Displaying publications 41 - 60 of 3940 in total

Abstract:
Sort:
  1. Mohd Nasir N, Teo Ming T, Ahmadun FR, Sobri S
    Water Sci Technol, 2010;62(1):42-7.
    PMID: 20595752 DOI: 10.2166/wst.2010.239
    The research conducted a study on decomposition and biodegradability enhancement of textile wastewater using a combination of electron beam irradiation and activated sludge process. The purposes of this research are to remove pollutant through decomposition and to enhance the biodegradability of textile wastewater. The wastewater is treated using electron beam irradiation as a pre-treatment before undergo an activated sludge process. As a result, for non-irradiated wastewater, the COD removal was achieved to be between 70% and 79% after activated sludge process. The improvement of COD removal efficiency increased to 94% after irradiation of treated effluent at the dose of 50 kGy. Meanwhile, the BOD(5) removal efficiencies of non-irradiated and irradiated textile wastewater were reported to be between 80 and 87%, and 82 and 99.2%, respectively. The maximum BOD(5) removal efficiency was achieved at day 1 (HRT 5 days) of the process of an irradiated textile wastewater which is 99.2%. The biodegradability ratio of non-irradiated wastewater was reported to be between 0.34 and 0.61, while the value of biodegradability ratio of an irradiated wastewater increased to be between 0.87 and 0.96. The biodegradability enhancement of textile wastewater is increased with increasing the doses. Therefore, an electron beam radiation holds a greatest application of removing pollutants and also on enhancing the biodegradability of textile wastewater.
    Matched MeSH terms: Water Pollutants, Chemical/isolation & purification*
  2. Ngu LH, Law PL, Wong KK, Yusof AA
    Water Sci Technol, 2010;62(5):1129-35.
    PMID: 20818055 DOI: 10.2166/wst.2010.407
    This research investigated the effects of co- and counter-current flow patterns on oil-water-solid separation efficiencies of a circular separator with inclined coalescence mediums. Oil-water-solid separations were tested at different influent concentrations and flowrates. Removal efficiencies increased as influent flowrate decreased, and their correlationship can be represented by power equations. These equations were used to predict the required flowrate, Q(ss50), for a given influent suspended solids concentration C(iss) to achieve the desired effluent suspended solids concentration, C(ess) of 50 mg/L, to meet environmental discharge requirements. The circular separator with counter-current flow was found to attend removal efficiencies relatively higher as compared to the co-current flow. As compared with co-current flow, counter-current flow Q(ss50) was approximately 1.65 times higher than co-current flow. It also recorded 13.16% higher oil removal at influent oil concentration, C(io) of 100 mg/L, and approximately 5.89% higher TSS removal at all influent flowrates. Counter-current flow's better removal performances were due to its higher coalescing area and constant interval between coalescence plate layers.
    Matched MeSH terms: Water Movements; Water Pollutants, Chemical/chemistry*; Water Purification/methods*
  3. Nourouzi MM, Chuah TG, Choong TS
    Water Sci Technol, 2011;63(5):984-94.
    PMID: 21411950 DOI: 10.2166/wst.2011.280
    The removal of Reactive Black 5 dye in an aqueous solution by electrocoagulation (EC) as well as addition of flocculant was investigated. The effect of operational parameters, i.e. current density, treatment time, solution conductivity and polymer dosage, was investigated. Two models, namely the artificial neural network (ANN) and the response surface method (RSM), were used to model the effect of independent variables on percentage of dye removal. The findings of this work showed that current density, treatment time and dosage of polymer had the most significant effect on percentage of dye removal (p<0.001). In addition, interaction between time and current density, time and dosage of polymer, current density and dosage of polymer also significantly affected the percentage of dye removal (p=0.034, 0.003 and 0.024, respectively). It was shown that both the ANN and RSM models were able to predict well the experimental results (R(2)>0.8).
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*; Water Purification
  4. Hamdan R, Mara DD
    Water Sci Technol, 2011;63(5):841-4.
