Displaying publications 61 - 68 of 68 in total

Abstract:
Sort:
  1. Lee YY, Tang TK, Ab Karim NA, Alitheen NB, Lai OM
    Food Funct, 2014 Jan;5(1):57-64.
    PMID: 24247642 DOI: 10.1039/c3fo60358j
    Structured lipid medium- and long-chain triacylglycerols (MLCT) are claimed to be able to manage obesity. The present study investigated the body fat influence of enzymatically interesterifed palm-based medium- and long-chain triacylglycerols (P-MLCT) on diet-induced obesity (DIO) C57BL/6J mice compared with commercial MLCT oil (C-MLCT) and a control, which was the non enzymatically modified palm kernel and palm oil blend (PKO-PO blend). It also investigated the low fat and high fat effects of P-MLCT. DIO C57BL/6J mice were fed ad libitum with low fat (7%) and high fat (30%) experimental diets for 8 weeks before being sacrificed to obtain blood serum for analysis. From the results, there is a trend that P-MLCT fed mice were found to have the lowest body weight, body weight gain, total fat pad accumulation (perirenal, retroperitoneal, epididymal and mesenteric), total triglyceride levels and efficiency in controlling blood glucose level, compared with C-MLCT and the PKO-PO blend in both low fat and high fat diets. Nevertheless, the PKO-PO blend and P-MLCT caused significantly (P < 0.05) higher total cholesterol levels compared to C-MLCT. P-MLCT present in low fat and high fat dosage were shown to be able to suppress body fat accumulation. This effect is more prominent with the low fat dosage.
  2. Karim NA, Noor AM, Lee YY, Lai OM
    J Food Sci, 2015 Dec;80(12):C2678-85.
    PMID: 26523850 DOI: 10.1111/1750-3841.13119
    The oxidative and thermal stability of low diglycerides palm oil produced via silica treatment (sPO) and enzymatic treatment (ePO) compared with standard quality palm oil (SQ) and premium quality palm oil (PQ) was investigated. Both of the oils displayed better oxidative stability compared with SQ as well as significantly higher (P < 0.05) thermal resistance and oxidative strength than SQ and PQ due to lower amounts of partial glycerides. Although the initial induction periods (IPs) of sPO and ePO were significantly lower compared with SQ and PQ, both the oils showed slower drops in their IP values. The darkening effect after frying was significantly (P < 0.05) slower in sPO compared with SQ, PQ, and ePO. Besides, there is no difference p > 0.05 in the rate of FFA formation between sPO and PQ. The anisidine value and peroxide values were lowest in sPO, followed by ePO, PQ, and SQ.
  3. Ng SP, Lai OM, Abas F, Lim HK, Tan CP
    Food Res Int, 2014 Oct;64:919-930.
    PMID: 30011735 DOI: 10.1016/j.foodres.2014.08.045
    The rheological properties, microstructure, textural properties, colour and droplet size distribution of mayonnaise-like emulsion models prepared using 10-30wt.% of palm olein-based diacylglycerol (POL-DAG) oil were compared with those of the control (100wt.% VCO) model. There were significant (P<0.05) differences in the particle size distribution of the oil droplets, the textural properties, and the rheological properties of the various emulsion models. The rheological analysis included the determination of the flow curves, yield stress, thixotropy, apparent viscosity, and viscoelastic parameters. The concentrated oil-in-water (O/W) emulsion with 30wt.% POL-DAG substitution exhibited high thixotropy. The POL-DAG content had a substantial effect on the rheological properties of yield stress, storage modulus (G') and loss modulus (G″). The pseudoplastic behaviour of the emulsions was demonstrated. The size of the particles in the 30% POL-DAG-substituted emulsion was dramatically increased after one day and 30days of storage. All of the emulsion samples with POL-DAG substituted for VCO showed a relatively non-uniform bimodal droplet size distribution after one day of storage. In general, substitution of 10-20wt.% POL-DAG oil is appropriate for preparing O/W emulsions that had flow curves and textural properties similar to those of the control sample.
  4. Tan PY, Tey BT, Chan ES, Lai OM, Chang HW, Tan TB, et al.
    Foods, 2021 Feb 07;10(2).
    PMID: 33562391 DOI: 10.3390/foods10020358
    Calcium carbonate (CaCO3) has been utilized as a pH-responsive component in various products. In this present work, palm tocotrienols-rich fraction (TRF) was successfully entrapped in a self-assembled oil-in-water (O/W) emulsion system by using CaCO3 as the stabilizer. The emulsion droplet size, viscosity and tocotrienols entrapment efficiency (EE) were strongly affected by varying the processing (homogenization speed and time) and formulation (CaCO3 and TRF concentrations) parameters. Our findings indicated that the combination of 5000 rpm homogenization speed, 15 min homogenization time, 0.75% CaCO3 concentration and 2% TRF concentration resulted in a high EE of tocotrienols (92.59-99.16%) and small droplet size (18.83 ± 1.36 µm). The resulting emulsion system readily released the entrapped tocotrienols across the pH range tested (pH 1-9); with relatively the highest release observed at pH 3. The current study presents a potential pH-sensitive emulsion system for the entrapment and delivery of palm tocotrienols.
