Displaying publications 621 - 640 of 989 in total

Abstract:
Sort:
  1. Wee HL, Cheung YB, Li SC, Fong KY, Thumboo J
    PMID: 15644146
    Diabetes mellitus (DM) is an important public health concern, the impact of which is increased by the high prevalence of co-existing chronic medical conditions among subjects with DM. The aims of this study were therefore to (1) evaluate the impact of DM and co-existing chronic medical conditions on health-related quality of life (HRQoL) (which could be additive, synergistic or subtractive); (2) to determine the extent to which the SF-6D (a single-index preference measure) captures the multidimensional information provided by the SF-36 (a profile measure).
    Matched MeSH terms: Heart Diseases/complications; Heart Diseases/ethnology
  2. Aziz NF, Ramalingam A, Latip J, Zainalabidin S
    Life Sci, 2021 Mar 15;269:119080.
    PMID: 33465387 DOI: 10.1016/j.lfs.2021.119080
    S-Allylcysteine (SAC) is an extensively studied natural product which has been proven to confer cardioprotection. This potentiates SAC into many clinical relevance possibilities, hence, the use of it ought to be optimally elucidated. To further confirm this, an ischemia/reperfusion model has been used to determine SAC at 10 mM and 50 mM on cardiac function, cardiac marker, and mitochondrial permeability. Using Langendorff setup, 24 adult male Wistar rats' hearts were isolated to be perfused with Kreb-Henseleit buffer throughout the ischemia/reperfusion method. After 20 min of stabilization, global ischemia was induced by turning off the perfusion for 35 min followed by 60 min of reperfusion with either Kreb-Henseleit buffer or SAC with the dose of 10 mM or 50 mM. The cardiac function was assessed and coronary effluent was collected at different timepoints throughout the experiment for lactate dehydrogenase (LDH) measurement. The harvested hearts were then used to measure glutathione while isolated mitochondria for mPTP analysis. SAC-reperfused hearts were shown to prevent the aggravation of cardiac function after I/R induction. It also dose-dependently upregulated glutathione reductase and glutathione level and these were also accompanied by significant reduction of LDH leakage and preserved mitochondrial permeability. Altogether, SAC dose-dependently was able to recover the post-ischemic cardiac function deterioration alongside with improvement of glutathione metabolism and mitochondrial preservation. These findings highly suggest that SAC when sufficiently supplied to the heart would be able to prevent the deleterious complications after the ischemic insult.
    Matched MeSH terms: Heart/drug effects*; Heart/physiopathology
  3. Chia YC, Ching SM, Lim HM
    J Hypertens, 2017 05;35 Suppl 1:S50-S56.
    PMID: 28350621 DOI: 10.1097/HJH.0000000000001333
    OBJECTIVES: The current study aims to determine the relationship of long-term visit-to-visit variability of SBP to cardiovascular disease (CVD) in a multiethnic primary care setting.
    METHOD: This is a retrospective study of a cohort of 807 hypertensive patients over a period of 10 years. Three-monthly clinic blood pressure readings were used to derive blood pressure variability (BPV), and CVD events were captured from patient records.
    RESULTS: Mean age at baseline was 57.2 ± 9.8 years with 63.3% being women. The BPV and mean SBP over 10 years were 14.7 ± 3.5 and 142 ± 8 mmHg, respectively. Prevalence of cardiovascular event was 13%. In multivariate logistic regression analysis, BPV was the predictor of CVD events, whereas the mean SBP was not independently associated with cardiovascular events in this population. Those with lower SBP and lower BPV had fewer cardiovascular events than those with the same low mean SBP but higher BPV (10.5 versus 12.8%). Similarly those with higher mean SBP but lower BPV also had fewer cardiovascular events than those with the same high mean and higher BPV (11.6 versus 16.7%). Other variables like being men, diabetes and Indian compared with Chinese are more likely to be associated with cardiovascular events.
    CONCLUSION: BPV is associated with an increase in CVD events even in those who have achieved lower mean SBP. Thus, we should prioritize not only control of SBP levels but also BPV to reduce CVD events further.
    Matched MeSH terms: Heart Failure/ethnology; Heart Failure/epidemiology*
  4. Edling CE, Fazmin IT, Chadda KR, Ahmad S, Valli H, Grace AA, et al.
    Biosci Rep, 2019 04 30;39(4).
    PMID: 30914453 DOI: 10.1042/BSR20190127
    Mice deficient in mitochondrial promoter peroxisome proliferator activated receptor-γ co-activator-1β (Pgc-1β-/- ) is a valuable model for metabolic diseases and has been found to present with several pathologies including ventricular arrhythmia. In the present study, our aim was to shed light on the molecular mechanisms behind the observed arrhythmic substrate by studying how the expression of selected genes critical for cardiac function differs in wild-type (WT) compared with Pgc-1β knockout mice and young compared with aged mice. We found that a clear majority of genes are down-regulated in the Pgc-1β-/- ventricular tissue compared with the WT. Although most individual genes are not significantly differentially expressed, a pattern is apparent when the genes are grouped according to their functional properties. Genes encoding proteins relating to ATPase activity, potassium ion channels relating to repolarisation and resting membrane potential, and genes encoding proteins in the cAMP pathway are found to be significantly down-regulated in the Pgc-1β deficient mice. On the contrary, the pacemaker channel genes Hcn3 and Hcn4 are up-regulated in subsets of the Pgc-1β deficient tissue. Furthermore, we found that with age, especially in the Pgc-1β-/- genotype, most genes are up-regulated including genes relating to the resting membrane potential, calcium homeostasis, the cAMP pathway, and most of the tested adrenoceptors. In conclusion, we here demonstrate how a complex pattern of many modest changes at gene level may explain major functional differences of the action potential related to ageing and mitochondrial dysfunction.
    Matched MeSH terms: Heart Ventricles/metabolism*; Heart Ventricles/physiopathology
  5. Leong Abdullah MFI, Tan KL, Narayanan S, Yuvashnee N, Chear NJY, Singh D, et al.
    Clin Toxicol (Phila), 2021 May;59(5):400-408.
    PMID: 32870119 DOI: 10.1080/15563650.2020.1812627
    OBJECTIVES: Little is known about the cardiotoxic effects of kratom (Mitragyna speciosa Korth.), a medicinal plant. This analytical cross-sectional study investigated the prevalence of electrocardiogram (ECG) abnormalities and QTc intervals in regular kratom users compared with non-kratom-using control subjects.