    PMID: 21411931 DOI: 10.2166/wst.2011.102
    Rock filters are an established technology for polishing waste stabilization pond effluents. However, they rapidly become anoxic and consequently do not remove ammonium-nitrogen. Horizontal-flow aerated rock filters (HFARF), developed to permit nitrification and hence ammonium-N removal, were compared with a novel vertical-flow aerated rock filter (VFARF). There were no differences in the removals of BOD5, TSS and TKN, but the VFARF consistently produced effluents with lower ammonium-N concentrations (<0.3 mg N/L) than the HFARF (0.8-1.5 mg N/L) and higher nitrate-N concentrations (24-29 mg N/L vs. 17-24 mg N/L).
    Matched MeSH terms: Water Pollutants, Chemical; Water Purification/methods*
  5. Lee S, Park H
    Water Sci Technol, 2010;61(12):3129-40.
    PMID: 20555209 DOI: 10.2166/wst.2010.454
    This study deals with the overcapacity problem of water treatment plants in Korea, and mainly discusses status, causes, and engineering options. To this end, we first statistically analyze the recent trend of demand, revealing that the demands of small- and mid-size systems are still increasing while that of large-size systems is now decreasing. Since the existing approach to plan capacity implicitly assumes that demand will increase at a regular rate, we estimate excess capacities and system utilizations of large-size systems. From these results it is found that the large-size systems are suffering from serious overcapacity, thus necessitating that engineers make very difficult decisions given that systems are still expanding the capacities of plants due to a lack of awareness of the current demand trend. For other systems where there is a better understanding of the transition of demand, planners have ceased to expand plants or have closed down relatively old plants in efforts to reduce O&M costs. To address this problem, quick recognition of the transition of demand is being highlighted by the concepts of integrated resources management and cybernetics. Therefore, we examined how quickly the new trend of the Seoul case could be precisely recognized and appropriately addressed. Using the Bayesian parameter estimation method, we found that a new trend can be recognized six years after the transition of demand.
    Matched MeSH terms: Water Supply/standards*
  6. Bashir MJ, Aziz HA, Yusoff MS, Huqe AA, Mohajeri S
    Water Sci Technol, 2010;61(3):641-9.
    PMID: 20150700 DOI: 10.2166/wst.2010.867
    Landfill leachate is one of the major contamination sources. In this study, the ability of synthetic ion exchange resins which carry different mobile ion for removing color, chemical oxygen demand (COD), and ammonia nitrogen (NH(3)-N) from stabilized leachate was investigated. The synthetic resin INDION 225 Na as a cationic exchanger and INDION FFIP MB as an anionic exchanger were used in this study. INDION 225 Na was used in hydrogen form (H(+)) and in sodium form (Na(+)), while INDION FFIP MB resin was used in hydroxide form (OH(-)) and in calcium form (Cl(-)) form. The results indicated better removal of color, COD and NH(3)-N by using INDION 225 Na in H(+) as compared with Na(+) form, while no performance differences were observed by using INDION FFIP MB in OH(-) or Cl(-) form. Applying cationic resin followed by anionic resin achieved 97, 88 and 94, percent removal of color, COD and NH(3)-N. The residual amounts were 160 Pt-Co, 290 mg/L and 110 mg/L of color, COD and NH(3)-N respectively.
    Matched MeSH terms: Water Purification/methods*
  7. Suja F, Pramanik BK, Zain SM
    Water Sci Technol, 2009;60(6):1533-44.
    PMID: 19759456 DOI: 10.2166/wst.2009.504
    Perfluorinated compounds such as perfluorooctane sulfonate (PFOS) and perfluorooctane acid (PFOA) have been recognized as emerging environmental pollutants because of their ubiquitous occurrence in the environment, biota and humans. The paper focuses on the distribution, bioaccumulation and toxic effects of PFOS and PFOA in the water. From the available literature, tap and surface water samples in several countries were found to be contaminated with PFOS and PFOA. These compounds were detected globally in the tissues of fish, bird and marine mammals. Their concentrations from relatively more industrialized areas were greater than those from the less populated and remote locations. Blood samples of occupationally exposed people and the general population in various countries were found to contain PFOS and PFOA which suggested a possibility of atmospheric transport of these compounds. There is still a death of information about the environmental pathways of PFOS and PFOA. The presence of these compounds in the tap water, surface water and animal and human tissues indicates their global contamination and bioaccumulative phenomena in the ecosystems.
