Displaying publications 61 - 80 of 86 in total

Abstract:
Sort:
  1. Raja Nhari RMH, Khairil Mokhtar NF, Hanish I, Hamid M, Mohamed Rashidi MAA, Shahidan NM
    PMID: 29285986 DOI: 10.1080/19440049.2017.1420920
    Detection of porcine plasma using indirect ELISA was developed using mAb B4E1 for the prevention of their usage in human food that creates religious and health conflicts. The immunoassay has a CV 
  2. Shima WN, Ali AM, Subramani T, Mohamed Alitheen NB, Hamid M, Samsudin AR, et al.
    Exp Ther Med, 2015 Jun;9(6):2202-2206.
    PMID: 26136960
    Mesenchymal stem cells (MSCs) are involved in bone formation in the embryo, bone repair and remodeling. The differentiation of these cells is a complex multistep pathway that involves discrete cellular transitions and is similar to that which occurs during hematopoiesis. MSCs have self-renewal capacity without differentiation in long-term culture. In the present study, MSCs were isolated from human bone marrow and characterized by the presence of cluster of differentiation 105 marker using the labeled streptavidin biotin method. The MSCs were cultured in Dulbecco's modified Eagle's medium supplemented with fetal bovine serum, ascorbic acid, β-glycerol phosphate and dexamethasone to differentiate into osteoblasts. Biological in vitro analysis showed the rapid proliferation of the MSCs. Further evaluation of specific osteogenic markers using von Kossa staining and the alkaline phosphate assay demonstrated that the MSCs were stimulated to differentiate into osteoblast-lineage cells. This mesengenic potential indicated that the bone marrow-derived cells were multipotent MSCs. The findings of this study show that bone marrow can be a legitimate source of MSCs for the production of osteoblasts for utilization in bone replacement therapy.
  3. Adam Z, Khamis S, Ismail A, Hamid M
    PMID: 22701507 DOI: 10.1155/2012/632763
    Ficus deltoidea from the Moraceae family has been scientifically proven to reduce hyperglycemia at different prandial states. In this study, we evaluate the mechanisms that underlie antihyperglycemic action of Ficus deltoidea. The results had shown that hot aqueous extract of Ficus deltoidea stimulated insulin secretion significantly with the highest magnitude of stimulation was 7.31-fold (P < 0.001). The insulin secretory actions of the hot aqueous extract involved K(+) (ATP) channel-dependent and K(+) (ATP)-channel-independent pathway. The extract also has the ability to induce the usage of intracellular Ca(2+) to trigger insulin release. The ethanolic and methanolic extracts enhanced basal and insulin-mediated glucose uptake into adipocytes cells. The extracts possess either insulin-mimetic or insulin-sensitizing property or combination of both properties during enhancing glucose uptake into such cells. Meanwhile, the hot aqueous and methanolic extracts augmented basal and insulin-stimulated adiponectin secretion from adipocytes cells. From this study, it is suggested that Ficus deltoidea has the potential to be developed as future oral antidiabetic agent.
  4. Mohd Dom NS, Yahaya N, Adam Z, Nik Abd Rahman NMA, Hamid M
    PMID: 32831872 DOI: 10.1155/2020/6374632
    The present study aimed to evaluate the potential of standardized methanolic extracts from seven Ficus deltoidea varieties in inhibiting the formation of AGEs, protein oxidation, and their antioxidant effects. The antiglycation activity was analyzed based on the inhibition of AGEs, fructosamine, and thiol groups level followed by the inhibition of protein carbonyl formation. The antioxidant activity (DPPH radical scavenging activity and reducing power assay) and total phenolic contents were evaluated. After 28 days of induction, all varieties of Ficus deltoidea extracts significantly restrained the formation of fluorescence AGEs by 4.55-5.14 fold. The extracts also reduced the fructosamine levels by 47.0-86.5%, increased the thiol group levels by 64.3-83.7%, and inhibited the formation of protein carbonyl by 1.36-1.76 fold. DPPH radical scavenging activity showed an IC50 value of 66.81-288.04 μg/ml and reducing power activity depicted at 0.02-0.24 μg/ml. The extent of phenolic compounds present in the extracts ranged from 70.90 to 299.78 mg·GAE/g. Apart from that, correlation studies between the activities were observed. This study revealed that seven varieties of Ficus deltoidea have the potential to inhibit AGEs formation and possess antioxidant activity that might be attributed to the presence of phenolic compounds.