    METHODS: We enrolled regular kratom users and non-kratom-using control subjects from three communities. Demographic data, clinical data, kratom use characteristics, and ECG findings were recorded. The mitragynine content of kratom juice was quantified using a validated gas chromatography-mass spectrometry (GC-MS) method.

    RESULTS: A total of 200 participants (100 kratom users and 100 control subjects) participated in this study. The prevalence of ECG abnormalities in kratom users (28%) did not differ from that of control subjects (32%). Kratom use was not associated with ECG abnormalities, except for significantly higher odds of sinus tachycardia (OR = 8.61, 95% CI = 1.06-70.17, p = 0.035) among kratom users compared with control subjects. The odds of observing borderline QTc intervals were significantly higher for kratom users compared with control subjects, regardless of the age of first use, the duration of use, the daily quantity consumed, and the length of time that had elapsed between last kratom use and ECG assessment. Nevertheless, there were no differences in the odds of having prolonged QTc intervals between kratom users and controls. The estimated average daily intake of mitragynine consumed by kratom users was 434.28 mg.

    CONCLUSION: We found no link between regular kratom use and electrocardiographic abnormalities with an estimated average daily intake of 434.28 mg of mitragynine.

    Matched MeSH terms: Heart Defects, Congenital/chemically induced*; Heart Defects, Congenital/etiology*
  6. Tromp J, Tay WT, Ouwerkerk W, Teng TK, Yap J, MacDonald MR, et al.
    PLoS Med, 2018 03;15(3):e1002541.
    PMID: 29584721 DOI: 10.1371/journal.pmed.1002541
    BACKGROUND: Comorbidities are common in patients with heart failure (HF) and complicate treatment and outcomes. We identified patterns of multimorbidity in Asian patients with HF and their association with patients' quality of life (QoL) and health outcomes.

