Displaying publications 41 - 60 of 8076 in total

Abstract:
Sort:
  1. Syafruddin SE, Rodrigues P, Vojtasova E, Patel SA, Zaini MN, Burge J, et al.
    Nat Commun, 2019 03 11;10(1):1152.
    PMID: 30858363 DOI: 10.1038/s41467-019-09116-x
    Transcriptional networks are critical for the establishment of tissue-specific cellular states in health and disease, including cancer. Yet, the transcriptional circuits that control carcinogenesis remain poorly understood. Here we report that Kruppel like factor 6 (KLF6), a transcription factor of the zinc finger family, regulates lipid homeostasis in clear cell renal cell carcinoma (ccRCC). We show that KLF6 supports the expression of lipid metabolism genes and promotes the expression of PDGFB, which activates mTOR signalling and the downstream lipid metabolism regulators SREBF1 and SREBF2. KLF6 expression is driven by a robust super enhancer that integrates signals from multiple pathways, including the ccRCC-initiating VHL-HIF2A pathway. These results suggest an underlying mechanism for high mTOR activity in ccRCC cells. More generally, the link between super enhancer-driven transcriptional networks and essential metabolic pathways may provide clues to the mechanisms that maintain the stability of cell identity-defining transcriptional programmes in cancer.
    Matched MeSH terms: Carcinoma, Renal Cell/genetics*; Enhancer Elements, Genetic/genetics; Kidney Neoplasms/genetics*; Signal Transduction/genetics; Proto-Oncogene Proteins c-sis/genetics; Cell Proliferation/genetics; Lipid Metabolism/genetics*; Carcinogenesis/genetics*
  2. Teh HE, Pung CK, Arasoo VJT, Yap PSX
    Br J Biomed Sci, 2023;80:12098.
    PMID: 38283642 DOI: 10.3389/bjbs.2023.12098
    Disruption of the female genital microbiome is associated with several pregnancy complications, including miscarriage, preterm onset of labour, and tubal pregnancy. Ectopic pregnancy is a known cause of maternal morbidity and mortality, but early diagnosis and treatment of ectopic pregnancy remain a challenge. Despite growing established associations between genital microbiome and female reproductive health, few studies have specifically focused on its link with ectopic pregnancy. Therefore, the current review aims to provide a comprehensive account of the female genital microbiome in healthy and fertile women compared to those in ectopic pregnancy and its associated risk factors. The microbial diversity from various sites of the female genital tract was explored for a reliable proxy of female reproductive health in sequencing-based ectopic pregnancy research. Our report confirmed the predominance of Lactobacillus in the vagina and the cervix among healthy women. The relative abundance decreased in the vaginal and cervical microbiome in the disease state. In contrast, there were inconsistent findings on the uterine microbiome across studies. Additionally, we explore a spectrum of opportunities to enhance our understanding of the female genital tract microbiome and reproductive conditions. In conclusion, this study identifies gaps within the field and emphasises the need for visionary solutions in metagenomic tools for the early detection of ectopic pregnancy and other gynaecological diseases.
    Matched MeSH terms: Lactobacillus/genetics
  3. Ikryannikova LN, Shitikov EA, Zhivankova DG, Il'ina EN, Edelstein MV, Govorun VM
    J Microbiol Methods, 2008 Dec;75(3):385-91.
    PMID: 18694787 DOI: 10.1016/j.mimet.2008.07.005
    A minisequencing method based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) was developed for rapid identification of single nucleotide polymorphisms at bla(TEM) gene codons 104, 164 and 238 associated with extended-spectrum activity on TEM-type beta-lactamases. The method was validated by testing the Escherichia coli and Klebsiella pneumoniae strains possessing the known bla(TEM) gene sequences.
    Matched MeSH terms: Bacterial Proteins/genetics*; beta-Lactamases/genetics*; Enterobacteriaceae/genetics; Escherichia coli/genetics; Klebsiella pneumoniae/genetics
  4. Bhuiyan ZA, Zilfalil BA, Hennekam RC
    Singapore Med J, 2006 Aug;47(8):724-7.
    PMID: 16865217
    The Cornelia de Lange syndrome is a multiple congenital anomaly syndrome characterised by dysmorphic facial features, hirsutism, severe growth and developmental delays, and malformed upper limbs. The prevalence is estimated to be one per 10,000. Recently, several independent groups proved that Cornelia de Lange syndrome is caused by mutations in the NIPBL gene, the human homologue of the Drosophila Nipped-B gene. Here, we present the first clinical case report of a Malay child, a 9-year-old boy with the Cornelia de Lange syndrome. We also report the molecular investigation of the NIPBL gene in this patient.
