Displaying publications 41 - 47 of 47 in total

Abstract:
Sort:
  1. Chin KY, Ima-Nirwana S
    Clin Interv Aging, 2014;9:1247-59.
    PMID: 25120355 DOI: 10.2147/CIA.S67016
    BACKGROUND: Previous animal models have demonstrated that tocotrienol is a potential treatment for postmenopausal osteoporosis. This study evaluated the antiosteoporotic effects of annatto-derived tocotrienol (AnTT) using a testosterone-deficient osteoporotic rat model.
    METHODS: Forty rats were divided randomly into baseline, sham, orchidectomized, AnTT, and testosterone groups. The baseline group was euthanized without undergoing any surgical treatment or intervention. The remaining groups underwent orchidectomy, with the exception of the sham group. AnTT 60 mg/kg/day was given orally to the AnTT group, while the testosterone group received testosterone enanthate 7 mg/kg per week intramuscularly for 8 weeks. Structural changes in trabecular bone at the proximal tibia were examined using microcomputed tomography. Structural and dynamic changes at the distal femur were examined using histomorphometric methods. Serum osteocalcin and C-terminal of type 1 collagen crosslinks were measured. Bone-related gene expression in the distal femur was examined.
    RESULTS: There were significant degenerative changes in structural indices in the orchidectomized group (P<0.05), but no significant changes in dynamic indices, bone remodeling markers, or gene expression (P>0.05) when compared with the sham group. The AnTT group showed significant improvement in structural indices at the femur (P<0.05) and significantly increased expression of bone formation genes (P<0.05). Testosterone was more effective than AnTT in preventing degeneration of bone structural indices in the femur and tibia (P<0.05).
    CONCLUSION: AnTT supplementation improves bone health in testosterone-deficient rats by enhancing bone formation. Its potential should be evaluated further by varying the dosage and treatment duration.
    KEYWORDS: bone remodeling; osteoporosis; testosterone; tocotrienol
    Matched MeSH terms: Osteoporosis/drug therapy*
  2. Moshiri A, Sharifi AM, Oryan A
    Clin Exp Pharmacol Physiol, 2016 Jul;43(7):659-84.
    PMID: 27061579 DOI: 10.1111/1440-1681.12577
    Simvastatin is a lipid lowering drug whose beneficial role on bone metabolism was discovered in 1999. Several in vivo studies evaluated its role on osteoporosis and fracture healing, however, controversial results are seen in the literature. For this reason, Simvastatin has not been the focus of any clinical trials as yet. This systematic review clears the mechanisms of action of Simvastatin on bone metabolism and focuses on in vivo investigations that have evaluated its role on osteoporosis and fracture repair to find out (i) whether Simvastatin is effective on treatment of osteoporosis and fracture repair, and (ii) which of the many available protocols may have the ability to be translated in the clinical setting. Simvastatin induces osteoinduction by increasing osteoblast activity and differentiation and inhibiting their apoptosis. It also reduces osteoclastogenesis by decreasing both the number and activity of osteoclasts and their differentiation. Controversial results between the in vivo studies are mostly due to the differences in the route of administration, dose, dosage and carrier type. Local delivery of Simvastatin through controlled drug delivery systems with much lower doses and dosages than the systemic route seems to be the most valuable option in fracture healing. However, systemic delivery of Simvastatin with much higher doses and dosages than the clinical ones seems to be effective in managing osteoporosis. Simvastatin, in a particular range of doses and dosages, may be beneficial in managing osteoporosis and fracture injuries. This review showed that Simvastatin is effective in the treatment of osteoporosis and fracture healing.
    Matched MeSH terms: Osteoporosis/drug therapy*
  3. Mohamad NV, Soelaiman IN, Chin KY
    Biomed Pharmacother, 2018 Jul;103:453-462.
    PMID: 29674281 DOI: 10.1016/j.biopha.2018.04.083
    INTRODUCTION: Osteoporosis is a debilitating skeletal side effect of androgen deprivation therapy based on gonadotropin-releasing hormone (GnRH) agonist in men. Tocotrienol from Bixa orellana (annatto) has been demonstrated to offer protection against osteoporosis by exerting anabolic effects on bone. Thus, it may prevent osteoporosis among GnRH agonist users.

    OBJECTIVE: This study aimed to determine the effectiveness of annatto-tocotrienol on the bone turnover markers and bone histomorphometry in a model of male osteoporosis induced by buserelin (a GnRH agonist).

    METHODS: Forty-six three-months-old male Sprague-Dawley rats (three months old; 300-350 g) were randomly divided into six groups. The baseline control group (n = 6) was sacrificed at the onset of the study. The normal control group (n = 8) received corn oil (the vehicle of tocotrienol) orally daily and normal saline (the vehicle of buserelin) subcutaneously daily. The buserelin control (n = 8) received corn oil orally daily and subcutaneous buserelin injection 75 μg/kg/day daily. The calcium control (n = 8) received 1% calcium in drinking water and subcutaneous buserelin injection 75 μg/kg/day. The remaining rats were treated with two different treatments, i.e., (1) oral annatto tocotrienol at 60 mg/kg/day plus subcutaneous buserelin injection 75 μg/kg/day (n = 8); (2) oral annatto tocotrienol at 100 mg/kg/day plus subcutaneous buserelin injection 75 μg/kg/day (n = 8). The rats were injected with calcein twice before being sacrificed to label the bones. The rats were euthanized, and their blood and right femur were harvested at the end of the treatment for bone turnover markers and bone histomorphometry examination.