    METHODS AND FINDINGS: We used data on 6,480 patients with chronic HF (1,204 with preserved ejection fraction) enrolled between 1 October 2012 and 6 October 2016 in the Asian Sudden Cardiac Death in Heart Failure (ASIAN-HF) registry. The ASIAN-HF registry is a prospective cohort study, with patients prospectively enrolled from in- and outpatient clinics from 11 Asian regions (Hong Kong, Taiwan, China, Japan, Korea, India, Malaysia, Thailand, Singapore, Indonesia, and Philippines). Latent class analysis was used to identify patterns of multimorbidity. The primary outcome was defined as a composite of all-cause mortality or HF hospitalization within 1 year. To assess differences in QoL, we used the Kansas City Cardiomyopathy Questionnaire. We identified 5 distinct multimorbidity groups: elderly/atrial fibrillation (AF) (N = 1,048; oldest, more AF), metabolic (N = 1,129; obesity, diabetes, hypertension), young (N = 1,759; youngest, low comorbidity rates, non-ischemic etiology), ischemic (N = 1,261; ischemic etiology), and lean diabetic (N = 1,283; diabetic, hypertensive, low prevalence of obesity, high prevalence of chronic kidney disease). Patients in the lean diabetic group had the worst QoL, more severe signs and symptoms of HF, and the highest rate of the primary combined outcome within 1 year (29% versus 11% in the young group) (p for all <0.001). Adjusting for confounders (demographics, New York Heart Association class, and medication) the lean diabetic (hazard ratio [HR] 1.79, 95% CI 1.46-2.22), elderly/AF (HR 1.57, 95% CI 1.26-1.96), ischemic (HR 1.51, 95% CI 1.22-1.88), and metabolic (HR 1.28, 95% CI 1.02-1.60) groups had higher rates of the primary combined outcome compared to the young group. Potential limitations include site selection and participation bias.

    CONCLUSIONS: Among Asian patients with HF, comorbidities naturally clustered in 5 distinct patterns, each differentially impacting patients' QoL and health outcomes. These data underscore the importance of studying multimorbidity in HF and the need for more comprehensive approaches in phenotyping patients with HF and multimorbidity.

    TRIAL REGISTRATION: ClinicalTrials.gov NCT01633398.
    Matched MeSH terms: Heart Failure/complications*; Heart Failure/epidemiology*
  7. Daud ANA, Bergman JEH, Kerstjens-Frederikse WS, van der Vlies P, Hak E, Berger RMF, et al.
    Pharmacogenomics, 2017 Jul;18(10):987-1001.
    PMID: 28639488 DOI: 10.2217/pgs-2017-0036
    AIM: To explore the role of pharmacogenetics in determining the risk of congenital heart anomalies (CHA) with prenatal use of serotonin reuptake inhibitors.

    METHODS: We included 33 case-mother dyads and 2 mother-only (child deceased) cases of CHA in a case-only study. Ten genes important in determining fetal exposure to serotonin reuptake inhibitors were examined: CYP1A2, CYP2C9, CYP2C19, CYP2D6, ABCB1, SLC6A4, HTR1A, HTR1B, HTR2A and HTR3B.

    RESULTS: Among the exposed cases, polymorphisms that tended to be associated with an increased risk of CHA were SLC6A4 5-HTTLPR and 5-HTTVNTR, HTR1A rs1364043, HTR1B rs6296 and rs6298 and HTR3B rs1176744, but none reached statistical significance due to our limited sample sizes.

    CONCLUSION: We identified several polymorphisms that might potentially affect the risk of CHA among exposed fetuses, which warrants further investigation.

