Displaying publications 41 - 47 of 47 in total

Abstract:
Sort:
  1. Lau S, Ng KH, Abdul Aziz YF
    Br J Radiol, 2016 Oct;89(1066):20160258.
    PMID: 27452264 DOI: 10.1259/bjr.20160258
    OBJECTIVE: To investigate the sensitivity and robustness of a volumetric breast density (VBD) measurement system to errors in the imaging physics parameters including compressed breast thickness (CBT), tube voltage (kVp), filter thickness, tube current-exposure time product (mAs), detector gain, detector offset and image noise.

    METHODS: 3317 raw digital mammograms were processed with Volpara(®) (Matakina Technology Ltd, Wellington, New Zealand) to obtain fibroglandular tissue volume (FGV), breast volume (BV) and VBD. Errors in parameters including CBT, kVp, filter thickness and mAs were simulated by varying them in the Digital Imaging and Communications in Medicine (DICOM) tags of the images up to ±10% of the original values. Errors in detector gain and offset were simulated by varying them in the Volpara configuration file up to ±10% from their default values. For image noise, Gaussian noise was generated and introduced into the original images.

    RESULTS: Errors in filter thickness, mAs, detector gain and offset had limited effects on FGV, BV and VBD. Significant effects in VBD were observed when CBT, kVp, detector offset and image noise were varied (p 

    Matched MeSH terms: Physics
  2. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(8):439.
    PMID: 28303081 DOI: 10.1140/epjc/s10052-016-4261-z
    A search for new physics is performed using events with two isolated same-sign leptons, two or more jets, and missing transverse momentum. The results are based on a sample of proton-proton collisions at a center-of-mass energy of 13[Formula: see text] recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 2.3 [Formula: see text]. Multiple search regions are defined by classifying events in terms of missing transverse momentum, the scalar sum of jet transverse momenta, the transverse mass associated with a [Formula: see text] boson candidate, the number of jets, the number of [Formula: see text] quark jets, and the transverse momenta of the leptons in the event. The analysis is sensitive to a wide variety of possible signals beyond the standard model. No excess above the standard model background expectation is observed. Constraints are set on various supersymmetric models, with gluinos and bottom squarks excluded for masses up to 1300 and 680[Formula: see text], respectively, at the 95 % confidence level. Upper limits on the cross sections for the production of two top quark-antiquark pairs (119[Formula: see text]) and two same-sign top quarks (1.7[Formula: see text]) are also obtained. Selection efficiencies and model independent limits are provided to allow further interpretations of the results.
    Matched MeSH terms: Physics
  3. Prasetyono TOH, Adhistana P
    Malays J Med Sci, 2019 Mar;26(2):66-76.
    PMID: 31447610 DOI: 10.21315/mjms2019.26.2.8
    Background: This study aimed to measure the least initial and maintenance forces of syringe and needle combinations to provide a reference for local anesthetic injection.

    Methods: An experimental study was conducted in our Physics Laboratory during September 2015. A series of syringes sized 1 mL, 3 mL, 5 mL, 10 mL and 20 mL were paired with the original needles, 27G, 27G spinal and 30G. Each combination was tested three times using a compression testing Instron 5940 Series to measure initial and maintenance forces. Statistical analysis was performed using One-way ANOVA.

    Results: The lowest initial force was shown by the combination of 1 mL syringe and 27G spinal needle. However, the 1 mL syringe showed no significant difference across the needles [F(3, 8) = 3.545; P < 0.068]. The original and 27G needle showed mean difference 0.28 (95%CI: -0.19, 0.75; P = 0.420). The lowest maintenance force was measured in the combination of 1 mL syringe and its original 26G needle. On the contrary, both the highest initial and maintenance forces were shown by the combination of 10 mL syringe and 30G needle.

    Conclusion: The 1 mL syringe with original 26G needle shows the best combination.

