Displaying publications 61 - 80 of 83 in total

Abstract:
Sort:
  1. Lim JL, Sim KS, Yong KT, Loong BJ, Ting KN, Lim SH, et al.
    Phytochemistry, 2015 Sep;117:317-24.
    PMID: 26125941 DOI: 10.1016/j.phytochem.2015.06.024
    Four alkaloids comprising two vallesamine, one strychnan, and one pyranopyridine alkaloid, in addition to 32 other known alkaloids were isolated from two Malayan Alstonia species, Alstonia pneumatophora and Alstonia rostrata. The structures of these alkaloids were determined using NMR and MS analyses, and in one instance, confirmed by X-ray diffraction analysis. The nor-6,7-secovallesamine alkaloid, pneumatophorine, is notable for an unusual incorporation of a 3-ethylpyridine moiety in a monoterpenoid indole. The rhazinilam-type alkaloids (rhazinicine, nor-rhazinicine, rhazinal, and rhazinilam) showed strong cytotoxicity toward human KB, HCT-116, MDA-MB-231, and MRC-5 cells, while pneumatophorine, the uleine alkaloid undulifoline, and the strychnan alkaloids, N4-demethylalstogustine and echitamidine, induced concentration dependent relaxation in phenylephrine-precontracted rat aortic rings.
  2. Lim KH, Raja VJ, Bradshaw TD, Lim SH, Low YY, Kam TS
    J Nat Prod, 2015 May 22;78(5):1129-38.
    PMID: 25919190 DOI: 10.1021/acs.jnatprod.5b00117
    Six new indole alkaloids, viz., cononusine (1, a rare example of an iboga-pyrrolidone conjugate), ervaluteine (2), vincamajicine (3), tacamonidine (4), 6-oxoibogaine (5), and N(4)-chloromethylnorfluorocurarine chloride (6), and two new vobasinyl-iboga bisindole alkaloids, ervatensines A (7) and B (8), in addition to other known alkaloids, were isolated from the stem-bark extract of the Malayan Tabernaemontana corymbosa. The structures of these alkaloids were established on the basis of NMR and MS analyses and, in one instance (7), confirmed by X-ray diffraction analysis. Vincamajicine (3) showed appreciable activity in reversing multidrug resistance in vincristine-resistant KB cells (IC50 2.62 μM), while ervatensines A (7) and B (8) and two other known bisindoles displayed pronounced in vitro growth inhibitory activity against human KB cells (IC50 < 2 μM). Compounds 7 and 8 also showed good growth inhibitory activity against A549, MCF-7, MDA-468, HCT-116, and HT-29 cells (IC50 0.70-4.19 μM). Cell cycle and annexin V-FITC apoptosis assays indicated that compounds 7 and 8 inhibited proliferation of HCT-116 and MDA-468 cells, evoking apoptotic and necrotic cell death.
  3. Mok SL, Yoganathan K, Lim TM, Kam TS
    J Nat Prod, 1998 Mar;61(3):328-32.
    PMID: 9544563
    Intravenous injection of the aspidofractinine alkaloid, kopsingine (1, 0.2-10.0 mg/kg) from Kopsia teoi, produced dose-related decreases in the mean arterial blood pressure and heart rate in anesthetized spontaneously hypertensive rats, which were similar to those seen in normotensive controls. Minor modifications in the molecular structure of kopsingine, as in kopsaporine (2, the 12-demethoxy derivative of kopsingine) and 14,15-dihydrokopsingine (4), did not significantly alter the hypotensive responses, whereas a more drastic change in the structure, as in the heptacyclic kopsidine A (3) and the 3-to-17 oxo-bridged compound 5, resulted in an increase in blood pressure. The antihypertensive effects of kopsingine (1) and its congeners (2 and 4) along with the pressor effects produced by the heptacyclic oxo-bridged compounds (5 and 3) could be ascribed to central as well as peripheral actions.
  4. Sim DS, Navanesan S, Sim KS, Gurusamy S, Lim SH, Low YY, et al.
    J Nat Prod, 2019 04 26;82(4):850-858.