    Matched MeSH terms: Heart Defects, Congenital/chemically induced*; Heart Defects, Congenital/genetics
  8. Hafez P, Chowdhury SR, Jose S, Law JX, Ruszymah BHI, Mohd Ramzisham AR, et al.
    Cardiovasc Eng Technol, 2018 09;9(3):529-538.
    PMID: 29948837 DOI: 10.1007/s13239-018-0368-8
    Developing experimental models to study ischemic heart disease is necessary for understanding of biological mechanisms to improve the therapeutic approaches for restoring cardiomyocytes function following injury. The aim of this study was to develop an in vitro hypoxic/re-oxygenation model of ischemia using primary human cardiomyocytes (HCM) and define subsequent cytotoxic effects. HCM were cultured in serum and glucose free medium in hypoxic condition with 1% O2 ranging from 30 min to 12 h. The optimal hypoxic exposure time was determined using Hypoxia Inducible Factor 1α (HIF-1α) as the hypoxic marker. Subsequently, the cells were moved to normoxic condition for 3, 6 and 9 h to replicate the re-oxygenation phase. Optimal period of hypoxic/re-oxygenation was determined based on 50% mitochondrial injury via 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide assay and cytotoxicity via lactate dehydrogenase (LDH) assay. It was found that the number of cells expressing HIF-1α increased with hypoxic time and 3 h was sufficient to stimulate the expression of this marker in all the cells. Upon re-oxygenation, mitochondrial activity reduced significantly whereas the cytotoxicity increased significantly with time. Six hours of re-oxygenation was optimal to induce reversible cell injury. The injury became irreversible after 9 h as indicated by > 60% LDH leakage compared to the control group cultured in normal condition. Under optimized hypoxic reoxygenation experimental conditions, mesenchymal stem cells formed nanotube with ischemic HCM and facilitated transfer of mitochondria suggesting the feasibility of using this as a model system to study molecular mechanisms of myocardial injury and rescue.
    Matched MeSH terms: Mitochondria, Heart/metabolism; Mitochondria, Heart/pathology
  9. Valli H, Ahmad S, Jiang AY, Smyth R, Jeevaratnam K, Matthews HR, et al.
    Mech Ageing Dev, 2018 01;169:1-9.
    PMID: 29197478 DOI: 10.1016/j.mad.2017.11.016
    INTRODUCTION: Recent studies reported that energetically deficient murine Pgc-1β-/- hearts replicate age-dependent atrial arrhythmic phenotypes associated with their corresponding clinical conditions, implicating action potential (AP) conduction slowing consequent upon reduced AP upstroke rates.

    MATERIALS AND METHODS: We tested a hypothesis implicating Na+ current alterations as a mechanism underlying these electrophysiological phenotypes. We applied loose patch-clamp techniques to intact young and aged, WT and Pgc-1β-/-, atrial cardiomyocyte preparations preserving their in vivo extracellular and intracellular conditions.

    RESULTS AND DISCUSSION: Depolarising steps activated typical voltage-dependent activating and inactivating inward (Na+) currents whose amplitude increased or decreased with the amplitudes of the activating, or preceding inactivating, steps. Maximum values of peak Na+ current were independently influenced by genotype but not age or interacting effects of genotype and age on two-way ANOVA. Neither genotype, nor age, whether independently or interactively, influenced voltages at half-maximal current, or steepness factors, for current activation and inactivation, or time constants for recovery from inactivation following repolarisation. In contrast, delayed outward (K+) currents showed similar activation and rectification properties through all experimental groups. These findings directly demonstrate and implicate reduced Na+ in contrast to unchanged K+ current, as a mechanism for slowed conduction causing atrial arrhythmogenicity in Pgc-1β-/- hearts.