  5. Yahaya N, Mohd Dom NS, Adam Z, Hamid M
    PMID: 30046337 DOI: 10.1155/2018/3769874
    Ficus deltoidea is a traditional medicinal plant that has been proven to show antidiabetic effects. This study focus is to assess the insulin secretion activity of Ficus deltoidea standardized methanolic extracts from seven independent varieties and mechanisms that underlie the insulin secretion action of the extracts. The cytotoxicity of Ficus deltoidea extracts was tested using viability assay. The insulin secretion assay was carried out by treating clonal BRIN BD11 cell line with standardized methanolic Ficus deltoidea extracts or glybenclamide. The clonal BRIN BD11 cell was also treated with insulin agonist and antagonist to elucidate the insulin secretion mechanism. Only the viability percentage for Ficus deltoidea var. kunstleri and intermedia was identified to be toxic at 500 and 1000 μg/ml (P<0.001). The insulin secretion for Ficus deltoidea var. deltoidea, angustifolia, and motleyana was dose-dependent; further evaluation suggested that Ficus deltoidea var. trengganuensis was involved in KATP-independent pathway. This study suggests that standardized methanolic extracts of Ficus deltoidea varieties have an insulinotropic effect on clonal BRIN BD11 cell line and can be utilized as a modern candidate of antidiabetic agents targeting the escalation for insulin secretion from pancreatic beta cells.
  6. Khoo HE, Azlan A, Nurulhuda MH, Ismail A, Abas F, Hamid M, et al.
    PMID: 24368926 DOI: 10.1155/2013/434057
    This study aimed to determine anthocyanins and their antioxidative and cardioprotective properties in defatted dabai parts. Anthocyanins in crude extracts and extract fractions of defatted dabai peel and pericarp were quantified using UHPLC, while their antioxidant capacity and oxidative stress inhibition ability were evaluated by using DPPH and CUPRAC assays as well as linoleic acid oxidation system, hemoglobin oxidation, and PARP-1 inhibition ELISA. Cardioprotective effect of the defatted dabai peel extract was evaluated using hypercholesterolemic-induced New Zealand white rabbits. Six anthocyanins were detected in the defatted dabai peel, with the highest antioxidant capacities and oxidative stress inhibition effect compared to the other part. The defatted dabai peel extract has also inhibited lipid peroxidation (plasma MDA) and elevated cellular antioxidant enzymes (SOD and GPx) in the tested animal model. Major anthocyanin (cyanidin-3-glucoside) and other anthocyanins (pelargonidin-3-glucoside, malvidin-3-glucoside, cyanidin-3-galactoside, cyanidin-3-arabinoside, and peonidin-3-glucoside) detected in the defatted dabai peel are potential future nutraceuticals with promising medicinal properties.
  7. Khoo LT, Abas F, Abdullah JO, Mohd Tohit ER, Hamid M
    PMID: 24987430 DOI: 10.1155/2014/614273
    Melastoma malabathricum Linn. is a perennial traditional medicine plants that grows abundantly throughout Asian countries. In this study, M. malabathricum Linn. leaf hot water crude extract with anticoagulant activity was purified through solid phase extraction cartridge and examined for the bioactive chemical constituents on blood coagulation reaction. The SPE purified fractions were, respectively, designated as F1, F2, F3, and F4, and each was subjected to the activated partial thromboplastin time (APTT) anticoagulant assay. Active anticoagulant fractions (F1, F2, and F3) were subjected to chemical characterisation evaluation. Besides, neutral sugar for carbohydrate part was also examined. F1, F2, and F3 were found to significantly prolong the anticoagulant activities in the following order, F1 > F2 > F3, in a dose dependent manner. In addition, carbohydrate, hexuronic acid, and polyphenolic moiety were measured for the active anticoagulant fractions (F1, F2, and F3). The characterisation of chemical constituents revealed that all these three fractions contained acidic polysaccharides (rhamnogalacturonan, homogalacturonan, and rhamnose hexose-pectic type polysaccharide) and polyphenolics. Hence, it was concluded that the presence of high hexuronic acids and polysaccharides, as well as polyphenolics in traditional medicinal plant, M. malabathricum, played a role in prolonging blood clotting in the intrinsic pathway.