    Matched MeSH terms: Water/metabolism*; Water Pollutants, Chemical/blood; Water Pollutants, Chemical/metabolism*; Water Pollutants, Chemical/toxicity*
  8. Ho YC, Norli I, Alkarkhi AF, Morad N
    Water Sci Technol, 2009;60(3):771-81.
    PMID: 19657173 DOI: 10.2166/wst.2009.303
    The performance of pectin in turbidity reduction and the optimum condition were determined using Response Surface Methodology (RSM). The effect of pH, cation's concentration, and pectin's dosage on flocculating activity and turbidity reduction was investigated at three levels and optimized by using Box-Behnken Design (BBD). Coagulation and flocculation process were assessed with a standard jar test procedure with rapid and slow mixing of a kaolin suspension (aluminium silicate), at 150 rpm and 30 rpm, respectively, in which a cation e.g. Al(3+), acts as coagulant, and pectin acts as the flocculant. In this research, all factors exhibited significant effect on flocculating activity and turbidity reduction. The experimental data and model predictions well agreed. From the 3D response surface graph, maximum flocculating activity and turbidity reduction are in the region of pH greater than 3, cation concentration greater than 0.5 mM, and pectin dosage greater than 20 mg/L, using synthetic turbid wastewater within the range. The flocculating activity for pectin and turbidity reduction in wastewater is at 99%.
    Matched MeSH terms: Water Purification/methods*
  9. Ibrahim Z, Amin MF, Yahya A, Aris A, Umor NA, Muda K, et al.
    Water Sci Technol, 2009;60(3):683-8.
    PMID: 19657163 DOI: 10.2166/wst.2009.440
    Microbial flocs formed from raw textile wastewater in a prototype Aerobic Biofilm Reactor (ABR) system were characterised and studied for their potential use in the treatment of textile wastewater. After 90-100 days of operation, microbial flocs of loose irregular structures were obtained from the reactor with good settling velocity of 33 m/h and sludge volume index (SVI) of 48.2 mL/g. Molecular analysis of the flocs using PCR-amplified 16S rDNA sequence showed 98% homology to those of Bacillus sp, Paenibacillus sp and Acromobacter sp. Detection of Ca(2+)(131 mg/g) and Fe(2+)(131 mg/g) using atomic absorption spectrometer might be implicated with the flocs formation. In addition, presence of Co(2+) and Ni(2+) were indicative of the flocs ability to accumulate at least a fraction of the metals' present in the wastewater. When the flocs were used for the treatment of raw textile wastewater, they showed good removal of COD and colour about 55% and 70% respectively, indicating their potential application.
    Matched MeSH terms: Water Purification
  10. Ibrahim Z, Amin MF, Yahya A, Aris A, Muda K
    Water Sci Technol, 2010;61(5):1279-88.
    PMID: 20220250 DOI: 10.2166/wst.2010.021
    Textile wastewater, one of the most polluted industrial effluents, generally contains substantial amount of dyes and chemicals that will cause increase in the COD, colour and toxicity of receiving water bodies if not properly treated. Current treatment methods include chemical and biological processes; the efficiency of the biological treatment method however, remains uncertain since the discharged effluent is still highly coloured. In this study, granules consisting mixed culture of decolourising bacteria were developed and the physical and morphological characteristics were determined. After the sixth week of development, the granules were 3-10 mm in diameter, having good settling property with settling velocity of 70 m/h, sludge volume index (SVI) of 90 to 130 mL/g, integrity coefficient of 3.7, and density of 66 g/l. Their abilities to treat sterilised raw textile wastewater were evaluated based on the removal efficiencies of COD (initial ranging from 200 to 3,000 mg/L), colour (initial ranging from 450 to 2000 ADMI) of sterilised raw textile wastewater with pH from 6.8 to 9.4. Using a sequential anaerobic-aerobic treatment cycle with hydraulic retention time (HRT) of 24 h, maximum removal of colour and COD achieved was 90% and 80%, respectively.
    Matched MeSH terms: Water Pollutants, Chemical/metabolism; Water Pollutants, Chemical/chemistry; Water Purification/methods*
  11. Mohajeri S, Aziz HA, Isa MH, Zahed MA, Bashir MJ, Adlan MN
    Water Sci Technol, 2010;61(5):1257-66.