    Matched MeSH terms: Heart Atria/metabolism; Heart Atria/pathology
  10. Sharma JN, Kesavarao U
    Pharmacology, 2002 Apr;64(4):196-200.
    PMID: 11893900 DOI: 10.1159/000056171
    We investigated the total urinary kallikrein levels, left-ventricular wall thickness and mean arterial blood pressure of nontreated and captopril-treated diabetic and nondiabetic spontaneously hypertensive rats. The mean arterial blood pressure was significantly elevated in diabetic spontaneously hypertensive rats as compared to nondiabetic spontaneously hypertensive rats. Captopril treatment caused a significant reduction in the arterial blood pressure of both nondiabetic and diabetic spontaneously hypertensive rats. The left-ventricular wall thickness was also significantly reduced in diabetic and nondiabetic spontaneously hypertensive treated with captopril as compared to nontreated diabetic and nondiabetic spontaneously hypertensive rats. The total urinary kallikrein levels were significantly raised in captopril-treated diabetic and nondiabetic spontaneously hypertensive rats against the values obtained from nontreated diabetic and nondiabetic spontaneously hypertensive rats. These results indicate that blood pressure reduction and left ventricular wall regression with captopril treatment might be due to enhanced renal kallikrein formation. The significance of these findings is discussed.
    Matched MeSH terms: Heart Ventricles/drug effects; Heart Ventricles/pathology
  11. Khor KH, Shiels IA, Campbell FE, Greer RM, Rose A, Mills PC
    Vet J, 2014 Feb;199(2):229-35.
    PMID: 24321367 DOI: 10.1016/j.tvjl.2013.11.006
    Analysis of heart rate (HR) and heart rate variability (HRV) are powerful tools to investigate cardiac diseases, but current methods, including 24-h Holter monitoring, can be cumbersome and may be compromised by movement artefact. A commercially available data capture and analysis system was used in anaesthetised healthy cats to measure HR and HRV during pharmacological manipulation of HR. Seven healthy cats were subjected to a randomised crossover study design with a 7 day washout period between two treatment groups, placebo and atenolol (1mg/kg, IV), with the efficacy of atenolol to inhibit β1 adrenoreceptors challenged by epinephrine. Statistical significance for the epinephrine challenge was set at P<0.0027 (Holm-Bonferroni correction), whereas a level of significance of P<0.05 was set for other variables. Analysis of the continuous electrocardiography (ECG) recordings showed that epinephrine challenge increased HR in the placebo group (P=0.0003) but not in the atenolol group. The change in HR was greater in the placebo group than in the atenolol group (P=0.0004). Therefore, compared to cats pre-treated with placebo, pre-treatment with atenolol significantly antagonised the tachycardia while not significantly affecting HRV. The increased HR in the placebo group following epinephrine challenge was consistent with a shift of the sympathovagal balance towards a predominantly sympathetic tone. However, the small (but not significant at the critical value) decrease in the normalised high-frequency component (HFnorm) in both groups of cats suggested that epinephrine induced a parasympathetic withdrawal in addition to sympathetic enhancement (increased normalised low frequency component or LFnorm). In conclusion, this model is a highly sensitive and repeatable model to investigate HRV in anaesthetised cats that would be useful in the laboratory setting for short-term investigation of cardiovascular disease and subtle responses to pharmacological agents in this species.
    Matched MeSH terms: Heart Rate/drug effects*; Heart Rate/physiology*
  12. Si LY, Ali SAM, Latip J, Fauzi NM, Budin SB, Zainalabidin S
    Life Sci, 2017 Dec 15;191:157-165.
    PMID: 29066253 DOI: 10.1016/j.lfs.2017.10.030
    AIMS: Obesity increase the risks of hypertension and myocardial infarction (MI) mediated by oxidative stress. This study was undertaken to investigate the actions of roselle aqueous extract (R) on cardiotoxicity in obese (OB) rats and thereon OB rats subjected to MI.

    MAIN METHODS: Male Sprague-Dawley rats were fed with either normal diet or high-fat diet for 8weeks. Firstly, OB rats were divided into (1) OB and (2) OB+R (100mg/kg, p.o, 28days). Then, OB rats were subjected to MI (ISO, 85mg/kg, s.c, 2days) and divided into three groups: (1) OB+MI, (2) OB+MI+R and (3) OB+MI+enalapril for another 4weeks.

    KEY FINDINGS: Roselle ameliorated OB and OB+MI's cardiac systolic dysfunction and reduced cardiac hypertrophy and fibrosis. The increased oxidative markers and decreased antioxidant enzymes in OB and OB+MI groups were all attenuated by roselle.

    SIGNIFICANCE: These observations indicate the protective effect of roselle on cardiac dysfunction in OB and OB+MI rats, which suggest its potential to be developed as a nutraceutical product for obese and obese patients with MI in the future.

