Displaying publications 61 - 69 of 69 in total

Abstract:
Sort:
  1. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(7):401.
    PMID: 28286414 DOI: 10.1140/epjc/s10052-016-4219-1
    A measurement of the W boson pair production cross section in proton-proton collisions at [Formula: see text] TeV is presented. The data collected with the CMS detector at the LHC correspond to an integrated luminosity of 19.4[Formula: see text]. The [Formula: see text] candidates are selected from events with two charged leptons, electrons or muons, and large missing transverse energy. The measured [Formula: see text] cross section is [Formula: see text], consistent with the standard model prediction. The [Formula: see text] cross sections are also measured in two different fiducial phase space regions. The normalized differential cross section is measured as a function of kinematic variables of the final-state charged leptons and compared with several perturbative QCD predictions. Limits on anomalous gauge couplings associated with dimension-six operators are also given in the framework of an effective field theory. The corresponding 95 % confidence level intervals are [Formula: see text], [Formula: see text], [Formula: see text], in the HISZ basis.
  2. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(6):317.
    PMID: 28775662 DOI: 10.1140/epjc/s10052-016-4149-y
    A search for narrow resonances decaying to an electron and a muon is presented. The [Formula: see text] [Formula: see text] mass spectrum is also investigated for non-resonant contributions from the production of quantum black holes (QBHs). The analysis is performed using data corresponding to an integrated luminosity of 19.7[Formula: see text] collected in proton-proton collisions at a centre-of-mass energy of 8[Formula: see text] with the CMS detector at the LHC. With no evidence for physics beyond the standard model in the invariant mass spectrum of selected [Formula: see text] pairs, upper limits are set at 95 [Formula: see text] confidence level on the product of cross section and branching fraction for signals arising in theories with charged lepton flavour violation. In the search for narrow resonances, the resonant production of a [Formula: see text] sneutrino in R-parity violating supersymmetry is considered. The [Formula: see text] sneutrino is excluded for masses below 1.28[Formula: see text] for couplings [Formula: see text], and below 2.30[Formula: see text] for [Formula: see text] and [Formula: see text]. These are the most stringent limits to date from direct searches at high-energy colliders. In addition, the resonance searches are interpreted in terms of a model with heavy partners of the [Formula: see text] boson and the photon. In a framework of TeV-scale quantum gravity based on a renormalization of Newton's constant, the search for non-resonant contributions to the [Formula: see text] [Formula: see text] mass spectrum excludes QBH production below a threshold mass [Formula: see text] of 1.99[Formula: see text]. In models that invoke extra dimensions, the bounds range from 2.36[Formula: see text] for one extra dimension to 3.63[Formula: see text] for six extra dimensions. This is the first search for QBHs decaying into the [Formula: see text] [Formula: see text] final state.
  3. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(7):371.
    PMID: 28280444 DOI: 10.1140/epjc/s10052-016-4206-6
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons ([Formula: see text]) in proton-proton collisions collected by the CMS experiment at the LHC at [Formula: see text]. The data correspond to an integrated luminosity of 19.7[Formula: see text]. The search considers [Formula: see text] resonances with masses between 1 and 3[Formula: see text], having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and [Formula: see text] events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 % confidence level for the product of the production cross section and branching fraction [Formula: see text] range from 10 to 1.5[Formula: see text] for the mass of X from 1.15 to 2.0[Formula: see text], significantly extending previous searches. For a warped extra dimension theory with a mass scale [Formula: see text] [Formula: see text], the data exclude radion scalar masses between 1.15 and 1.55[Formula: see text].
  4. Chatrchyan S, Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, et al.
    Eur Phys J C Part Fields, 2014;74(8):2980.
    PMID: 25814906
    A search for invisible decays of Higgs bosons is performed using the vector boson fusion and associated ZH production modes. In the ZH mode, the Z boson is required to decay to a pair of charged leptons or a [Formula: see text] quark pair. The searches use the 8 [Formula: see text] pp collision dataset collected by the CMS detector at the LHC, corresponding to an integrated luminosity of up to 19.7 [Formula: see text]. Certain channels include data from 7 [Formula: see text] collisions corresponding to an integrated luminosity of 4.9 [Formula: see text]. The searches are sensitive to non-standard-model invisible decays of the recently observed Higgs boson, as well as additional Higgs bosons with similar production modes and large invisible branching fractions. In all channels, the observed data are consistent with the expected standard model backgrounds. Limits are set on the production cross section times invisible branching fraction, as a function of the Higgs boson mass, for the vector boson fusion and ZH production modes. By combining all channels, and assuming standard model Higgs boson cross sections and acceptances, the observed (expected) upper limit on the invisible branching fraction at [Formula: see text] [Formula: see text] is found to be 0.58 (0.44) at 95 % confidence level. We interpret this limit in terms of a Higgs-portal model of dark matter interactions.
  5. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Eur Phys J C Part Fields, 2014;74(10):3076.