  8. Vadivelu RK, Yeap SK, Ali AM, Hamid M, Alitheen NB
    PMID: 23056140 DOI: 10.1155/2012/251362
    Betulinic acid is a widely available plant-derived triterpene which is reported to possess selective cytotoxic activity against cancer cells of neuroectodermal origin and leukemia. However, the potential of betulinic acid as an antiproliferative and cytotoxic agent on vascular smooth muscle (VSMC) is still unclear. This study was carried out to demonstrate the antiproliferative and cytotoxic effect of betulinic acid on VSMCs using 3-[4,5-dimethylthizol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry cell cycle assay, BrdU proliferation assay, acridine orange/propidium iodide staining, and comet assay. Result from MTT and BrdU assays indicated that betulinic acid was able to inhibit the growth and proliferation of VSMCs in a dose-dependent manner with IC(50) of 3.8 μg/mL significantly (P < 0.05). Nevertheless, betulinic acid exhibited G(1) cell cycle arrest in flow cytometry cell cycle profiling and low level of DNA damage against VSMC in acridine orange/propidium iodide and comet assay after 24 h of treatment. In conclusion, betulinic acid induced G(1) cell cycle arrest and dose-dependent DNA damage on VSMC.
  9. Che Omar SN, Ong Abdullah J, Khairoji KA, Chin Chin S, Hamid M
    PMID: 23662136 DOI: 10.1155/2013/459089
    Melastoma malabathricum Linn. is a shrub that comes with beautiful pink or purple flowers and has berries-like fruits rich in anthocyanins. This study was carried out with the aim to evaluate the inhibitory activities of different concentrations of the M. malabathricum Linn. flower and fruit crude extracts against Listeria monocytogenes IMR L55, Staphylococcus aureus IMR S244, Escherichia coli IMR E30, and Salmonella typhimurium IMR S100 using the disc diffusion method. The lowest concentrations of the extracts producing inhibition zones against the test microorganisms were used to determine their minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs). In addition, the growth of Listeria monocytogenes IMR L55 and Staphylococcus aureus IMR S244 grown in medium supplemented with the respective extracts at different temperatures (4°C, 25°C, and 37°C) and pHs (4, 6, 7, and 8) was determined.
  10. Ishak NA, Ismail M, Hamid M, Ahmad Z, Abd Ghafar SA
    PMID: 23762147 DOI: 10.1155/2013/601838
    Curculigo latifolia fruit is used as alternative sweetener while root is used as alternative treatment for diuretic and urinary problems. The antidiabetic and hypolipidemic activities of C. latifolia fruit:root aqueous extract in high fat diet (HFD) and 40 mg streptozotocin (STZ) induced diabetic rats through expression of genes involved in glucose and lipid metabolisms were investigated. Diabetic rats were treated with C. latifolia fruit:root extract for 4 weeks. Plasma glucose, insulin, adiponectin, lipid profiles, alanine aminotransferase (ALT), gamma glutamyltransferase (GGT), urea, and creatinine levels were measured before and after treatments. Regulations of selected genes involved in glucose and lipid metabolisms were determined. Results showed the significant (P < 0.05) increase in body weight, high density lipoprotein (HDL), insulin, and adiponectin levels and decreased glucose, total cholesterol (TC), triglycerides (TG), low density lipoprotein (LDL), urea, creatinine, ALT, and GGT levels in diabetic rats after 4 weeks treatment. Furthermore, C. latifolia fruit:root extract significantly increased the expression of IRS-1, IGF-1, GLUT4, PPAR α , PPAR γ , AdipoR1, AdipoR2, leptin, LPL, and lipase genes in adipose and muscle tissues in diabetic rats. These results suggest that C. latifolia fruit:root extract exerts antidiabetic and hypolipidemic effects through altering regulation genes in glucose and lipid metabolisms in diabetic rats.
  11. Ramli Hamid MT, Ab Mumin N, Wong YV, Chan WY, Rozalli FI, Rahmat K
    Clin Radiol, 2023 Mar 23.
    PMID: 37029001 DOI: 10.1016/j.crad.2023.03.006
    AIM: To evaluate the effectiveness of an ultrafast breast magnetic resonance imaging (MRI) protocol in differentiating benign and malignant breast lesions.

