Displaying publications 61 - 65 of 65 in total

Abstract:
Sort:
  1. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2017;77(5):354.
    PMID: 28943789 DOI: 10.1140/epjc/s10052-017-4912-8
    A measurement of the top quark mass is reported in events containing a single top quark produced via the electroweak t channel. The analysis is performed using data from proton-proton collisions collected with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb[Formula: see text]. Top quark candidates are reconstructed from their decay to a [Formula: see text] boson and a b quark, with the [Formula: see text] boson decaying leptonically to a muon and a neutrino. The final state signature and kinematic properties of single top quark events in the t channel are used to enhance the purity of the sample, suppressing the contribution from top quark pair production. A fit to the invariant mass distribution of reconstructed top quark candidates yields a value of the top quark mass of [Formula: see text]. This result is in agreement with the current world average, and represents the first measurement of the top quark mass in event topologies not dominated by top quark pair production, therefore contributing to future averages with partially uncorrelated systematic uncertainties and a largely uncorrelated statistical uncertainty.
  2. Chatrchyan S, Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, et al.
    Eur Phys J C Part Fields, 2014;74(8):2980.
    PMID: 25814906
    A search for invisible decays of Higgs bosons is performed using the vector boson fusion and associated ZH production modes. In the ZH mode, the Z boson is required to decay to a pair of charged leptons or a [Formula: see text] quark pair. The searches use the 8 [Formula: see text] pp collision dataset collected by the CMS detector at the LHC, corresponding to an integrated luminosity of up to 19.7 [Formula: see text]. Certain channels include data from 7 [Formula: see text] collisions corresponding to an integrated luminosity of 4.9 [Formula: see text]. The searches are sensitive to non-standard-model invisible decays of the recently observed Higgs boson, as well as additional Higgs bosons with similar production modes and large invisible branching fractions. In all channels, the observed data are consistent with the expected standard model backgrounds. Limits are set on the production cross section times invisible branching fraction, as a function of the Higgs boson mass, for the vector boson fusion and ZH production modes. By combining all channels, and assuming standard model Higgs boson cross sections and acceptances, the observed (expected) upper limit on the invisible branching fraction at [Formula: see text] [Formula: see text] is found to be 0.58 (0.44) at 95 % confidence level. We interpret this limit in terms of a Higgs-portal model of dark matter interactions.
  3. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Eur Phys J C Part Fields, 2014;74(10):3076.
    PMID: 25814871
    Observation of the diphoton decay mode of the recently discovered Higgs boson and measurement of some of its properties are reported. The analysis uses the entire dataset collected by the CMS experiment in proton-proton collisions during the 2011 and 2012 LHC running periods. The data samples correspond to integrated luminosities of 5.1[Formula: see text]at [Formula: see text] and 19.7[Formula: see text]at 8[Formula: see text] . A clear signal is observed in the diphoton channel at a mass close to 125[Formula: see text] with a local significance of [Formula: see text], where a significance of [Formula: see text] is expected for the standard model Higgs boson. The mass is measured to be [Formula: see text] , and the best-fit signal strength relative to the standard model prediction is [Formula: see text][Formula: see text][Formula: see text]. Additional measurements include the signal strength modifiers associated with different production mechanisms, and hypothesis tests between spin-0 and spin-2 models.
  4. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2017;77(1):15.
    PMID: 28260978 DOI: 10.1140/epjc/s10052-016-4504-z
    A measurement of the top quark pair production ([Formula: see text]) cross section in proton-proton collisions at the centre-of-mass energy of 8[Formula: see text] is presented using data collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 19.6[Formula: see text]. This analysis is performed in the [Formula: see text] decay channels with one isolated, high transverse momentum electron or muon and at least four jets, at least one of which is required to be identified as originating from hadronization of a b quark. The calibration of the jet energy scale and the efficiency of b jet identification are determined from data. The measured [Formula: see text] cross section is [Formula: see text]. This measurement is compared with an analysis of 7[Formula: see text] data, corresponding to an integrated luminosity of 5.0[Formula: see text], to determine the ratio of 8[Formula: see text] to 7[Formula: see text] cross sections, which is found to be [Formula: see text]. The measurements are in agreement with QCD predictions up to next-to-next-to-leading order.
  5. Chatrchyan S, Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, et al.
    Phys Rev Lett, 2014 Apr 25;112(16):161802.
    PMID: 24815637
    Results are presented of a search for a "natural" supersymmetry scenario with gauge mediated symmetry breaking. It is assumed that only the supersymmetric partners of the top quark (the top squark) and the Higgs boson (Higgsino) are accessible. Events are examined in which there are two photons forming a Higgs boson candidate, and at least two b-quark jets. In 19.7  fb-1 of proton-proton collision data at s=8  TeV, recorded in the CMS experiment, no evidence of a signal is found and lower limits at the 95% confidence level are set, excluding the top squark mass below 360 to 410 GeV, depending on the Higgsino mass.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links