Displaying publications 41 - 48 of 48 in total

Abstract:
Sort:
  1. Song BK, Hein I, Druka A, Waugh R, Marshall D, Nadarajah K, et al.
    Funct Integr Genomics, 2009 Feb;9(1):97-108.
    PMID: 18633654 DOI: 10.1007/s10142-008-0091-x
    Common wild rice (Oryza rufipogon) plays an important role by contributing to modern rice breeding. In this paper, we report the sequence and analysis of a 172-kb genomic DNA region of wild rice around the RM5 locus, which is associated with the yield QTL yld1.1. Comparative sequence analysis between orthologous RM5 regions from Oryza sativa ssp. japonica, O. sativa ssp. indica and O. rufipogon revealed a high level of conserved synteny in the content, homology, structure, orientation, and physical distance of all 14 predicted genes. Twelve of the putative genes were supported by matches to proteins with known function, whereas two were predicted by homology to rice and other plant expressed sequence tags or complementary DNAs. The remarkably high level of conservation found in coding, intronic and intergenic regions may indicate high evolutionary selection on the RM5 region. Although our analysis has not defined which gene(s) determine the yld1.1 phenotype, allelic variation and the insertion of transposable elements, among other nucleotide changes, represent potential variation responsible for the yield QTL. However, as suggested previously, two putative receptor-like protein kinase genes remain the key suspects for yld1.1.
    Matched MeSH terms: Introns/genetics
  2. Tang K, Ngoi SM, Gwee PC, Chua JM, Lee EJ, Chong SS, et al.
    Pharmacogenetics, 2002 Aug;12(6):437-50.
    PMID: 12172212
    The MDR1 multidrug transporter plays a key role in determining drug bioavailability, and differences in drug response exist amongst different ethnic groups. Numerous studies have identified an association between the MDR1 single nucleotide polymorphism (SNP) exon 26 3435C>T and differences in MDR1 function. We performed a haplotype analysis of the MDR1 gene in three major ethnic groups (Chinese, Malays and Indians) by examining 10 intragenic SNPs. Four were polymorphic in all three ethnic groups: one occurring in the non-coding region and three occurring in coding exons. All three coding SNPs (exon 12 1236C>T, exon 21 2677G>T/A and exon 26 3435C>T) were present in high frequency in each ethnic group, and the derived haplotype profiles exhibited distinct differences between the groups. Fewer haplotypes were observed in the Malays (n = 6) compared to the Chinese (n = 10) and Indians (n = 9). Three major haplotypes (> 10% frequency) were observed in the Malays and Chinese; of these, two were observed in the Indians. Strong linkage disequilibrium (LD) was detected between the three SNPs in all three ethnic groups. The strongest LD was present in the Chinese, followed by Indians and Malays, with the corresponding LD blocks estimated to be approximately 80 kb, 60 kb and 40 kb, respectively. These data strongly support the hypothesis that strong LD between the neutral SNP exon 26 3435C>T and a nearby unobserved causal SNP underlies the observed associations between the neutral SNP and MDR1 functional differences. Furthermore, strong LD between exon 26 3435T and different unobserved causal SNPs in different study populations may provide a plausible explanation for conflicting reports associating the same exon 26 3435T allele with different MDR1 functional changes.
    Matched MeSH terms: Introns/genetics
  3. Wan Khairunnisa Wan Juhari, Khairul Bariah Ahmad Amin Noordin, Wan Faiziah Wan Abdul Rahman, Andee Dzulkarnaen Zakaria, Ahmad Shanwani Mohd Sidek, Muhammad Radzi Abu Hassan, et al.
    MyJurnal
    Background: Hereditary nonpolyposis colorectal cancer (HNPCC) also known as Lynch syndrome is commonly caused by genetic alterations in any of the four mismatch repair (MMR) genes; MLH1, MSH2, MSH6 and PMS2. This is the first study aimed to investigate genetic variants in Malay HNPCC families. Methods: Six Malay HNPCC families who fulfilled any of the Bethesda criteria were recruited into this study. A total of 3 ml of blood was withdrawn from each patient in the families. The samples were further analyzed using polymerase chain reaction and direct sequencing of the selected exons of MLH1 and MSH2 genes. Results: Two missense mutations and four single nucleotide polymorphisms (SNPs) were identified in six patients. These variants in the MLH1 and MSH2 genes were identified in four families who met the revised Bethesda guidelines. In two families, no mutation and polymorphism was identified in both the exon and intron of the respective genes. Of the mutations and polymorphisms identified, five have never been reported in Malay HNPCC families before. A missense mutation was detected in exon 5 of the MLH1 gene, c.394G>C (p.Asp132His) and four mutations and polymorphisms were detected in the MSH2 gene; heterozygous c.211+98T>C and c.211+9C>G and homozygous c.211+98T>C and c.211+9C>G, c.367-86A>C and c.382C>G. Conclusion: The results represented a new spectrum of mutations and polymorphisms in the Malay HNPCC families. However, a larger study involving additional families and analysis is required to determine the impact and nature of the identified mutations and polymorphisms.
