44 and exhibited the capacity for osteogenic, adipogenic and chondrogenic differentiation. Populations of sEVs with CD9, CD63 and CD81 positive were detected with size distribution in the diameter of 63.2 to 162.5 nm. Typical sEVs biomarkers such as CD9, CD63, CD81, HSP70 and TSG101 were also detected with western blotting. Our study showed that sEVs from hUC-MSCs conditioned medium were successfully isolated and characterised. Downstream application of hUC-MSCs-sEVs will be further explored.
    Matched MeSH terms: Osteoblasts/cytology*
  5. Ebrahimi S, Hanim YU, Sipaut CS, Jan NBA, Arshad SE, How SE
    Int J Mol Sci, 2021 Sep 06;22(17).
    PMID: 34502544 DOI: 10.3390/ijms22179637
    Recently, composite scaffolding has found many applications in hard tissue engineering due to a number of desirable features. In this present study, hydroxyapatite/bioglass (HAp/BG) nanocomposite scaffolds were prepared in different ratios using a hydrothermal approach. The aim of this research was to evaluate the adhesion, growth, viability, and osteoblast differentiation behavior of human Wharton's-jelly-derived mesenchymal stem cells (hWJMSCs) on HAp/BG in vitro as a scaffold for application in bone tissue engineering. Particle size and morphology were investigated by TEM and bioactivity was assessed and proven using SEM analysis with hWJMSCs in contact with the HAp/BG nanocomposite. Viability was evaluated using PrestoBlueTM assay and early osteoblast differentiation and mineralization behaviors were investigated by ALP activity and EDX analysis simultaneously. TEM results showed that the prepared HAp/BG nanocomposite had dimensions of less than 40 nm. The morphology of hWJMSCs showed a fibroblast-like shape, with a clear filopodia structure. The viability of hWJMSCs was highest for the HAp/BG nanocomposite with a 70:30 ratio of HAp to BG (HAp70/BG30). The in vitro biological results confirmed that HAp/BG composite was not cytotoxic. It was also observed that the biological performance of HAp70/BG30 was higher than HAp scaffold alone. In summary, HAp/BG scaffold combined with mesenchymal stem cells showed significant potential for bone repair applications in tissue engineering.
    Matched MeSH terms: Osteoblasts/cytology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links