    Matched MeSH terms: Physics
  4. Latif WA, Ggha S
    Malays J Med Sci, 2019 Jan;26(1):147-156.
    PMID: 30914902 DOI: 10.21315/mjms2019.26.1.14
    Psychiatric disorders are prevalent throughout the world and causes heavy burden on mankind. Alone in US, billions of dollars are used for treatment purposes annually. Although advances in treatment strategies had witnessed recently, however the efficacy and overall outcome weren't quite promising. In neurobehavioural sciences, old problems survive through ages and with psychiatric disease, the phenomenon turns intensely complex. While our understanding of brain is mostly based on concepts of particle physics, its functions largely follow the principles of quantum mechanics. The current therapeutics relies on understanding of brain as a material entity that turns to be one of the chief reasons for the unsatisfactory therapeutic outcomes. Collectively, as mankind we are suffering huge loss due to the least effective treatment strategies. Even though we just begin to understand about how brain works, we also do not know much about quantum mechanics and how subatomic particles behave with quantum properties. Though it is apparent that quantum properties like particle and wave function duality coincides with the fundamental aspects of brain and mind duality, thus must share some common basis. Here in this article, an opinion is set that quantum mechanics in association with brain and more specifically psychiatry may take us towards a better understanding about brain, behaviour and how we approach towards treatment.
    Matched MeSH terms: Physics
  5. GLASS J
    Med J Malaya, 1958 Jun;12(4):622-36.
    PMID: 13577156
    Matched MeSH terms: Physics*
  6. Tan K, Heo S, Foo M, Chew IM, Yoo C
    Sci Total Environ, 2019 Feb 10;650(Pt 1):1309-1326.
    PMID: 30308818 DOI: 10.1016/j.scitotenv.2018.08.402
    Nanocellulose, a structural polysaccharide that has caught tremendous interests nowadays due to its renewability, inherent biocompatibility and biodegradability, abundance in resource, and environmental friendly nature. They are promising green nanomaterials derived from cellulosic biomass that can be disintegrated into cellulose nanofibrils (CNF) or cellulose nanocrystals (CNC), relying on their sensitivity to hydrolysis at the axial spacing of disordered domains. Owing to their unique mesoscopic characteristics at nanoscale, nanocellulose has been widely researched and incorporated as a reinforcement material in composite materials. The world has been consuming the natural resources at a much higher speed than the environment could regenerate. Today, as an uprising candidate in soft condensed matter physics, a growing interest was received owing to its unique self-assembly behaviour and quantum size effect in the formation of three-dimensional nanostructured material, could be utilised to address an increasing concern over global warming and environmental conservation. In spite of an emerging pool of knowledge on the nanocellulose downstream application, that was lacking of cross-disciplinary study of its role as a soft condensed matter for food, water and energy applications toward environmental sustainability. Here we aim to provide an insight for the latest development of cellulose nanotechnology arises from its fascinating physical and chemical characteristic for the interest of different technology holders.
    Matched MeSH terms: Physics
  7. Abdullah MNS, Karpudewan M, Tanimale BM
    Trends Neurosci Educ, 2021 09;24:100159.
    PMID: 34412861 DOI: 10.1016/j.tine.2021.100159
    Advances in neuroscience studies have brought new insights into the development of Executive Functions (EFs) of the brain and its influence on understanding science concepts. This study was conducted to examine the relationships between three main components of EF: working memory, inhibition, set-shifting and understanding of Force concepts among adolescents. This study also investigated how gender mediates the relationships between the components of EF and understanding. Cambridge Neuropsychological Test Automated Battery was used to assess students' level of working memory, inhibition, and set-shifting. The Force Concept Test measured students understanding. Smart-PLS analysis was employed to examine the relationships between the three components of EF and understanding; and how gender mediates the relationships. The result reveals that working memory significantly relates to students' understanding of Force concepts in a positive direction. On the contrary, both set-shifting and inhibition exhibit non-significant relationships. The findings also demonstrate that gender does not significantly mediate the relationships. The findings are useful for Physics teachers to guide them through designing the curriculum and opting for an appropriate pedagogical strategy considering the role of the components of EF for teaching the lessons on Force.
    Matched MeSH terms: Physics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links