    Matched MeSH terms: Heart/drug effects; Heart/physiopathology
  13. Ong HT, Kow FP
    J Fam Pract, 2011 Aug;60(8):472-7.
    PMID: 21814642
    Matched MeSH terms: Heart Failure, Systolic/drug therapy*; Heart Failure, Systolic/mortality
  14. Rasdi Z, Kamaludin R, Ab Rahim S, Syed Ahmad Fuad SB, Othman MHD, Siran R, et al.
    Sci Rep, 2020 Apr 03;10(1):5882.
    PMID: 32246001 DOI: 10.1038/s41598-020-62420-1
    This study aimed to examine the impact of BPA exposure on pregnancy and foetuses on cardiac tissues and the expression of cardiac microRNAs (miRNAs) related to heart development and diseases. Pregnancy is known to be the "critical windows" in determining the offspring physical and cells development in their life after birth. The increment of the risk of cardiovascular disease (CVD) in a later stage of life has been reported by few studies demonstrated from prenatal exposure of BPA. BPA has been shown to alter miRNAs expression profiles for organ development, regeneration and metabolic functions. These alterations have been associated with the risk of CVDs. However, the associations between pregnancy outcomes and miRNAs expression in cardiac of mother- and foetuses-exposed to BPA are still not entirely explored. In BPA-exposed pregnant rat groups, a significant weight gained was observed in comparison to control (p heart (p heart of the foetuses from BPA-exposed pregnant rats (p hearts showed a sign of fibrosis while BPA-exposed pregnant rats showed muscle remnant. Masson trichrome staining further confirmed the presence of fibrosis observed in BPA-exposed foetal heart and reduced expression of cardiac troponin I (cTnI) was also observed in BPA-exposed foetal heart. In summary, altered cardiac miRNAs with histological changes were observed in both mother- and foetus-exposed BPA These findings put forward the importance of future work to further understand how prenatal BPA exposure affect foetuses in their later stage of life.
    Matched MeSH terms: Heart/drug effects; Heart/embryology*
  15. Tan YY, Wade JD, Tregear GW, Summers RJ
    Br J Pharmacol, 1999 May;127(1):91-8.
    PMID: 10369460
    The binding characteristics of the relaxin receptor in rat atria, uterus and cortex were studied using a [33P]-labelled human gene 2 relaxin (B33) and quantitative receptor autoradiography. The binding kinetics of [33P]-human gene 2 relaxin (B33) were investigated in slide-mounted rat atrial sections. The binding achieved equilibrium after 60 min incubation at room temperature (23+/-1 degrees C) and dissociated slowly. The association and dissociation rate constants were 4.31+/-0.34x10(8) M(-1) x min(-1) and 1.55+/-0.38x10(-3) min(-1) respectively. Thus, the kinetic dissociation constant was 3.46+/-0.59 pM. Binding was saturable to a single population of non-interacting sites throughout atria, in uterine myometrium and the 5th layer of cerebral cortex. The binding affinities (pK(D)) of [33P]-human gene 2 relaxin (B33) were 8.92+/-0.09 in atrial myocardium and 8.79+/-0.04 in cerebral cortex of male rats, and 8.79+/-0.10 in uterine myometrium. Receptor densities in the cerebral cortex and atria were higher than in uterine myometrium, indicating that relaxin also has important roles in non-reproductive tissues. In male rats, treatment with 17beta-oestradiol (20 microg in 0.1 ml sesame oil s.c., 18-24 h) significantly decreased the density of relaxin receptors in atria and cerebral cortex. Identical treatment in female rats had no significant effect in atria and cerebral cortex, but it significantly increased the density of relaxin receptors in uterine myometrium. Relaxin binding was competitively displaced by porcine and rat native relaxins. Porcine native relaxin binds to the relaxin receptor in male rat atria (8.90+/-0.02), and cerebral cortex (8.90+/-0.03) and uterine myometrium (8.89+/-0.03) with affinities not significantly different from human gene 2 (B33) relaxin. Nevertheless, rat relaxin binds to the receptors with affinities (8.35+/-0.09 in atria, 8.22+/-0.07 in cerebral cortex and 8.48+/-0.06 in uterine myometrium) significantly less than human gene 2 (B33) and porcine relaxins. Quantitative receptor autoradiography is the method of choice for measurement of affinities and densities of relaxin receptor in atria, uterine myometrium and cerebral cortex. High densities were found in all these tissues. 17beta-oestradiol treatment produced complex effects where it increased the densities of relaxin receptors in uterus but decreased those in atria and cerebral cortex of the male rats, and had no effect on the atria and cerebral cortex of the female rats.
    Matched MeSH terms: Heart Atria/drug effects; Heart Atria/metabolism
  16. Ning F, Luo L, Ahmad S, Valli H, Jeevaratnam K, Wang T, et al.
    Pflugers Arch, 2016 Apr;468(4):655-65.
    PMID: 26545784 DOI: 10.1007/s00424-015-1750-0