    PMID: 20220248 DOI: 10.2166/wst.2010.018
    In the present study, Electrochemical Oxidation was used to remove COD and color from semi-aerobic landfill leachate collected from Pulau Burung Landfill Site (PBLS), Penang, Malaysia. Experiments were conducted in a batch laboratory-scale system in the presence of NaCl as electrolyte and aluminum electrodes. Central composite design (CCD) under Response surface methodology (RSM) was applied to optimize the electrochemical oxidation process conditions using chemical oxygen demand (COD) and color removals as responses, and the electrolyte concentrations, current density and reaction time as control factors. Analysis of variance (ANOVA) showed good coefficient of determination (R(2)) values of >0.98, thus ensuring satisfactory fitting of the second-order regression model with the experimental data. In un-optimized condition, maximum removals for COD (48.77%) and color (58.21%) were achieved at current density 80 mA/cm(2), electrolyte concentration 3,000 mg/L and reaction time 240 min. While after optimization at current density 75 mA/cm(2), electrolyte concentration 2,000 mg/L and reaction time 218 min a maximum of 49.33 and 59.24% removals were observed for COD and color respectively.
    Matched MeSH terms: Water Pollutants, Chemical/analysis; Water Purification/methods
  12. Sujá F, Yusof A, Osman MA
    Water Sci Technol, 2010;61(2):389-96.
    PMID: 20107265 DOI: 10.2166/wst.2010.825
    Leachate samples collected from the Ampar Tenang open dumping site at Dengkil, Malaysia, were analyzed for acute toxicity. Two in vivo toxicity tests, Acute Oral Toxicity (AOT) and Primary Skin Irritation (PSI), were performed using Sprague Dawley rats and New Zealand Albino rabbits, respectively. The leachate samples were also analyzed chemically for nitrate and phosphate, ammonia-nitrogen, Kjeldahl-nitrogen and Chemical Oxygen Demand (COD). Results from both the AOT and PSI tests showed that the leachate did not contribute to acute toxicity. The AOT test yielded a negative result: no effect was observed in at least half of the rat population. The PSI test on rabbits produced effects only at a leachate concentration of 100%. However, the skin irritation was minor, and the test returned a negative result. The four chemical tests showed high levels of nutrient pollution in the leachate. The nitrate and phosphate concentrations were 2.1 mg/L and 23.6 mg/L, respectively. Further, the ammonia-nitrogen concentration was 1,000 mg NH(3)-N/L the Kjeldahl-nitrogen level was 446 mg NH(3)-N/L, and the Chemical Oxygen Demand was 1,300 mg/L. The in vivo toxicity and chemical analyses showed that the leachate is polluted but not acutely toxic to organisms.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*; Water Pollutants, Chemical/chemistry
  13. Kunacheva C, Boontanon SK, Fujii S, Tanaka S, Musirat C, Artsalee C, et al.
    Water Sci Technol, 2009;60(4):975-82.
    PMID: 19700836 DOI: 10.2166/wst.2009.462
    Perfluorinated compounds (PFCs) have been used for many years, and are distributed all over the world. This study focused on occurrences of PFCs, especially perfluorooctane sulfonate (PFOS) and perfluorooctonoic acid (PFOA) in Thai rivers and industrial estate discharges, while comparing results with rivers of other Asian countries (Japan, China, and Malaysia). Surveys were conducted in Chao Phraya River, Bangpakong River and three industrial estates. A solid phase extraction (SPE) and HPLC-ESI-MS/MS were used for the analysis of these chemicals. The average concentrations of PFOS and PFOA were 1.9 and 4.7 ng/L, respectively in Chao Phraya River, while lower concentrations were detected in Bangpakong River with the averages of 0.7 ng/L for both PFOS and PFOA. Higher concentrations were detected in all industrial estate discharges with the averages of 64.3 ng/L for PFOA and 17.9 ng/L for PFOS., Total loadings from three industrial estates were 1.93 g/d for PFOS and 11.81 g/d for PFOA. The concentration levels in Thai rivers were less than rivers in Japan, China, and Malaysia. However, PFCs loading rate of Chao Phraya River was much higher than Yodo River (Japan), due to the higher flow rate. The other six PFCs were found above the Limit of Quantification (LOQ) in most samples. PFHxS and PFNA were also highly detected in some river samples.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  14. Suja F, Donnelly T
    Water Sci Technol, 2008;58(5):977-83.