    Matched MeSH terms: Abnormalities, Multiple/genetics; De Lange Syndrome/genetics
  5. Sawamura K, Sato H, Lee CY, Kamimura Y, Matsuda M
    Zoolog Sci, 2016 Oct;33(5):467-475.
    PMID: 27715417
    We surveyed natural population of the Drosophila ananassae species complex on Penang Island, Malaysia. Analyses of phenotypic traits, chromosome arrangements, molecular markers, and reproductive isolation suggest the existence of two species: D. ananassae and D. cf. parapallidosa. Molecular marker analysis indicates that D. cf. parapallidosa carries chromosome Y and 4 introgressions from D. ananassae. Thus, D. cf. parapallidosa seems to be a hybrid descendant that recently originated from a natural D. parapallidosa♀× D. ananassae♂ cross. Furthermore, D. cf. parapallidosa behaves differently from authentic D. parapallidosa with respect to its reproductive isolation from D. ananassae. Premating isolation is usually seen in only the D. ananassae♀× D. parapallidosa♂ cross, but we observed it in crosses of both directions between D. ananassae and D. cf. parapallidosa. In addition, hybrid males from the D. ananassae♀× D. parapallidosa♂ cross are usually sterile, but they were fertile when D. ananassae♀ were mated with D. cf. parapallidosa ♂. We attempted an artificial reconstruction of the hybrid species to simulate the evolutionary process(es) that produced D. cf. parapallidosa. This is a rare case of natural hybrid population in Drosophila and may be a useful system for elucidating speciation with gene flow.
    Matched MeSH terms: Drosophila/genetics*
  6. Takaoka H, Srisuka W, Saeung A, Maleewong W, Low VL
    J Med Entomol, 2017 11 07;54(6):1543-1551.
    PMID: 28968910 DOI: 10.1093/jme/tjx134
    Simulium (Gomphostilbia) laosense sp. nov. is described based on adults, pupae, and mature larvae from Laos. This new species is placed in the Simulium batoense species-group of the subgenus Gomphostilbia Enderlein. It is characterized by the pupal gill with eight filaments arranged as 3 + 3 + 2 from dorsal to ventral, of which an inner filament of the ventral pair is slightly longer than its counter filament, and is 1.7-1.8 times as long as filaments of the middle triplet. Taxonomic notes are provided to distinguish this new species from Simulium (G.) johorense Takaoka, Sofian-Azirun & Ya'cob from Peninsular Malaysia and four other related species. The phylogenetic position of this new species in the S. batoense species-group is also presented based on the mitochondrial COI gene. This new species represents the second species known from Laos.
    Matched MeSH terms: Simuliidae/genetics
  7. Takaoka H, Low VL, Tan TK, Ya'cob Z, Sofian-Azirun M, Dhang Chen C, et al.
    J Med Entomol, 2019 02 25;56(2):432-440.
    PMID: 30597034 DOI: 10.1093/jme/tjy222
    Simulium (Gomphostilbia) yvonneae sp. nov. is described based on adults, pupae, and mature larvae from Vietnam. This new species belongs to the Simulium duolongum subgroup in the S. batoense species-group of the subgenus Gomphostilbia Enderlein. It is distinguished by having a relatively larger number of male upper-eye facets in 16 vertical columns and 16 horizontal rows and a pupal gill with eight filaments arranged as 3+(1+2)+2 from dorsal to ventral, of which two filaments of the ventral pair are 1.8 times as long as the longest filament of the middle and dorsal triplets. Morphological comparisons are made to distinguish this new species from all 22 related species. The genetic distinctiveness of this new species in the S. duolongum subgroup is also presented based on the DNA barcoding COI gene.
    Matched MeSH terms: Electron Transport Complex IV/genetics; Simuliidae/genetics
  8. Rueppell O, Kuster R, Miller K, Fouks B, Rubio Correa S, Collazo J, et al.
    Genome Biol Evol, 2016 12 01;8(12):3653-3660.