    RESULTS: Both serum osteocalcin and C-telopeptide of type 1 collagen were not significantly different between treated groups and buserelin control (P > 0.05). The buserelin control group had a significantly lower bone volume and higher eroded surface compared with the normal control group (P 

    Matched MeSH terms: Osteoporosis/drug therapy*
  4. Parvaneh K, Ebrahimi M, Sabran MR, Karimi G, Hwei AN, Abdul-Majeed S, et al.
    Biomed Res Int, 2015;2015:897639.
    PMID: 26366421 DOI: 10.1155/2015/897639
    Probiotics are live microorganisms that exert beneficial effects on the host, when administered in adequate amounts. Mostly, probiotics affect the gastrointestinal (GI) tract of the host and alter the composition of gut microbiota. Nowadays, the incidence of hip fractures due to osteoporosis is increasing worldwide. Ovariectomized (OVX) rats have fragile bone due to estrogen deficiency and mimic the menopausal conditions in women. Therefore, this study aimed to examine the effects of Bifidobacterium longum (B. longum) on bone mass density (BMD), bone mineral content (BMC), bone remodeling, bone structure, and gene expression in OVX rats. The rats were randomly assigned into 3 groups (sham, OVX, and the OVX group supplemented with 1 mL of B. longum 10(8)-10(9) colony forming units (CFU)/mL). B. longum was given once daily for 16 weeks, starting from 2 weeks after the surgery. The B. longum supplementation increased (p < 0.05) serum osteocalcin (OC) and osteoblasts, bone formation parameters, and decreased serum C-terminal telopeptide (CTX) and osteoclasts, bone resorption parameters. It also altered the microstructure of the femur. Consequently, it increased BMD by increasing (p < 0.05) the expression of Sparc and Bmp-2 genes. B. longum alleviated bone loss in OVX rats and enhanced BMD by decreasing bone resorption and increasing bone formation.
    Matched MeSH terms: Osteoporosis/drug therapy
  5. Shuid AN, El-arabi E, Effendy NM, Razak HS, Muhammad N, Mohamed N, et al.
    PMID: 22967165 DOI: 10.1186/1472-6882-12-152
    Eurycoma longifolia (EL) has been shown recently to protect against bone calcium loss in orchidectomised rats, the model for androgen-deficient osteoporosis. The mechanism behind this is unclear but it may be related to its ability to elevate testosterone levels or it may directly affect bone remodeling. The aim of this study is to determine the mechanism involved by investigating the effects of EL extract on serum testosterone levels, bone biomarkers, biomechanical strength and gene expression of Receptor Activator of Nuclear Factor kappa-B ligand (RANKL), Osteoprotegerin (OPG) and Macrophage-Colony Stimulating Factor (MCSF) in orchidectomised rats.
    Matched MeSH terms: Osteoporosis/drug therapy*
  6. Jeevaratnam K, Salvage SC, Li M, Huang CL
    Ann N Y Acad Sci, 2018 Dec;1433(1):18-28.
    PMID: 29846007 DOI: 10.1111/nyas.13861
    Alterations in cellular levels of the second messenger 3',5'-cyclic adenosine monophosphate ([cAMP]i ) regulate a wide range of physiologically important cellular signaling processes in numerous cell types. Osteoclasts are terminally differentiated, multinucleated cells specialized for bone resorption. Their systemic regulator, calcitonin, triggers morphometrically and pharmacologically distinct retraction (R) and quiescence (Q) effects on cell-spread area and protrusion-retraction motility, respectively, paralleling its inhibition of bone resorption. Q effects were reproduced by cholera toxin-mediated Gs -protein activation known to increase [cAMP]i , unaccompanied by the [Ca2+ ]i changes contrastingly associated with R effects. We explore a hypothesis implicating cAMP signaling involving guanine nucleotide-exchange activation of the small GTPase Ras-proximate-1 (Rap1) by exchange proteins directly activated by cAMP (Epac). Rap1 activates integrin clustering, cell adhesion to bone matrix, associated cytoskeletal modifications and signaling processes, and transmembrane transduction functions. Epac activation enhanced, whereas Epac inhibition or shRNA-mediated knockdown compromised, the appearance of markers for osteoclast differentiation and motility following stimulation by receptor activator of nuclear factor kappa-Β ligand (RANKL). Deficiencies in talin and Rap1 compromised in vivo bone resorption, producing osteopetrotic phenotypes in genetically modified murine models. Translational implications of an Epac-Rap1 signaling hypothesis in relationship to N-bisphosphonate actions on prenylation and membrane localization of small GTPases are discussed.
    Matched MeSH terms: Osteoporosis/drug therapy
  7. Chin KY, Pang KL, Soelaiman IN
    Adv Exp Med Biol, 2016;928:97-130.
    PMID: 27671814
    Tocotrienol is a member of vitamin E family and is well-known for its antioxidant and anti-inflammatory properties. It is also a suppressor of mevalonate pathway responsible for cholesterol and prenylated protein synthesis. This review aimed to discuss the health beneficial effects of tocotrienol, specifically in preventing or treating hyperlipidaemia, diabetes mellitus, osteoporosis and cancer with respect to these properties. Evidence from in vitro, in vivo and human studies has been examined. It is revealed that tocotrienol shows promising effects in preventing or treating the health conditions previously mentioned in in vivo and in vitro models. In some cases, alpha-tocopherol attenuates the biological activity of tocotrienol. Except for its cholesterol-lowering effects, data on the health-promoting effects of tocotrienol in human are limited. As a conclusion, the encouraging results on the health beneficial effects of tocotrienol should motivate researchers to explore its potential use in human.
    Matched MeSH terms: Osteoporosis/drug therapy
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links