    PMID: 18824794 DOI: 10.2166/wst.2008.454
    A comparative study to explore the characteristics of partially and fully packed biological aerated filters (BAFs) in the removal of carbon pollutant, reveals that the partial-bed reactor can perform comparably well with the full-bed reactor. The organic removal rate was 5.34 kg COD m(-3) d(-1) at Organic Loading Rates (OLR) 5.80+/-0.31 kg COD m(-3) d(-1) for the full-bed, and 5.22 kg COD m(-3) d(-1) at OLR 5.79+/-0.29 kg COD m(-3) d(-1) for the partial-bed. In the partial-bed system, where the masses of biomass were only 41-51% of those of the full-bed, the maximum carbon removal limit was still between 5 to 6 kg COD m(-3) d(-1). At organic loadings above 5.0 kg COD m(-3) d(-1), the carbon removal capacity in both systems was limited by the mass and activity of microorganisms. The SRT in the full and partial-bed reactors was primarily controlled by the biomass loss in the effluent and during backwash operation. The SRT was reduced from 20.08 days at OLR 4.18+/-0.20 kg COD m(-3) d(-1) to 7.62 days at OLR 5.80+/-0.31 kg COD m(-3) d(-1) in the full-bed, and from 7.17 days to 4.21 days in the partial-bed. After all, SRT values in the partial-bed were always lower than those in the full-bed.
    Matched MeSH terms: Water Microbiology
  15. Ujang Z, Ng KS, Tg Hamzah TH, Roger P, Ismail MR, Shahabudin SM, et al.
    Water Sci Technol, 2007;56(9):103-8.
    PMID: 18025737
    A pilot scale membrane plant was constructed and monitored in Shah Alam, Malaysia for municipal wastewater reclamation for industrial application purposes. The aim of this study was to verify its suitability under the local conditions and environmental constraints for secondary wastewater reclamation. Immersed-type crossflow microfiltration (IMF) was selected as the pretreatment step before reverse osmosis filtration. Secondary wastewater after chlorine contact tank was selected as feed water. The results indicated that the membrane system is capable of producing a filtrate meeting the requirements of both WHO drinking water standards and Malaysian Effluent Standard A. With the application of an automatic backwash process, IMF performed well in hydraulic performance with low fouling rate being achieved. The investigations showed also that chemical cleaning is still needed because of some irreversible fouling by microorganisms always remains. RO treatment with IMF pretreatment process was significantly applicable for wastewater reuse purposes and promised good hydraulic performance.
    Matched MeSH terms: Water Purification/methods*
  16. Yin CY, Aroua MK, Daud WM
    Water Sci Technol, 2007;56(9):95-101.
    PMID: 18025736
    Palm shell activated carbon was modified via surface impregnation with polyethyleneimine (PEI) to enhance removal of Cu(2+) from aqueous solution in this study. The effect of PEI modification on batch adsorption of Cu(2+) as well as the equilibrium behavior of adsorption of metal ions on activated carbon were investigated. PEI modification clearly increased the Cu(2+) adsorption capacities by 68% and 75.86% for initial solution pH of 3 and 5 respectively. The adsorption data of Cu(2+) on both virgin and PEI-modified AC for both initial solution pH of 3 and 5 fitted the Langmuir and Redlich-Peterson isotherms considerably better than the Freundlich isotherm.
    Matched MeSH terms: Water Purification/methods*
  17. Salmiati, Ujang Z, Salim MR, Md Din MF, Ahmad MA
    Water Sci Technol, 2007;56(8):179-85.