    PMID: 28173114 DOI: 10.1093/gbe/evw269
    Western honey bees (Apis mellifera) far exceed the commonly observed 1–2 meiotic recombination events per chromosome and exhibit the highest Metazoan recombination rate (20 cM/Mb) described thus far. However, the reasons for this exceptional rate of recombination are not sufficiently understood. In a comparative study, we report on the newly constructed genomic linkage maps of Apis florea and Apis dorsata that represent the two honey bee lineages without recombination rate estimates so far. Each linkage map was generated de novo, based on SNP genotypes of haploid male offspring of a single female. The A. florea map spans 4,782 cM with 1,279 markers in 16 linkage groups. The A. dorsata map is 5,762 cM long and contains 1,189 markers in 16 linkage groups. Respectively, these map sizes result in average recombination rate estimates of 20.8 and 25.1 cM/Mb. Synteny analyses indicate that frequent intra-chromosomal rearrangements but no translocations among chromosomes accompany the high rates of recombination during the independent evolution of the three major honey bee lineages. Our results imply a common cause for the evolution of very high recombination rates in Apis. Our findings also suggest that frequent homologous recombination during meiosis might increase ectopic recombination and rearrangements within but not between chromosomes. It remains to be investigated whether the resulting inversions may have been important in the evolutionary differentiation between honey bee species.
    Matched MeSH terms: Bees/genetics*
  9. Abd-Aziz N, Tan BC, Rejab NA, Othman RY, Khalid N
    Mol Biotechnol, 2020 Apr;62(4):240-251.
    PMID: 32108286 DOI: 10.1007/s12033-020-00242-2
    In the past decade, interest in the production of recombinant pharmaceutical proteins in plants has tremendously progressed because plants do not harbor mammalian viruses, are economically competitive, easily scalable, and capable of carrying out complex post-translational modifications required for recombinant pharmaceutical proteins. Mucuna bracteata is an essential perennial cover crop species widely planted as an underground cover in oil palm and rubber plantations. As a legume, they have high biomass, thrive in its habitat, and can fix nitrogen. Thus, M. bracteata is a cost-efficient crop that shows ideal characteristics as a platform for mass production of recombinant protein. In this study, we established a new platform for the transient production of a recombinant protein in M. bracteata via vacuum-assisted agro-infiltration. Five-week-old M. bracteata plants were vacuum infiltrated with Agrobacterium tumefaciens harboring a plasmid that encodes for an anti-toxoplasma immunoglobulin (IgG) under different parameters, including trifoliate leaf positional effects, days to harvest post-infiltration, and the Agrobacterium strain used. Our results showed that vacuum infiltration of M. bracteata plant with A. tumefaciens strain GV3101 produced the highest concentration of heterologous protein in its bottom trifoliate leaf at 2 days post-infiltration. The purified anti-toxoplasma IgG was then analyzed using Western blot and ELISA. It was demonstrated that, while structural heterogeneity existed in the purified anti-toxoplasma IgG from M. bracteata, its transient expression level was two-fold higher than the model platform, Nicotiana benthamiana. This study has laid the foundation towards establishing M. bracteata as a potential platform for the production of recombinant pharmaceutical protein.
    Matched MeSH terms: Immunoglobulin G/genetics; Agrobacterium tumefaciens/genetics; Plants, Genetically Modified/genetics; Mucuna/genetics*
  10. Shimada T, Matsui M, Nishikawa K, Eto K
    Zoolog Sci, 2015 Oct;32(5):474-84.
    PMID: 26428726 DOI: 10.2108/zs140289
    A cryptic Bornean torrent frog of the genus Meristogenys, which is divergent genetically and morphologically from all known congeners, is described from mountain streams of western Sarawak, East Malaysia (Borneo). The species occurs sympatrically with the type species of the genus, M. jerboa, but apparently differs from it in adult coloration and larval morphology, such as keratodont formulae and glands in tail fins. Females of the new species possess much larger and fewer eggs than in sympatric M. jerboa, suggesting significantly different reproductive traits between these species. A key to larvae of known species of the genus is provided.
    Matched MeSH terms: DNA, Mitochondrial/genetics*; Larva/genetics; Ranidae/genetics*
  11. Matsui M, Nishikawa K, Eto K, Hossman MYB
    Zoolog Sci, 2017 Aug;34(4):345-350.