    MATERIALS AND METHODS: Fifty-four patients with Breast Imaging Reporting and Data System (BI-RADS) 4 or 5 lesions were recruited between July 2020 to May 2021. A standard breast MRI was performed with the inclusion of the ultrafast protocol between the unenhanced sequence and the first contrast-enhanced sequence. Three radiologists performed image interpretation in consensus. Ultrafast kinetic parameters analysed included the maximum slope (MS), time to enhancement (TTE), and arteriovenous index (AVI). These parameters were compared using receiver operating characteristics with p-values of <0.05 considered to indicate statistical significance.

    RESULTS: Eighty-three histopathological proven lesions from 54 patients (mean age 53.87 years, SD 12.34, range 26-78 years) were analysed. Forty-one per cent (n=34) were benign and 59% (n=49) were malignant. All malignant and 38.2% (n=13) benign lesions were visualised on the ultrafast protocol. Of the malignant lesions, 77.6% (n=53) were invasive ductal carcinoma (IDC) and 18.4% (n=9) were ductal carcinoma in situ (DCIS). The MS for malignant lesions (13.27%/s) were significantly larger than for benign (5.45%/s; p<0.0001). No significant differences were seen for TTE and AVI. The area under the ROC curve (AUC) for the MS, TTE, and AVI were 0.836, 0.647, and 0.684, respectively. Different types of invasive carcinoma had similar MS and TTE. The MS of high-grade DCIS was also similar to that of IDC. Lower MS values were observed for low-grade (5.3%/s) compared to high-grade DCIS (14.8%/s) but the results were not significant statistically.

    CONCLUSION: The ultrafast protocol showed potential to discriminate between malignant and benign breast lesions with high accuracy using MS.

  12. Ramli Hamid MT, Ab Mumin N, Abdul Hamid S, Ahmad Saman MS, Rahmat K
    Clin Radiol, 2024 Jan 10.
    PMID: 38267349 DOI: 10.1016/j.crad.2023.12.016
    AIM: To compare the diagnostic performance of abbreviated breast magnetic resonance (AB-MR) imaging (MRI) and digital breast tomosynthesis (DBT) for breast cancer detection in Malaysian women with dense breasts, using histopathology as the reference standard.

    MATERIALS AND METHODS: This was a single-centre cross-sectional study of 115 women with American College of Radiology (ACR) Breast Imaging-Reporting and Data System (BIRADS) breast density C and D on DBT with breast lesions who underwent AB-MR from June 2018 to December 2021. AB-MR was performed on a 3 T MRI system with an imaging protocol consisting of three sequences: axial T1 fat-saturated unenhanced; axial first contrast-enhanced; and subtracted first contrast-enhanced with maximum intensity projection (MIP). DBT and AB-MR images were evaluated by two radiologists blinded to the histopathology and patient outcomes. Diagnostic accuracy (sensitivity, specificity, positive predictive value [PPV] and negative predictive value [NPV]) was assessed.

    RESULT: Of the 115 women, the mean age was 50.6 years. There were 48 (41.7%) Malay, 54 (47%) Chinese, and 12 (10.4%) Indian women. The majority (n=87, 75.7%) were from the diagnostic population. Sixty-one (53.1%) were premenopausal and 54 (46.9%) postmenopausal. Seventy-eight (72.4%) had an increased risk of developing breast cancer. Ninety-one (79.1%) women had density C and 24 (20.9%) had density D. There were 164 histopathology-proven lesions; 69 (42.1%) were malignant and 95 (57.9%) were benign. There were 62.8% (n=103/164) lesions detected at DBT. All the malignant lesions 100% (n=69) and 35.7% (n=34) of benign lesions were detected. Of the 61 lesions that were not detected, 46 (75.4%) were in density C, and 15 (24.6%) were in density D. The sensitivity, specificity, PPV, and NPV for DBT were 98.5%, 34.6%, 66.3%, and 94.7%, respectively. There were 65.2% (n=107/164) lesions detected on AB-MR, with 98.6% (n=68) malignant and 41.1% (39) benign lesions detected. The sensitivity, specificity, PPV, and NPV for AB-MR were 98.5%, 43.9%, 67.2%, and 96.2%, respectively. One malignant lesion (0.6%), which was a low-grade ductal carcinoma in-situ (DCIS), was missed on AB-MR.

