Displaying publications 61 - 66 of 66 in total

Abstract:
Sort:
  1. Purwanti IF, Abdullah SRS, Hamzah A, Idris M, Basri H, Latif MT, et al.
    Heliyon, 2023 Nov;9(11):e21737.
    PMID: 38027659 DOI: 10.1016/j.heliyon.2023.e21737
    Phytoremediation is one of the green technologies that is friendly to nature, utilizes fewer chemicals, and exhibits good performance. In this study, phytoremediation was used to treat diesel-contaminated sand using a local aquatic plant species, Scirpus mucronatus, by analyzing the amount of total petroleum hydrocarbons (TPHs). Optimization of diesel removal was performed according to Response Surface Methodology (RSM) using Box-Behnken Design (BBD) under pilot-scale conditions. The quadratic model showed the best fit to describe the obtained data. Actual vs. predicted values from BBD showed a total of 9.1 % error for the concentration of TPH in sand and 0 % error for the concentration of TPH in plants. Maximum TPH removal of 42.3 ± 2.1 % was obtained under optimized conditions at a diesel initial concentration of 50 mg/kg, an aeration rate of 0.48 L/min, and a retention time of 72 days. The addition of two species of rhizobacteria (Bacillus subtilis and Bacillus licheniformis) at optimum conditions increased the TPH removal to 51.9 ± 2.6 %. The obtained model and optimum condition can be adopted to treat diesel-contaminated sand within the same TPH range (50-3000 mg/kg) in sand.
  2. Badawi AH, Mohamad NA, Stanslas J, Kirby BP, Neela VK, Ramasamy R, et al.
    Curr Neuropharmacol, 2023 Dec 08.
    PMID: 38073104 DOI: 10.2174/1570159X22666231207114346
    The blood-brain barrier (BBB) is a complex, dynamic, and adaptable barrier between the peripheral blood system and the central nervous system. While this barrier protects the brain and spinal cord from inflammation and infection, it prevents most drugs from reaching the brain tissue. With the expanding interest in the pathophysiology of BBB, the development of in vitro BBB models has dramatically evolved. However, due to the lack of a standard model, a range of experimental protocols, BBB-phenotype markers, and permeability flux markers was utilized to construct in vitro BBB models. Several neuroinfectious diseases are associated with BBB dysfunction. To conduct neuroinfectious disease research effectively, there stems a need to design representative in vitro human BBB models that mimic the BBB's functional and molecular properties. The highest necessity is for an in vitro standardised BBB model that accurately represents all the complexities of an intact brain barrier. Thus, this in-depth review aims to describe the optimization and validation parameters for building BBB models and to discuss previous research on neuroinfectious diseases that have utilized in vitro BBB models. The findings in this review may serve as a basis for more efficient optimisation, validation, and maintenance of a structurally- and functionally intact BBB model, particularly for future studies on neuroinfectious diseases.
  3. Sohor NJ, Loh WC, Pang RY, Khan AH, Chia PK, Sulaiman WAW, et al.
    Neurol India, 2023;71(6):1260-1262.
    PMID: 38174472 DOI: 10.4103/0028-3886.391392
    Methanol toxicity remains as major problem in the medical field.[1],[2],[3] With its active metabolite, formic acid often leads to severe metabolic acidosis and to some extend brain damaged.[4],[5],[6] We are reporting a case of brain hemorrhage at the right external capsule and left basal ganglia with mass effect and obstructive hydrocephalus in a methanol poisoning patient. A confused 29-year-old gentleman was brought into hospital. Initial investigation showed severe metabolic acidosis with raised anion gap. Initial brain CT scan was normal. Subsequently, serum methanol was reported to be high (112 mg/dL). Intravenous (IV) ethanol 10% was given without any delayed. As there was no improvement in his consciousness level, a repeat brain CT was performed and it showed multiple cerebral hemorrhage with obstructive hydrocephalus. Hence, clinicians should have high index of suspicion for cerebral hemorrhage in a patient with methanol toxicity, who presented with altered mental status and severe metabolic acidosis.
  4. Khan MSJ, Sidek LM, Kamal T, Asiri AM, Khan SB, Basri H, et al.
    Int J Biol Macromol, 2024 Feb;257(Pt 1):128544.