    PMID: 28770684 DOI: 10.2108/zs170008
    A new small, semi-arboreal toad of the genus Pelophryne is described from western Sarawak, Malaysian Borneo, on the basis of molecular and morphological evidence. Of the two morphotypes recognized in the genus, the new species belongs to the one in which the tips of the fingers are expanded into truncate discs. Among the species in the morphotype, the new species is most similar to P. murudensis, but differs from it by body size, relative hindlimb length, and dorsal coloration. The new species is currently known only from a limited area on Gunung (= Mt.) Penrissen, and future measures of its habitat conservation are necessary.
    Matched MeSH terms: Bufonidae/genetics
  12. Takaoka H, Low VL, Tan TK, Huang YT, Fukuda M, Ya'cob Z
    J Med Entomol, 2018 06 28;55(4):884-892.
    PMID: 29538704 DOI: 10.1093/jme/tjy028
    A new black fly species, Simulium haiduanense Takaoka, Low & Huang (Diptera: Simuliidae), is described on the basis of females, males, pupae, and mature larvae from Taiwan. This new species is placed in the Simulium argentipes species-group of the subgenus Simulium (Diptera: Simuliidae) and is characterized by the yellowish female legs, ovipositor valves rounded apically and with its inner margin concave, claw with a small subbasal tooth, male style without a basal protuberance, pupal gill with eight filaments, corbicular cocoon, and larval abdomen lacking paired protuberances. It represents the first record of the S. argentipes species-group from Taiwan. Taxonomic notes are given to separate this new species from all eight species in the same species-group. The phylogenetic relationships of this new species with four related species are presented.
    Matched MeSH terms: Larva/genetics; Pupa/genetics; Simuliidae/genetics
  13. Takaoka H, Srisuka W, Low VL, Saeung A
    J Med Entomol, 2019 01 08;56(1):86-94.
    PMID: 30398648 DOI: 10.1093/jme/tjy178
    Simulium undecimum sp. nov. is described from Thailand. This new species is assigned to the Simulium multistriatum species-group, one of the 20 species-groups of the subgenus Simulium in the Oriental Region. It is characterized by the female cibarium with minute processes, male ventral plate with a narrow body having two vertical rows of distinct teeth on the posterior surface and without setae on the anterior and lateral surfaces, pupal gill with eight short filaments decreasing in length from dorsal to ventral, and divergent at an angle of around 90 degrees when viewed laterally, spine-combs only on abdominal segments 7 and 8, and cocoon wall-pocket shaped with anterolateral windows. Taxonomic notes to separate this new species from related species in Thailand and other countries are given. This new species is the 11th nominal member of this species-group recorded in Thailand. An analysis of the COI gene sequences shows that it is most closely related with S. malayense Takaoka & Davies (cytoform A) from Thailand but they are distantly separated by 3.01-8.87%.
    Matched MeSH terms: Electron Transport Complex IV/genetics; Simuliidae/genetics
  14. Takaoka H, Srisuka W, Low VL, Saeung A
    J Med Entomol, 2018 05 04;55(3):561-568.
    PMID: 29361011 DOI: 10.1093/jme/tjx241
    Simulium (Simulium) phraense sp. nov. (Diptera: Simuliidae) is described from females, males, pupae, and larvae from Thailand. This new species is placed in the Simulium striatum species group and is most similar to Simulium (Simulium) nakhonense Takaoka & Suzuki (Diptera: Simuliidae) from Thailand among species of the same species group but is barely distinguished from the latter species by lacking annular ridges on the surface of the pupal gill filaments. The fast-evolving nuclear big zinc finger (BZF) gene has successfully differentiated this new species from its allies, S. (S.) nakhonense and Simulium (Simulium) chiangmaiense Takaoka & Suzuki (Diptera: Simuliidae) of the S. striatum species group. The BZF gene sequences show that this new species is more closely related to S. (S.) nakhonense than to S. (S.) chiangmaiense, further supporting its morphological classification.
    Matched MeSH terms: Cell Nucleus/genetics; Larva/genetics; Pupa/genetics; Simuliidae/genetics
  15. Maggo SD, Chua EW, Chin P, Cree S, Pearson J, Doogue M, et al.
    N Z Med J, 2017 Dec 01;130(1466):62-69.