    Matched MeSH terms: Introns
  4. Yang W, Lee PP, Thong MK, Ramanujam TM, Shanmugam A, Koh MT, et al.
    Clin Genet, 2015 Dec;88(6):542-9.
    PMID: 25534311 DOI: 10.1111/cge.12553
    Familial multiple intestinal atresias is an autosomal recessive disease with or without combined immunodeficiency. In the last year, several reports have described mutations in the gene TTC7A as causal to the disease in different populations. However, exact correlation between different genotypes and various phenotypes are not clear. In this study, we report identification of novel compound heterozygous mutations in TTC7A gene in a Malay girl with familial multiple intestinal atresias and severe combined immunodeficiency (MIA-SCID) by whole exome sequencing. We found two mutations in TTC7A: one that destroyed a putative splicing acceptor at the junction of intron 17/exon 18 and one that introduced a stop codon that would truncate the last two amino acids of the encoded protein. Reviewing the recent reports on TTC7A mutations reveals correlation between the position and nature of the mutations with patient survival and clinical manifestations. Examination of public databases also suggests carrier status for healthy individuals, making a case for population screening on this gene, especially in populations with suspected frequent founder mutations.
    Matched MeSH terms: Introns
  5. Yew PY, Mushiroda T, Kiyotani K, Govindasamy GK, Yap LF, Teo SH, et al.
    Mol Carcinog, 2012 Oct;51 Suppl 1:E74-82.
    PMID: 22213098 DOI: 10.1002/mc.21857
    Nasopharyngeal carcinoma (NPC) is a multifactorial and polygenic disease with high incidence in Asian countries. Epstein-Barr virus infection, environmental and genetic factors are believed to be involved in the tumorigenesis of NPC. The association of single nucleotide polymorphisms (SNPs) in LPLUNC1 and SPLUNC1 genes with NPC was investigated by performing a two-stage case control association study in a Malaysian Chinese population. The initial screening consisted of 81 NPC patients and 147 healthy controls while the replication study consisted of 366 NPC patients and 340 healthy controls. The combined analysis showed that a SNP (rs2752903) of SPLUNC1 was significantly associated with the risk of NPC (combined P = 0.00032, odds ratio = 1.62, 95% confidence interval = 1.25-2.11). In the subsequent dense fine mapping of SPLUNC1 locus, 36 SNPs in strong linkage disequilibrium with rs2752903 (r(2) ≥ 0.85) were associated with NPC susceptibility. Screening of these variants by electrophoretic mobility shift and luciferase reporter assays showed that rs1407019 located in intron 3 (r(2)  = 0.994 with rs2752903) caused allelic difference in the binding of specificity protein 1 (Sp1) transcription factor and affected luciferase activity. This SNP may consequently alter the expression of SPLUNC1 in the epithelial cells. In summary, our study suggested that rs1407019 in intronic enhancer of SPLUNC1 is associated with NPC susceptibility in which its A allele confers an increased risk of NPC in the Malaysian Chinese population.
    Matched MeSH terms: Introns
  6. Yusof, R., Abdul Rahman, P.S., Rahim, Z.H.A.
    Ann Dent, 1999;6(1):-.
    MyJurnal
    The application of PCR technique in genetic screening was demonstrated using the genetic materials from buccal cells of the students in the class. Two factors were taken into consideration when designing the experiments. The DNA region to be amplified should not be associated with any disease state. This is to eliminate any emotional and ethical problems associated with the experiments. In this practical, the presence and absence of a 38 bp sequence in the intron of COLIA2 gene were studied. The students were also shown on how to analyse the presence of homozygous and heterozygous alleles and the genetic variations that might be observed in the different ethnic groups of students. Another factor was the time taken to complete the experiment. Our experience showed that this experiment would take at least six hours to obtain and analyse the results. It is therefore suitable to be used in class teaching.
    Matched MeSH terms: Introns
  7. Zahari M, Sulaiman SA, Othman Z, Ayob Y, Karim FA, Jamal R
    Mediterr J Hematol Infect Dis, 2018;10(1):e2018056.
    PMID: 30210749 DOI: 10.4084/MJHID.2018.056
    Background: Haemophilia A (HA) and Haemophilia B (HB) are X-linked blood disorders that are caused by various mutations in the factor VIII (F8) and factor IX (F9) genes respectively. Identification of mutations is essential as some of the mutations are associated with the development of inhibitors. This study is the first comprehensive study of the F8 mutational profile in Malaysia.