    PMID: 30869890 DOI: 10.1021/acs.jnatprod.8b00919
    Examination of the EtOH extract of the leaves of the Malayan Tabernaemontana corymbosa resulted in the isolation of four new (1-4) and two known bisindole alkaloids (5, 6) of the Aspidosperma- Aspidosperma type. The structures of these alkaloids were determined based on analysis of the spectroscopic data (NMR and HRESIMS). X-ray diffraction analyses of the related bisindole alkaloids conophylline (5) and conophyllinine (6) established the absolute configurations. Treatment of the bisindole alkaloid conophylline (5) with benzeneselenic anhydride gave, in addition to the known bisindole polyervinine (7) previously isolated from another Malayan Tabernaemontana, another bisindole product, 8, an isolable tautomer of 7. X-ray diffraction analyses yielded the absolute configurations of both bisindoles and in addition showed that polyervinine (7) exists primarily as the neutral dione structure. The bisindoles (1-8) and the related conophylline-type bisindoles (9-13) showed pronounced in vitro growth inhibitory activity against an array of human cancer cell lines, including KB, vincristine-resistant KB, PC-3, LNCaP, MCF7, MDA-MB-231, A549, HT-29, and HCT 116 cells, with IC50 values for the active compounds in the 0.01-5 μM range.
  5. Hong FJ, Chong KW, Low YY, Thomas NF, Kam TS
    Chem Asian J, 2015 Oct;10(10):2207-20.
    PMID: 26097065 DOI: 10.1002/asia.201500488
    A systematic study on the FeCl3-induced oxidation of 1,2-diarylalkenes was carried out with the focus on the variation of product type as a function of aromatic substitution, as well as to compare the reactivity of stilbene cation radicals generated via Fe(III) oxidation with those generated by anodic oxidation. The aromatic substituents were found to fall into three main categories, namely those that give rise to tetralins and/or dehydrotetralins, those that give products possessing pallidol and ampelopsin F-type carbon skeletons, and last, those that give rise to trimeric products, indanes, and dehydrotetralins/tetralins. The latter are those stilbenes with a para-methoxy substituent in one ring and a para- or meta-EWG (CF3, NO2, Cl, F) in the other, and represent the most prominent departure when compared with the behavior of the same stilbenes under the conditions of anodic oxidation. Reaction pathways to rationalize the formation of the different products are presented.
  6. Tan CH, Yeap JS, Lim SH, Low YY, Sim KS, Kam TS
    J Nat Prod, 2021 05 28;84(5):1524-1533.
    PMID: 33872002 DOI: 10.1021/acs.jnatprod.1c00013
    A new linearly fused macroline-sarpagine bisindole, angustilongine M (1), was isolated from the methanolic extract of Alstonia penangiana. The structure of the alkaloid was elucidated based on analysis of the spectroscopic data, and its biological activity was evaluated together with another previously reported macroline-akuammiline bisindole from the same plant, angustilongine A (2). Compounds 1 and 2 showed pronounced in vitro growth inhibitory activity against a wide panel of human cancer cell lines. In particular, the two compounds showed potent and selective antiproliferative activity against HT-29 cells, as well as strong growth inhibitory effects against HT-29 spheroids. Cell death mechanistic studies revealed that the compounds induced mitochondrial apoptosis and G0/G1 cell cycle arrest in HT-29 cells in a time-dependent manner, while in vitro tubulin polymerization assays and molecular docking analysis showed that the compounds are microtubule-stabilizing agents, which are predicted to bind at the β-tubulin subunit at the Taxol-binding site.
  7. Nge CE, Sim KS, Lim SH, Thomas NF, Low YY, Kam TS
    J Nat Prod, 2016 10 28;79(10):2709-2717.
    PMID: 27759387
    Examination of the EtOH extract of the Malayan Tabernaemontana corymbosa resulted in the isolation of three new alkaloids, viz., cononuridine (1), an unusual hexacyclic, iboga-derived, monoterpenoid indole characterized by contraction of the tetrahydroazepine C-ring and incorporation of an additional isoxazolidine ring, taberisidine (2), a seco-corynanthean alkaloid, and conofolidine (3), an Aspidosperma-Aspidosperma bisindole that showed pronounced in vitro growth inhibitory activity against an array of human cancer cell lines, including KB, vincristine-resistant KB, PC-3, LNCaP, MCF7, MDA-MB-231, HT-29, and HCT 116 cells. The structures and absolute configurations of 1 and 3 and the absolute configuration of the novel pyridopyrimidine indole alkaloid vernavosine (4) were confirmed by X-ray diffraction analysis. A reasonable biosynthesis route to cononuridine starting from an iboga precursor is presented.