    Catecholaminergic polymorphic ventricular tachycardia (CPVT) predisposes to ventricular arrhythmia due to altered Ca(2+) homeostasis and can arise from ryanodine receptor (RyR2) mutations including RyR2-P2328S. Previous reports established that homozygotic murine RyR2-P2328S (RyR2 (S/S)) hearts show an atrial arrhythmic phenotype associated with reduced action potential (AP) conduction velocity and sodium channel (Nav1.5) expression. We now relate ventricular arrhythmogenicity and slowed AP conduction in RyR2 (S/S) hearts to connexin-43 (Cx43) and Nav1.5 expression and Na(+) current (I Na). Stimulation protocols applying extrasystolic S2 stimulation following 8 Hz S1 pacing at progressively decremented S1S2 intervals confirmed an arrhythmic tendency despite unchanged ventricular effective refractory periods (VERPs) in Langendorff-perfused RyR2 (S/S) hearts. Dynamic pacing imposing S1 stimuli then demonstrated that progressive reductions of basic cycle lengths (BCLs) produced greater reductions in conduction velocity at equivalent BCLs and diastolic intervals in RyR2 (S/S) than WT, but comparable changes in AP durations (APD90) and their alternans. Western blot analyses demonstrated that Cx43 protein expression in whole ventricles was similar, but Nav1.5 expression in both whole tissue and membrane fractions were significantly reduced in RyR2 (S/S) compared to wild-type (WT). Loose patch-clamp studies similarly demonstrated reduced I Na in RyR2 (S/S) ventricles. We thus attribute arrhythmogenesis in RyR2 (S/S) ventricles resulting from arrhythmic substrate produced by reduced conduction velocity to downregulated Nav1.5 reducing I Na, despite normal determinants of repolarization and passive conduction. The measured changes were quantitatively compatible with earlier predictions of linear relationships between conduction velocity and the peak I Na of the AP but nonlinear relationships between peak I Na and maximum Na(+) permeability.
    Matched MeSH terms: Heart Ventricles/metabolism*; Heart Ventricles/physiopathology
  17. Zak J, Vives V, Szumska D, Vernet A, Schneider JE, Miller P, et al.
    Cell Death Differ, 2016 Dec;23(12):1973-1984.
    PMID: 27447114 DOI: 10.1038/cdd.2016.76
    Chromosomal abnormalities are implicated in a substantial number of human developmental syndromes, but for many such disorders little is known about the causative genes. The recently described 1q41q42 microdeletion syndrome is characterized by characteristic dysmorphic features, intellectual disability and brain morphological abnormalities, but the precise genetic basis for these abnormalities remains unknown. Here, our detailed analysis of the genetic abnormalities of 1q41q42 microdeletion cases identified TP53BP2, which encodes apoptosis-stimulating protein of p53 2 (ASPP2), as a candidate gene for brain abnormalities. Consistent with this, Trp53bp2-deficient mice show dilation of lateral ventricles resembling the phenotype of 1q41q42 microdeletion patients. Trp53bp2 deficiency causes 100% neonatal lethality in the C57BL/6 background associated with a high incidence of neural tube defects and a range of developmental abnormalities such as congenital heart defects, coloboma, microphthalmia, urogenital and craniofacial abnormalities. Interestingly, abnormalities show a high degree of overlap with 1q41q42 microdeletion-associated abnormalities. These findings identify TP53BP2 as a strong candidate causative gene for central nervous system (CNS) defects in 1q41q42 microdeletion syndrome, and open new avenues for investigation of the mechanisms underlying CNS abnormalities.
    Matched MeSH terms: Heart Ventricles/abnormalities; Heart Ventricles/pathology
  18. Rovina K, Siddiquee S, Shaarani SM
    Front Microbiol, 2016;7:798.
    PMID: 27303385 DOI: 10.3389/fmicb.2016.00798
    Allura Red AC (E129) is an azo dye that widely used in drinks, juices, bakery, meat, and sweets products. High consumption of Allura Red has claimed an adverse effects of human health including allergies, food intolerance, cancer, multiple sclerosis, attention deficit hyperactivity disorder, brain damage, nausea, cardiac disease and asthma due to the reaction of aromatic azo compounds (R = R' = aromatic). Several countries have banned and strictly controlled the uses of Allura Red in food and beverage products. This review paper is critically summarized on the available analytical and advanced methods for determination of Allura Red and also concisely discussed on the acceptable daily intake, toxicology and extraction methods.
    Matched MeSH terms: Heart Diseases
  19. Saheb Sharif-Askari N, Syed Sulaiman SA, Saheb Sharif-Askari F, Hussain AA
    Int J Clin Pharm, 2015 Feb;37(1):105-12.
    PMID: 25488317 DOI: 10.1007/s11096-014-0046-3
    BACKGROUND: Little is known about the adverse drug reaction (ADR) related admissions among heart failure (HF) patients.