    PMID: 38061525 DOI: 10.1016/j.ijbiomac.2023.128544
    This work reports silver nanoparticles (AgNPs) supported on biopolymer carboxymethyl cellulose beads (Ag-CMC) serves as an efficient catalyst in the reduction process of p-nitrophenol (p-NP) and methyl orange (MO). For Ag-CMC synthesis, first CMC beads were prepared by crosslinking the CMC solution in aluminium nitrate solution and then the CMC beads were introduced into AgNO3 solution to adsorb Ag ions. Field emission scanning electron microscopy (FE-SEM) analysis suggests the uniform distribution of Ag nanoparticles on the CMC beads. The X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis revealed the metallic and fcc planes of AgNPs, respectively, in the Ag-CMC catalyst. The Ag-CMC catalyst exhibits remarkable reduction activity for the p-NP and MO dyes with the highest rate constant (kapp) of a chemical reaction is 0.519 and 0.697 min-1, respectively. Comparative reduction studies of Ag-CMC with CMC, Fe-CMC and Co-CMC disclosed that Ag-CMC containing AgNPs is an important factore in reducing the organic pollutants like p-NP and MO dyes. During the recyclability tests, the Ag-CMC also maintained high reduction activity, which suggests that CMC protects the AgNPs from leaching during dye reduction reactions.
  5. Khan MSJ, Mohd Sidek L, Kamal T, Khan SB, Basri H, Zawawi MH, et al.
    J Environ Manage, 2024 Feb 19;354:120228.
    PMID: 38377746 DOI: 10.1016/j.jenvman.2024.120228
    The effective reduction of hazardous organic pollutants in wastewater is a pressing global concern, necessitating the development of advanced treatment technologies. Pollutants such as nitrophenols and dyes, which pose significant risks to both human and aquatic health, making their reduction particularly crucial. Despite the existence of various methods to eliminate these pollutants, they are not without limitations. The utilization of nanomaterials as catalysts for chemical reduction exhibits a promising alternative owing to their distinguished catalytic activity and substantial surface area. For catalytically reducing the pollutants NaBH4 has been utilized as a useful source for it because it reduces the pollutants quiet efficiently and it also releases hydrogen gas as well which can be used as a source of energy. This paper provides a comprehensive review of recent research on different types of nanomaterials that function as catalysts to reduce organic pollutants and also generating hydrogen from NaBH4 methanolysis while also evaluating the positive and negative aspects of nanocatalyst. Additionally, this paper examines the features effecting the process and the mechanism of catalysis. The comparison of different catalysts is based on size of catalyst, reaction time, rate of reaction, hydrogen generation rate, activation energy, and durability. The information obtained from this paper can be used to steer the development of new catalysts for reducing organic pollutants and generation hydrogen by NaBH4 methanolysis.
  6. Jaganathan N, Mohamed MH, Md Pauzi AL, Mahayidin H, Hanapai AF, Wan Sulaiman WA, et al.
    Front Neurol, 2024;15:1339039.
    PMID: 38497038 DOI: 10.3389/fneur.2024.1339039
    Accurate and timely diagnosis of posterior circulation stroke in patients with acute dizziness is a challenge that can lead to misdiagnosis and significant harm. The present review sought to identify and describe published research on the clinical application of vHIT in posterior circulation stroke. vHIT, a portable device, has gained prominence in evaluating peripheral vestibular disorders and offers potential applications in diagnosing neurological disorders, particularly posterior circulation stroke. Several studies have shown that vHIT can differentiate between stroke and vestibular neuritis based on VOR gain values, with high sensitivity and specificity. The manuscript also discusses vHIT's performance in differentiating between types of posterior circulation stroke, such as PICA, AICA, and SCA strokes. While vHIT has demonstrated promise, the review emphasizes the need for further research to validate its use as a tool to rule out stroke in acute dizziness patients in the emergency department. In conclusion, the manuscript underscores the potential of vHIT as a valuable addition to the diagnostic arsenal for acute dizziness, particularly in the context of posterior circulation stroke. It calls for further research and wider adoption of vHIT in clinical settings to improve patient care and reduce unnecessary costs associated with misdiagnoses.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links