    Materials and methods: We analysed 100 unrelated HA and 15 unrelated HB patients for genetic alterations in the F8 and F9 genes by using the long-range PCR, DNA sequencing, and the multiplex-ligation-dependent probe amplification assays. The prediction software was used to confirm the effects of these mutations on factor VIII and IX proteins.

    Results: 44 (53%) of the severe HA patients were positive for F8 intron 22 inversion, and three (3.6%) were positive for intron one inversion. There were 22 novel mutations in F8, including missense (8), frameshift (9), splice site (3), large deletion (1) and nonsense (1) mutations. In HB patients, four novel mutations were identified including the splice site (1), small deletion (1), large deletion (1) and missense (1) mutation.

    Discussion: The mutational spectrum of F8 in Malaysian patients is heterogeneous, with a slightly higher frequency of intron 22 inversion in these severe HA patients when compared to other Asian populations. Identification of these mutational profiles in F8 and F9 genes among Malaysian patients will provide a useful reference for the early detection and diagnosis of HA and HB in the Malaysian population.

    Matched MeSH terms: Introns
  8. Zhou Q, Cheung YB, Jada SR, Lim WT, Kuo WL, Gray JW, et al.
    Cancer Biol Ther, 2006 Nov;5(11):1445-9.
    PMID: 17102595
    AIM: The purpose of this study was to test the hypothesis if longer CA dinucleotide repeats are more common in the Asian population and also to gain insights into the interplay between the CA dinucleotide repeats and the frequencies of EGFR gene expression and amplifications as this might have therapeutic implications with regards to treatment with tyrosine kinase inhibitors.

    MATERIALS AND METHODS: The EGFR intron 1 polymorphism was analysed in three distinct healthy Asian subjects, namely, Chinese (N = 96), Malays (N = 98) and Indians (N = 100). Comparative genomic hybridisation was performed to investigate for changes in DNA copy number in relation to the polymorphic CA dinucleotide repeats in breast tumor tissues (N = 22).

    RESULTS: The frequency of short alleles with 14 and 15 CA repeats were most common in the Asian populations and significantly higher than those reported for Caucasians. The frequency of 20 CA repeats was 5%, almost 13-fold lower than previous reports. EGFR amplifications were detected in 23% and 11% of breast tumor tissues harboring short and long CA repeats, respectively.

    CONCLUSION: Our results show that the frequency of alleles encoding for short CA dinucleotide repeats is common in Asian populations. EGFR expression and amplification levels were also higher in Asian breast tumor tissues with short CA dinucleotide repeats. These findings suggest that the EGFR intron 1 polymorphism may influence response to treatment with tyrosine kinase inhibitors in breast cancer patients and further studies are warranted.

    Matched MeSH terms: Introns*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links