    CONCLUSION: The present findings suggest that both DBT and AB-MR have comparable effectiveness as an imaging method for detecting breast cancer and have high NPV for low-risk lesions in women with dense breasts.

  13. Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NB, Hamid M
    Clin. Dev. Immunol., 2012;2012:980250.
    PMID: 22474489 DOI: 10.1155/2012/980250
    To date, generation of single-chain fragment variable (scFv) has become an established technique used to produce a completely functional antigen-binding fragment in bacterial systems. The advances in antibody engineering have now facilitated a more efficient and generally applicable method to produce Fv fragments. Basically, scFv antibodies produced from phage display can be genetically fused to the marker proteins, such as fluorescent proteins or alkaline phosphatase. These bifunctional proteins having both antigen-binding capacity and marker activity can be obtained from transformed bacteria and used for one-step immunodetection of biological agents. Alternatively, antibody fragments could also be applied in the construction of immunotoxins, therapeutic gene delivery, and anticancer intrabodies for therapeutic purposes. This paper provides an overview of the current studies on the principle, generation, and application of scFv. The potential of scFv in breast cancer research is also discussed in this paper.
  14. Hussain I, Jalil AA, Hamid MYS, Hassan NS
    Chemosphere, 2021 Aug;277:130285.
    PMID: 33794437 DOI: 10.1016/j.chemosphere.2021.130285
    Carbon monoxide (CO) is the most harmful pollutant in the air, causing environmental issues and adversely affecting humans and the vegetation and then raises global warming indirectly. CO oxidation is one of the most effective methods of reducing CO by converting it into carbon dioxide (CO2) using a suitable catalytic system, due to its simplicity and great value for pollution control. The CO oxidation reaction has been widely studied in various applications, including proton-exchange membrane fuel cell technology and catalytic converters. CO oxidation has also been of great academic interest over the last few decades as a model reaction. Many review studies have been produced on catalysts development for CO oxidation, emphasizing noble metal catalysts, the configuration of catalysts, process parameter influence, and the deactivation of catalysts. Nevertheless, there is still some gap in a state of the art knowledge devoted exclusively to synergistic interactions between catalytic activity and physicochemical properties. In an effort to fill this gap, this analysis updates and clarifies innovations for various latest developed catalytic CO oxidation systems with contemporary evaluation and the synergistic relationship between oxygen vacancies, strong metal-support interaction, particle size, metal dispersion, chemical composition acidity/basicity, reducibility, porosity, and surface area. This review study is useful for environmentalists, scientists, and experts working on mitigating the harmful effects of CO on both academic and commercial levels in the research and development sectors.
  15. Makama AB, Salmiaton A, Choong TSY, Hamid MRA, Abdullah N, Saion E
    Chemosphere, 2020 Aug;253:126689.
    PMID: 32304862 DOI: 10.1016/j.chemosphere.2020.126689
    Removal of ciprofloxacin (CIP) pollutant from wastewater using conventional process is particularly challenging due to poor removal efficiency. In this work, CIP was photocatalytically degraded using a porous ZnO/SnS2 photocatalyst prepared via microwaves. The influence of process parameters (e.g., pH, catalyst mass and initial CIP concentration) and radical scavengers on visible-light induced degradation of CIP on the catalyst was investigated. From the study, it was found that visible-light induced degradation of CIP on ZnO/SnS2 is a surface-mediated process and the reaction kinetics followed the Langmuir-Hinshelwood first-order kinetics. It was found that the optimum condition for CIP degradation was at pH of 6.1 and catalyst dosage of 500 mg L-1. Higher catalyst dosage however led to a decline in reaction rate due to light scattering effect and reduction in light penetration.
  16. Bharatham BH, Abu Bakar MZ, Perimal EK, Yusof LM, Hamid M
    Biomed Res Int, 2014;2014:146723.