  8. Yeap JS, Saad HM, Tan CH, Sim KS, Lim SH, Low YY, et al.
    J Nat Prod, 2019 11 22;82(11):3121-3132.
    PMID: 31642315 DOI: 10.1021/acs.jnatprod.9b00712
    A methanol extract of the stem bark of the Malayan Alstonia penangiana provided seven new bisindole alkaloids, comprising six macroline-sarpagine alkaloids (angustilongines E-K, 1-6) and one macroline-pleiocarpamine bisindole alkaloid (angustilongine L, 7). Analysis of the spectroscopic data (NMR and MS) of these compounds led to the proposed structures of these alkaloids. The macroline-sarpagine alkaloids (1-6) showed in vitro growth inhibitory activity against a panel of human cancer cell lines, inclusive of KB, vincristine-resistant KB, PC-3, LNCaP, MCF7, MDA-MB-231, HT-29, HCT 116, and A549 cells (IC50 values: 0.02-9.0 μM).
  9. Wong SK, Wong SP, Sim KS, Lim SH, Low YY, Kam TS
    J Nat Prod, 2019 07 26;82(7):1902-1907.
    PMID: 31241923 DOI: 10.1021/acs.jnatprod.9b00255
    Three new alkaloids were isolated from the bark extract of the Malayan Kopsia arborea, viz., arbophyllidine (1), an unusual pentacyclic, monoterpenoid indole characterized by an absence of oxygen atoms and incorporating a new carbon-nitrogen skeleton, and arbophyllinines A (2) and B (3), two pentacyclic corynanthean alkaloids incorporating a hydroxyethyl-substituted tetrahydrofuranone ring. The structures of the alkaloids were deduced based on analysis of the MS and NMR data and confirmed by X-ray diffraction analyses. The absolute configuration of arbophyllidine (1) was established based on experimental and calculated ECD data, while that of arbophyllinine A was based on X-ray diffraction analysis (Cu Kα). A reasonable biosynthetic route to arbophyllidine (1) from a pericine precursor is presented. Arbophyllidine (1) showed pronounced in vitro growth inhibitory activity against the HT-29 human cancer cell line with IC50 6.2 μM.
  10. Yeap JS, Tan CH, Yong KT, Lim KH, Lim SH, Low YY, et al.
    Phytochemistry, 2020 Aug;176:112391.
    PMID: 32387883 DOI: 10.1016/j.phytochem.2020.112391
    Fourteen previously undescribed alkaloids comprising two N-1-hydroxymethylmacroline alkaloids, one talpinine-type oxindole acetal, a pair of equilibrating talpinine-type oxindole hemiacetals, eight oxidized derivatives of sarpagine- and akuammiline-type indole alkaloids, in addition to alstochalotine a diastereomer of gelsochalotine recently isolated from Gelsemium elegans, were isolated from the leaf and stem-bark extracts of Alstonia penangiana. The structures and relative configurations of these alkaloids were established using NMR, MS, and in one instance, confirmed by X-ray diffraction analysis. An NMR-based method is described as a useful chemotaxonomic tool for differentiating between A. penangiana and A. macrophylla. Several of the alkaloids isolated showed appreciable growth inhibitory effects when tested against a number of human cancer cell lines.
  11. Chong KW, Yeap JS, Lim SH, Weber JF, Low YY, Kam TS
    J Nat Prod, 2017 11 22;80(11):3014-3024.
    PMID: 29087707 DOI: 10.1021/acs.jnatprod.7b00621
    Reexamination of the absolute configuration of recently isolated eburnane alkaloids from Malaysian Kopsia and Leuconotis species by X-ray diffraction analysis and ECD/TDDFT has revealed the existence of biosynthetic enantiodivergence. Three different scenarios are discerned with respect to the composition of the enantiomeric eburnane alkaloids in these plants: first, where the new eburnane congeners possess the same C-20, C-21 absolute configurations as the common eburnane alkaloids (eburnamonine, eburnamine, isoeburnamine, eburnamenine) occurring in the same plant; second, where the new eburnane congeners possess opposite or enantiomeric C-20, C-21 absolute configurations compared to the common eburnane alkaloids found in the same plant; and, third, where the four common eburnane alkaloids were isolated as racemic or scalemic mixtures, while the new eburnane congeners were isolated as pure enantiomers with a common C-20, C-21 configuration (20α, 21α). Additionally, the same Kopsia species (K. pauciflora) found in two different geographical locations (Peninsular Malaysia and Malaysian Borneo) showed different patterns in the composition of the enantiomeric eburnane alkaloids. Revision of the absolute configurations of a number of new eburnane congeners (previously assigned based on the assumption of a common biogenetic origin to that of the known eburnane alkaloids co-occurring in the same plant) is required based on the present results.