    PMID: 29197902
    A multitude of factors can affect drug response in individuals. It is now well established that variations in genes, especially those coding for drug metabolising enzymes, can alter the pharmacokinetic and/or pharmacodynamic profile of a drug, impacting on efficacy and often resulting in drug-induced toxicity. The UDRUGS study is an initiative from the Carney Centre for Pharmacogenomics to biobank DNA and store associated clinical data from patients who have suffered rare and/or serious adverse drug reactions (ADRs). The aim is to provide a genetic explanation of drug-induced ADRs using methods ranging from Sanger sequencing to whole exome and whole genome sequencing. Participants for the UDRUGS study are recruited from various sources, mainly via referral through clinicians working in Canterbury District Health Board, but also from district health boards across New Zealand. Participants have also self-referred to us from word-of-mouth communication between participants. We have recruited various ADRs across most drug classes. Where possible, we have conducted genetic analyses in single or a cohort of cases to identify known and novel genetic association(s) to offer an explanation to why the ADR occurred. Any genetic results relevant to the ADR are communicated back to the referring clinician and/or participant. In conclusion, we have developed a programme for studying the genetic basis of severe, rare or unusual ADR cases resulting from pharmacological treatment. Genomic analyses could eventually identify most genetic variants that predispose to ADRs, enabling a priori detection of such variants with high throughput DNA tests.
    Matched MeSH terms: Drug-Related Side Effects and Adverse Reactions/genetics*
  16. Hooper C, Debnath PP, Biswas S, van Aerle R, Bateman KS, Basak SK, et al.
    Viruses, 2020 10 02;12(10).
    PMID: 33023199 DOI: 10.3390/v12101120
    Mass mortalities of the larval stage of the giant freshwater prawn, Macrobrachium rosenbergii, have been occurring in Bangladesh since 2011. Mortalities can reach 100% and have resulted in an 80% decline in the number of hatcheries actively producing M. rosenbergii. To investigate a causative agent for the mortalities, a disease challenge was carried out using infected material from a hatchery experiencing mortalities. Moribund larvae from the challenge were prepared for metatranscriptomic sequencing. De novo virus assembly revealed a 29 kb single‑stranded positive-sense RNA virus with similarities in key protein motif sequences to yellow head virus (YHV), an RNA virus that causes mass mortalities in marine shrimp aquaculture, and other viruses in the Nidovirales order. Primers were designed against the novel virus and used to screen cDNA from larvae sampled from hatcheries in the South of Bangladesh from two consecutive years. Larvae from all hatcheries screened from both years were positive by PCR for the novel virus, including larvae from a hatchery that at the point of sampling appeared healthy, but later experienced mortalities. These screens suggest that the virus is widespread in M. rosenbergii hatchery culture in southern Bangladesh, and that early detection of the virus can be achieved by PCR. The hypothesised protein motifs of Macrobrachium rosenbergii golda virus (MrGV) suggest that it is likely to be a new species within the Nidovirales order. Biosecurity measures should be taken in order to mitigate global spread through the movement of post-larvae within and between countries, which has previously been linked to other virus outbreaks in crustacean aquaculture.
    Matched MeSH terms: RNA Viruses/genetics; Nodaviridae/genetics
  17. Wong M, Woolford L, Hasan NH, Hemmatzadeh F
    Viral Immunol, 2017 05;30(4):258-263.
    PMID: 28426340 DOI: 10.1089/vim.2016.0041
    In this study, canine adenoviruses (CAdVs) from two acute fatal cases of infectious canine hepatitis (ICH) were analyzed using molecular detection and sequencing of the pVIII, E3, and fiber protein genes. Pathological findings in affected dogs were typical for CAdV-1 associated disease, characterized by severe centrilobular to panlobular necrohemorrhagic hepatitis and the development of disseminated intravascular coagulation in the terminal stages of disease. Comparison of partial genome sequences revealed that although these newly detected viruses mainly had CAdV-1 genome characteristics, their pVIII gene was more similar to that of CAdV-2. This likely suggests that a recombination has occurred between CAdV-1 and CAdV-2, which possibly explains the cause of vaccine failure or increased virulence of the virus in the observed ICH cases.