    PMID: 25814871
    Observation of the diphoton decay mode of the recently discovered Higgs boson and measurement of some of its properties are reported. The analysis uses the entire dataset collected by the CMS experiment in proton-proton collisions during the 2011 and 2012 LHC running periods. The data samples correspond to integrated luminosities of 5.1[Formula: see text]at [Formula: see text] and 19.7[Formula: see text]at 8[Formula: see text] . A clear signal is observed in the diphoton channel at a mass close to 125[Formula: see text] with a local significance of [Formula: see text], where a significance of [Formula: see text] is expected for the standard model Higgs boson. The mass is measured to be [Formula: see text] , and the best-fit signal strength relative to the standard model prediction is [Formula: see text][Formula: see text][Formula: see text]. Additional measurements include the signal strength modifiers associated with different production mechanisms, and hypothesis tests between spin-0 and spin-2 models.
  6. Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, Erö J, et al.
    Eur Phys J C Part Fields, 2021;81(4):378.
    PMID: 34727142 DOI: 10.1140/epjc/s10052-021-09014-x
    The rate for Higgs ( H ) bosons production in association with either one ( t H ) or two ( t t ¯ H ) top quarks is measured in final states containing multiple electrons, muons, or tau leptons decaying to hadrons and a neutrino, using proton-proton collisions recorded at a center-of-mass energy of 13 TeV by the CMS experiment. The analyzed data correspond to an integrated luminosity of 137 fb - 1 . The analysis is aimed at events that contain H → W W , H → τ τ , or H → Z Z decays and each of the top quark(s) decays either to lepton+jets or all-jet channels. Sensitivity to signal is maximized by including ten signatures in the analysis, depending on the lepton multiplicity. The separation among t H , t t ¯ H , and the backgrounds is enhanced through machine-learning techniques and matrix-element methods. The measured production rates for the t t ¯ H and t H signals correspond to 0.92 ± 0.19 (stat) - 0.13 + 0.17 (syst) and 5.7 ± 2.7 (stat) ± 3.0 (syst) of their respective standard model (SM) expectations. The corresponding observed (expected) significance amounts to 4.7 (5.2) standard deviations for t t ¯ H , and to 1.4 (0.3) for t H production. Assuming that the Higgs boson coupling to the tau lepton is equal in strength to its expectation in the SM, the coupling y t of the Higgs boson to the top quark divided by its SM expectation, κ t = y t / y t SM , is constrained to be within - 0.9 < κ t < - 0.7 or 0.7 < κ t < 1.1 , at 95% confidence level. This result is the most sensitive measurement of the t t ¯ H production rate to date.
  7. Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, Erö J, et al.
    Eur Phys J C Part Fields, 2021;81(8):688.
    PMID: 34780582 DOI: 10.1140/epjc/s10052-021-09348-6
    A search is presented for a heavy vector resonance decaying into a Z boson and the standard model Higgs boson, where the Z boson is identified through its leptonic decays to electrons, muons, or neutrinos, and the Higgs boson is identified through its hadronic decays. The search is performed in a Lorentz-boosted regime and is based on data collected from 2016 to 2018 at the CERN LHC, corresponding to an integrated luminosity of 137 fb - 1 . Upper limits are derived on the production of a narrow heavy resonance Z ' , and a mass below 3.5 and 3.7 Te is excluded at 95% confidence level in models where the heavy vector boson couples predominantly to fermions and to bosons, respectively. These are the most stringent limits placed on the Heavy Vector Triplet Z ' model to date. If the heavy vector boson couples exclusively to standard model bosons, upper limits on the product of the cross section and branching fraction are set between 23 and 0.3 fb for a Z ' mass between 0.8 and 4.6 Te , respectively. This is the first limit set on a heavy vector boson coupling exclusively to standard model bosons in its production and decay.
  8. Sirunyan AM, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Eur Phys J C Part Fields, 2021;81(8):723.
    PMID: 34780581 DOI: 10.1140/epjc/s10052-021-09472-3
    A search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector bosons, using proton-proton collisions at s = 13 TeV at the LHC, is reported. The data sample corresponds to an integrated luminosity of 137 fb - 1 collected with the CMS detector. Events are selected by requiring two or three electrons or muons, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass. No excess of events with respect to the standard model background predictions is observed. Model independent upper limits at 95% confidence level are reported on the product of the cross section and branching fraction for vector boson fusion production of charged Higgs bosons as a function of mass, from 200 to 3000 GeV . The results are interpreted in the context of the Georgi-Machacek model.
  9. CMS Collaboration, Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, et al.
    Eur Phys J C Part Fields, 2014;74(11):3149.
    PMID: 25814876 DOI: 10.1140/epjc/s10052-014-3149-z
    A search for heavy, right-handed neutrinos, [Formula: see text] ([Formula: see text]), and right-handed [Formula: see text] bosons, which arise in the left-right symmetric extensions of the standard model, has been performed by the CMS experiment. The search was based on a sample of two lepton plus two jet events collected in proton-proton collisions at a center-of-mass energy of 8[Formula: see text] corresponding to an integrated luminosity of 19.7 [Formula: see text]. For models with strict left-right symmetry, and assuming only one [Formula: see text] flavor contributes significantly to the [Formula: see text] decay width, the region in the two-dimensional [Formula: see text] mass plane excluded at a 95 % confidence level extends to approximately [Formula: see text] and covers a large range of neutrino masses below the [Formula: see text] boson mass, depending on the value of [Formula: see text]. This search significantly extends the [Formula: see text] exclusion region beyond previous results.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links