  12. Chong KW, Hong FJ, Thomas NF, Low YY, Kam TS
    J Org Chem, 2017 06 16;82(12):6172-6191.
    PMID: 28552001 DOI: 10.1021/acs.joc.7b00753
    A systematic study was undertaken to determine the influence of ortho'-substituted nucleophilic groups (OH, NH2, or NHR) on the reactivity of anodically generated 4-methoxy- and 3,4-dimethoxystilbene cation radicals. The results showed that when ortho-substituted nucleophilic groups such as OH and NHR are present in the other ring, both direct and crossover intramolecular cation-nucleophile reactions occur to give bisbenzofurans/bisindoles or fused bisbenzopyrans/bisquinolines, respectively. Where an additional 3-methoxy substituent is present, bridged oxocine/azocine products are formed in addition to the bisbenzopyrans/bisquinolines and bisbenzofurans/bisindoles. Mechanistic rationalization of the observed behavior is presented based on a generalized pathway involving fast cation radical dimerization following electron transfer, followed by direct and crossover trapping of the benzylic cations by the ortho-substituted oxygen and nitrogen nucleophilic groups. In the instances where an additional 3-methoxy group is present, the bridged oxocine/azocine products are also formed as a result of competing aromatic substitution (Friedel-Crafts reaction). The results have shed further light and provided additional clarification on the reactivity of anodically generated stilbene cation radicals.
  13. Chong KW, Thomas NF, Low YY, Kam TS
    J Org Chem, 2019 Jun 07;84(11):7279-7290.
    PMID: 31056921 DOI: 10.1021/acs.joc.9b00939
    The present investigation represents a continuation of studies on the effect of ortho'-substitution on the reactivity of anodically generated methoxystilbene cation radicals. Whereas previous studies have focused on the effect of ortho'-substituted nucleophilic groups such as OH, NH2, CH2OH, CH2NH2, and COOH, the present study extends the investigation to ortho'-substituted vinyl and formyl groups. The results show that when the ortho'-substituent is a vinyl group, the products include a bisdihydronaphthalene derivative and a doubly bridged, dibenzofused cyclononane from direct trapping of a bis carbocation intermediate. In the presence of an additional 3-methoxy substituent, the products are the tetracyclic chrysene derivatives. When the ortho'-substituent is a nonnucleophilic formyl group, the products include fused indanylnaphthalenes and indanylbenzopyran aldehydes. When an additional 3-methoxy group is present, an unusual fused benzofluorene-dibenzoannulene product is obtained. Mechanistic rationalization for the formation of the various products is presented. The results have contributed to a deeper understanding of how the reactivity of the methoxystilbene cation radicals is affected by the nature of the ortho'-substituents.
  14. Hong FJ, Low YY, Chong KW, Thomas NF, Kam TS
    J Org Chem, 2014 May 16;79(10):4528-43.
    PMID: 24754525 DOI: 10.1021/jo500559r
    A systematic study of the electrochemical oxidation of 1,2-diarylalkenes was carried out with the focus on detailed product studies and variation of product type as a function of aromatic substitution. A reinvestigation of the electrochemical oxidation of 4,4'-dimethoxystilbene under various conditions was first carried out, and all products formed were fully characterized and quantitated. This was followed by a systematic investigation of the effect of aromatic substitution on the nature and distribution of the products. The aromatic substituents were found to fall into three main categories, viz., substrates in which the nature and position of the aromatic substituents gave rise to essentially the same products as 4,4'-dimethoxystilbene, for example, tetraaryltetrahydrofurans, dehydrotetralins, and aldehydes (p-MeO or p-NMe2 on one ring and X on the other ring, where X = o-MeO or p-alkyl, or m- or p-EWG; e.g., 4-methoxy-4'-trifluoromethylstilbene); those that gave rise to a mixture of indanyl (or tetralinyl) acetamides and dehydrotetralins (or pallidols) (both or one ring substituted by alkyl groups, e.g., 4,4'-dimethylstilbene); and those where strategic placement of donor groups, such as OMe and OH, led to the formation of ampelopsin F and pallidol-type carbon skeletons (e.g., 4,3',4'-trimethoxystilbene). Reaction pathways to rationalize the formation of the different products are presented.