    Matched MeSH terms: Adenoviruses, Canine/genetics; Viral Proteins/genetics
  18. Marin-Mogollon C, Salman AM, Koolen KMJ, Bolscher JM, van Pul FJA, Miyazaki S, et al.
    PMID: 31058097 DOI: 10.3389/fcimb.2019.00096
    Transgenic malaria parasites expressing fluorescent and bioluminescent proteins are valuable tools to interrogate malaria-parasite biology and to evaluate drugs and vaccines. Using CRISPR/Cas9 methodology a transgenic Plasmodium falciparum (Pf) NF54 line was generated that expresses a fusion of mCherry and luciferase genes under the control of the Pf etramp10.3 gene promoter (line mCherry-luc@etramp10.3). Pf etramp10.3 is related to rodent Plasmodium uis4 and the uis4 promoter has been used to drive high transgene expression in rodent parasite sporozoites and liver-stages. We examined transgene expression throughout the complete life cycle and compared this expression to transgenic lines expressing mCherry-luciferase and GFP-luciferase under control of the constitutive gapdh and eef1a promoters. The mCherry-luc@etramp10.3 parasites express mCherry in gametocytes, sporozoites, and liver-stages. While no mCherry signal was detected in asexual blood-stage parasites above background levels, luciferase expression was detected in asexual blood-stages, as well as in gametocytes, sporozoites and liver-stages, with the highest levels of reporter expression detected in stage III-V gametocytes and in sporozoites. The expression of mCherry and luciferase in gametocytes and sporozoites makes this transgenic parasite line suitable to use in in vitro assays that examine the effect of transmission blocking inhibitors and to analyse gametocyte and sporozoite biology.
    Matched MeSH terms: Luciferases/genetics; Plasmodium falciparum/genetics*; Recombinant Proteins/genetics
  19. Phua AC, Abdullah RB, Mohamed Z
    J. Reprod. Dev., 2003 Aug;49(4):307-11.
    PMID: 14967923
    Sex determination of livestock is performed to achieve the objectives of livestock breeding programmes. Techniques for sex determination have evolved from karyotyping to detecting Y-specific antigens and recently to the polymerase chain reaction (PCR), which appears to be the most sensitive, accurate, rapid and reliable method to date. In this study, a PCR-based sex determination method for potential application in goat breeding programmes was developed. Primers were designed to amplify a portion of the X amelogenin gene (Aml-X) on the X chromosome to give a 300 bp product and Sry gene on the Y chromosome to give a 116 bp product. PCR optimization was performed using DNA template extracted from a whole blood sample of Jermasia goats (German Fawn x Katjang) of both sexes. It was possible to identify the sex chromosomes by amplifying both male- and female-specific genes simultaneously in a duplex reaction with males yielding two bands and females yielding one band. The Aml-X primer set, which served as an internal control primer, did not interfere with amplification of the Y-specific sequence even when a low amount of DNA (1 ng) was used. The duplex reaction subjected to a blind test showed 100% (14/14) concordance, proving its accuracy and reliability. The primer sets used were found to be highly specific and were suitable for gender selection of goats.
    Matched MeSH terms: Dental Enamel Proteins/genetics; Goats/genetics*; X Chromosome/genetics; Y Chromosome/genetics; DNA Primers/genetics
  20. Ariffin SH, Manogaran T, Abidin IZ, Wahab RM, Senafi S
    Curr Stem Cell Res Ther, 2017;12(3):247-259.
    PMID: 27784228 DOI: 10.2174/1574888X11666161026145149
    Stem cells (SCs) are capable of self-renewal and multilineage differentiation. Human mesenchymal stem cells (MSCs) and haematopoietic stem cells (HSCs) which can be obtained from multiple sources, are suitable for application in regenerative medicine and transplant therapy. The aim of this review is to evaluate the potential of genomic and proteomic profiling analysis to identify the differentiation of MSCs and HSCs towards osteoblast and odontoblast lineages. In vitro differentiation towards both of these lineages can be induced using similar differentiation factors. Gene profiling cannot be utilised to confirm the lineages of these two types of differentiated cells. Differentiated cells of both lineages express most of the same markers. Most researchers have detected the expression of genes such as ALP, OCN, OPN, BMP2 and RUNX2 in osteoblasts and the expression of the DSPP gene in odontoblasts. Based on their cell-type specific protein profiles, various proteins are differentially expressed by osteoblasts and odontoblasts, except for vimentin and heterogeneous nuclear ribonucleoprotein C, which are expressed in both cell types, and LOXL2 protein, which is expressed only in odontoblasts.
    Matched MeSH terms: Amino Acid Oxidoreductases/genetics; Cell Differentiation/genetics; Osteogenesis/genetics*; Phosphoproteins/genetics; Sialoglycoproteins/genetics; Extracellular Matrix Proteins/genetics*; Cell Lineage/genetics; Core Binding Factor Alpha 1 Subunit/genetics; Bone Morphogenetic Protein 2/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links