    OBJECTIVE: The aim of this study was to determine the rate, factors, and medications associated with ADR-related hospitalisations among HF patients.

    SETTING: Two government hospitals in Dubai, United Arab Emirates.

    METHODS: This was a prospective, observational study. Consecutive adult HF patients who were admitted between December 2011 and November 2012 to the cardiology units were included in this study. The circumstances of their admission were analysed.

    MAIN OUTCOME MEASURES: ADRs-related admissions of HF patients to cardiology units were identified and further assessed for their nature, causality, and preventability.

    RESULTS: Of 511 admissions, 34 were due to ADR-related hospitalisation (6.65, 95 % confidence interval 4.8-8.5 %). Number of medications taken by HF patients was the only predictors of ADR-related hospitalisations, where higher number of medications was associated with the odd ratio of 1.11 (95 % CI, 1.03-1.20, P = 0.005). More than one-third of ADR-related hospitalisations (35 %) were preventable The most frequent drugs causing ADR-related hospitalisation were diuretics (32 %), followed by non-steroidal anti-inflammatory drugs (15 %), thiazolidinediones (9 %), anticoagulants (9 %), antiplatelets (6 %), and aldosterone blockers (6 %).

    CONCLUSION: ADR-related hospitalisations account for 6.7 % of admissions of HF patients to cardiac units, one-third of which are preventable. Number of medications taken by HF patients is the only predictors of ADR-related hospitalisations. Diuretic induced volume depletion, and sodium and water retention caused by thiazolidinediones and NSAIDs medications are the major causes of ADR-related hospitalisations of HF patients.

    Matched MeSH terms: Heart Failure/diagnosis; Heart Failure/drug therapy*; Heart Failure/epidemiology*
  20. Hasan MS, Chan L
    J Oral Maxillofac Surg, 2014 Oct;72(10):1920.e1-4.
    PMID: 24985961 DOI: 10.1016/j.joms.2014.03.032
    Treating children with cyanotic congenital heart disease poses many challenges to anesthesiologists because of the multiple problems associated with the condition. The anesthetic technique and drugs used perioperatively can affect a patient's physiologic status during surgery. The adherence to certain hemodynamic objectives and the avoidance of factors that could worsen the abnormal cardiopulmonary physiology cannot be overemphasized. In the present case series, we describe the use of a dexmedetomidine-ketamine combination for dental extraction in spontaneously breathing children with cyanotic congenital heart disease. The anesthetic concerns regarding airway management, the pharmacologic effects of drugs, and maintenance of adequate hemodynamic, blood gases, and acid-base status are discussed.
    Matched MeSH terms: Heart Defects, Congenital/complications*; Heart Rate/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links