  15. Chong KW, Thomas NF, Low YY, Kam TS
    J Org Chem, 2018 Dec 21;83(24):15087-15100.
    PMID: 30488699 DOI: 10.1021/acs.joc.8b02360
    The effect of ortho'-substituted side chains bearing nucleophilic groups such as CH2OH, CH2NHR, and CO2H on the reactivity of anodically generated 4-methoxy- and 3,4-dimethoxystilbene cation radicals was investigated, and results were compared with those of substrates where the nucleophilic groups such as OH and NHR are directly attached to the aromatic ring. It was found that when ortho'-substituted groups such as CH2OH or CH2NHR are present in the other ring, only direct intramolecular cation-nucleophile reactions occur to give bisbenzopyrans or bisisoquinolines. Crossover products (previously obtained when the ortho' substituents were OH and NH2) such as the fused benzoxepanes/fused benzoazepanes were not formed. When the ortho' substituent is COOH, direct intramolecular cation-nucleophile reaction occurs to give the corresponding bis-δ-lactones in high yield. The presence of an additional 3-methoxy substituent resulted in the formation of other fused polycyclic products due to competing aromatic substitution reactions. Reaction pathways leading to the different products and reasons for the difference in behavior shown by the present stilbenes are presented. The results have provided additional insight into the reactivity and behavior of anodically generated stilbene cation radicals.
  16. Mok JS, Chang P, Lee KH, Kam TS, Goh SH
    J Ethnopharmacol, 1992 Jun;36(3):219-23.
    PMID: 1434680
    Among several alkaloids, including dimeric indoles, isolated from Uncaria callophylla, gambirine which is an alkaloid unique to this plant, has been found to be another hypotensive principle from the plant. Intravenous injections of gambirine in the dose range of 0.2 to 10.0 mg/kg caused a dose-related fall in both systolic and diastolic blood pressures as well as heart rate. At all doses gambirine showed a prompt onset of action and at the higher doses (5.0-10 mg/kg), marked persistence of hypotension accompanied by severe bradycardia were observed. In addition, higher doses of gambirine produced a more marked decrease in diastolic than systolic pressure while at lower doses both decreased equally. It is suggested that the hypotensive effect of gambirine may be peripheral in origin and is associated, at least in part, with a cardiac action.
  17. Kam TS, Choo YM
    Alkaloids Chem Biol, 2006;63:181-337.
    PMID: 17133716
  18. Kam TS, Choo YM
    Phytochemistry, 2004 Jul;65(14):2119-22.
    PMID: 15279982
    Two new venalstonine derivatives, viz., venacarpines A and B, and one new dioxokopsan derivative, kopsorinine, in addition to the kopsifolines A-F, and 11 other known alkaloids, were isolated from a Malayan Kopsia species. The structures of the new alkaloids were determined using NMR and MS analysis.
  19. Kam TS, Choo YM
    J Nat Prod, 2004 Apr;67(4):547-52.
    PMID: 15104482
    Ten new indole alkaloids, alstomaline (1), 10,11-dimethoxynareline (2), alstohentine (3), alstomicine (4), 16-hydroxyalstonisine (5), 16-hydroxyalstonal (6), 16-hydroxy-N(4)-demethylalstophyllal oxindole (7), alstophyllal (8), 6-oxoalstophylline (9), and 6-oxoalstophyllal (10), in addition to 21 other known ones, were obtained from the leaf extract of the Malayan Alstonia macrophylla. The structures were determined using NMR and MS analysis.
  20. Kam TS, Choo YM
    Phytochemistry, 2004 Mar;65(5):603-8.
    PMID: 15003424
    Six new alkaloids, viz., alstolactone, affinisine oxindole, lagumicine, N(4)-demethylalstonerine, N(4)-demethylalstonerinal, and 10-methoxycathafoline N(4)-oxide, in addition to 36 other known alkaloids, were obtained from the leaf extract of Alstonia angustifolia var. latifolia. The structures of the new alkaloids were determined using NMR and MS analysis.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links