    PMID: 17978446
    This study aimed to produce polyhydroxyalkanoates (PHAs) from organic wastes by mixed bacterial cultures using anaerobic-aerobic fermentation systems. Palm oil mill effluent (POME) was used as an organic source, which was cultivated in a two-step-process of acidogenesis and acid polymerization. POME was operated in a continuous flow anaerobic reactor to access volatile fatty acids (VFAs) for PHAs production. During fermentation, VFA concentration was produced in the range of 5 to 8 g/L and the COD concentration reduced up to 80% from 65 g/L. The VFA from anaerobic fermentation was then utilised for PHA production using a mixed culture in availability of aerobic bioreactor. Production of PHAs was recorded high when using a high volume of substrates because of the higher VFA concentration. Even though the maximum PHA content was observed at only 40% of the cell dried weight (CDW), their production and performance are significant in mixed microbial culture.
    Matched MeSH terms: Water Purification/methods
  18. Idris A, Ahmed I, Jye HW
    Water Sci Technol, 2007;56(8):169-77.
    PMID: 17978445
    The objective of this research is to investigate the performance of blend cellulose acetate (CA)-polyethersulphone (PES) membranes prepared using microwave heating (MWH) techniques and then compare it with blend CA-PES membranes prepared using conventional heating (CH) methods using bovine serum albumin solution. The superior membranes were then used in the treatment of palm oil mill effluent (POME). Various blends of CA-PES have been blended with PES in the range of 1-5 wt%. This distinctive series of dope formulations of blend CA/PES and pure CA was prepared using N, N-dimethylformamide (DMF) as solvent. The dope solution was prepared by MW heating for 5 min at a high pulse and the membranes were prepared by phase inversion method. The performances of these membranes were evaluated in terms of pure water and permeate flux, percentage removal of total suspended solids (TSS), chemical oxygen demand (COD) and biochemical oxygen demand (BOD). The results indicate that blend membranes prepared using the microwave technique is far more superior compared to that prepared using CH. Blend membranes with 19% CA, 1-3% PES and 80% of DMF solvent were found to be the best membrane formulation.
    Matched MeSH terms: Water Purification/methods*
  19. Razak AR, Ujang Z, Ozaki H
    Water Sci Technol, 2007;56(8):161-8.
    PMID: 17978444
    Endocrine disrupting chemicals (EDCs) are the focus of current environmental issues, as they can cause adverse health effects to animals and human, subsequent to endocrine function. The objective of this study was to remove a specific compound of EDCs (i.e. pentachlorophenol, C(6)OCL(5)Na, molecular weight of 288 g/mol) using low pressure reverse osmosis membrane (LPROM). A cross flow module of LPROM was used to observe the effects of operating parameters, i.e. pH, operating pressure and temperature. The design of the experiment was based on MINITAB(TM) software, and the analysis of results was conducted by factorial analysis. It was found that the rejection of pentachlorophenol was higher than 80% at a recovery rate of 60 to 70%. The rejection was subjected to increase with the increase of pH. The flux was observed to be increased with the increase of operating pressure and temperature. This study also investigated the interaction effects between operating parameters involved.
    Matched MeSH terms: Water Pollutants, Chemical/isolation & purification*; Water Supply; Water Purification/methods*
  20. Zakaria ZA, Aruleswaran N, Kaur S, Ahmad WA
    Water Sci Technol, 2007;56(8):117-23.
    PMID: 17978439
    Cr(VI) biosorption and bioreduction ability of locally isolated Cr-resistant bacteria was investigated using the shake-flask technique. A mixture of S. epidermidis and B. cereus showed the highest minimum inhibitory concentration (MIC) level at 750 mg/L Cr(VI) followed by S. aureus and Bacillus sp. of 250 mg/L, and A. haemolyticus of 70 mg/L. From the Langmuir adsorption isotherm, the treatment of cells with heat-acid resulted in the highest amount of Cr(VI) adsorped (78.25 mg/g dry wt. for S. epidermidis) compared to heat-acetone (67.93 mg/g dry wt. Bacillus sp.), heat only (36.05 mg/g dry wt. S. epidermidis) or untreated cells (45.40 mg/g dry wt. S. epidermidis and B. cereus). FTIR analysis showed the involvement of amine groups in Cr(VI) adsorption. In the bioreduction study, A. haemolyticus was able to completely reduce Cr(VI) up to 50 mg/L.
    Matched MeSH terms: Water Pollutants, Chemical/metabolism; Water Pollutants, Chemical/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links