    PMID: 25110655 DOI: 10.1155/2014/146723
    A novel porous three-dimensional bone scaffold was developed using a natural polymer (alginate/Alg) in combination with a naturally obtained biomineral (nano cockle shell powder/nCP) through lyophilization techniques. The scaffold was developed in varying composition mixture of Alg-nCP and characterized using various evaluation techniques as well as preliminary in vitro studies on MG63 human osteoblast cells. Morphological observations using SEM revealed variations in structures with the use of different Alg-nCP composition ratios. All the developed scaffolds showed a porous structure with pore sizes ideal for facilitating new bone growth; however, not all combination mixtures showed subsequent favorable characteristics to be used for biological applications. Scaffolds produced using the combination mixture of 40% Alg and 60% nCP produced significantly promising results in terms of mechanical strength, degradation rate, and increased cell proliferation rates making it potentially the optimum composition mixture of Alg-nCP with future application prospects.
  17. Hamid MF, Idroas MY, Ishak MZ, Zainal Alauddin ZA, Miskam MA, Abdullah MK
    Biomed Res Int, 2016;2016:1679734.
    PMID: 27419127 DOI: 10.1155/2016/1679734
    Torrefaction process of biomass material is essential in converting them into biofuel with improved calorific value and physical strength. However, the production of torrefied biomass is loose, powdery, and nonuniform. One method of upgrading this material to improve their handling and combustion properties is by densification into briquettes of higher density than the original bulk density of the material. The effects of critical parameters of briquetting process that includes the type of biomass material used for torrefaction and briquetting, densification temperature, and composition of binder for torrefied biomass are studied and characterized. Starch is used as a binder in the study. The results showed that the briquette of torrefied rubber seed kernel (RSK) is better than torrefied palm oil shell (POS) in both calorific value and compressive strength. The best quality of briquettes is yielded from torrefied RSK at the ambient temperature of briquetting process with the composition of 60% water and 5% binder. The maximum compressive load for the briquettes of torrefied RSK is 141 N and the calorific value is 16 MJ/kg. Based on the economic evaluation analysis, the return of investment (ROI) for the mass production of both RSK and POS briquettes is estimated in 2-year period and the annual profit after payback was approximately 107,428.6 USD.
  18. Tan DC, Kassim NK, Ismail IS, Hamid M, Ahamad Bustamam MS
    Biomed Res Int, 2019;2019:7603125.
    PMID: 31275982 DOI: 10.1155/2019/7603125
    Paederia foetida L. (Rubiaceae) is a climber which is widely distributed in Asian countries including Malaysia. The plant is traditionally used to treat various diseases including diabetes. This study is to evaluate the enzymatic inhibition activity of Paederia foetida twigs extracts and to identify the metabolites responsible for the bioactivity by gas chromatography-mass spectrometry (GC-MS) metabolomics profiling. Three different twig extracts, namely, hexane (PFH), chloroform (PFC), and methanol (PFM), were submerged for their α-amylase and α-glucosidase inhibition potential in 5 replicates for each. Results obtained from the loading column scatter plot of orthogonal partial least square (OPLS) model revealed the presence of 12 bioactive compounds, namely, dl-α-tocopherol, n-hexadecanoic acid, 2-hexyl-1-decanol, stigmastanol, 2-nonadecanone, cholest-8(14)-en-3-ol, 4,4-dimethyl-, (3β,5α)-, stigmast-4-en-3-one, stigmasterol, 1-ethyl-1-tetradecyloxy-1-silacyclohexane, ɣ-sitosterol, stigmast-7-en-3-ol, (3β,5α,24S)-, and α-monostearin. In silico molecular docking was carried out using the crystal structure α-amylase (PDB ID: 4W93) and α-glucosidase (PDB ID: 3WY1). α-Amylase-n-hexadecanoic acid exhibited the lowest binding energy of -2.28 kcal/mol with two hydrogen bonds residue, namely, LYS178 and TYR174, along with hydrophobic interactions involving PRO140, TRP134, SER132, ASP135, and LYS172. The binding interactions of α-glucosidase-n-hexadecanoic acid complex ligand also showed the lowest binding energy among 5 major compounds with the energy value of -4.04 kcal/mol. The complex consists of one hydrogen bond interacting residue, ARG437, and hydrophobic interactions with ALA444, ASP141, GLN438, GLU432, GLY374, LEU373, LEU433, LYS352, PRO347, THR445, HIS348, and PRO351. The study provides informative data on the potential antidiabetic inhibitors identified in Paederia foetida twigs, indicating the plant has the therapeutic effect properties to manage diabetes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links