  5. Lee YY, Tang TK, Phuah ET, Karim NAA, Alitheen NBM, Tan CP, et al.
    Food Res Int, 2018 01;103:200-207.
    PMID: 29389606 DOI: 10.1016/j.foodres.2017.10.022
    Medium-and-Long Chain Triacylglycerol (MLCT) is a type of structured lipid that is made up of medium chain, MCFA (C8-C12) and long chain, LCFA (C16-C22) fatty acid. Studies claimed that consumption of MLCT has the potential in reducing visceral fat accumulation as compared to long chain triacylglycerol, LCT. This is mainly attributed to the rapid metabolism of MCFA as compared to LCFA. Our study was designed to compare the anti-obesity effects of a enzymatically interesterified MLCT (E-MLCT) with physical blend of palm kernel and palm oil (B-PKOPO) having similar fatty acid composition and a commercial MLCT (C-MLCT) made of rapeseed/soybean oil on Diet Induced Obesity (DIO) C57BL/6J mice for a period of four months in low fat, LF (7%) and high fat, HF (30%) diet. The main aim was to determine if the anti-obesity effect of MLCT was contributed solely by its triacylglycerol structure alone or its fatty acid composition or both. Out of the three types of MLCT, mice fed with Low Fat, LF (7%) E-MLCT had significantly (P<0.05) lower body weight gain (by ~30%), body fat accumulation (by ~37%) and hormone leptin level as compared to both the LF B-PKOPO and LF C-MLCT. Histological examination further revealed that dietary intake of E-MLCT inhibited hepatic lipid accumulation. Besides, analysis of serum profile also demonstrated that consumption of E-MLCT was better in regulating blood glucose compared to B-PKOPO and C-MLCT. Nevertheless, both B-PKO-PO and E-MLCT which contained higher level of myristic acid was found to be hypercholesterolemic compared to C-MLCT. In summary, our finding showed that triacylglycerol structure, fatty acid composition and fat dosage play a pivotal role in regulating visceral fat accumulation. Consumption of E-MLCT in low fat diet led to a significantly lesser body fat accumulation. It was postulated that the MLM/MLL/LMM/MML/LLM types of triacylglycerol and C8-C12 medium chain fatty acids were the main factors that contributed to the visceral fat suppressing effect of MLCT. Despite being able to reduce body fat, the so called healthful functional oil E-MLCT when taken in high amount do resulted in fat accumulation. In summary, E-MLCT when taken in moderation can be used to manage obesity issue. However, consumption of E-MLCT may lead to higher total cholesterol and LDL level.
  6. Li G, Lee WJ, Tan CP, Lai OM, Wang Y, Qiu C
    Food Funct, 2021 Nov 29;12(23):11732-11746.
    PMID: 34698749 DOI: 10.1039/d1fo01883c
    Pickering water-in-oil (W/O) emulsions were fabricated by using medium-long chain diacylglycerol (MLCD)-based solid lipid nanoparticles (SLNs) and the connection between the characteristics of the SLNs and the colloidal stability of the emulsions was established. Via melt-emulsification and ultrasonication, MLCD-based SLNs with particle sizes of 120-300 nm were obtained with or without other surfactants. The particle size of the SLNs was influenced by the chemical properties of the surfactants, and surfactants decreased the contact angle of SLNs at the oil-water interface. Gelation was observed in SLNs modified by sodium stearoyl lactylate and lecithin, whereas the addition of Tween 20 resulted in a homogeneous SLN solution. The adsorption of surfactants onto SLN surfaces caused the production of higher amounts of α crystals accompanied by delayed crystallization onset which contributed to the reduction of particle size, interfacial tension and oil wetting ability. The W/O emulsions with higher rigidity and physical stability can be obtained by varying surfactant types and by increasing SLN mass ratios to 60%, whereby more SLNs are adsorbed at the droplet surface as a Pickering stabilizer. This study provides useful insights for the development of diacylglycerol-based SLNs and Pickering W/O emulsions which have great potential for food, cosmetic and pharmaceutical applications.
  7. Zulkurnain M, Lai OM, Latip RA, Nehdi IA, Ling TC, Tan CP
    Food Chem, 2012 Nov 15;135(2):799-805.
    PMID: 22868161 DOI: 10.1016/j.foodchem.2012.04.144
    The formation of 3-monochloropropane-1,2-diol (3-MCPD) esters in refined palm oil during deodorisation is attributed to the intrinsic composition of crude palm oil. Utilising D-optimal design, the effects of the degumming and bleaching processes on the reduction in 3-MCPD ester formation in refined palm oil from poor-quality crude palm oil were studied relative to the palm oil minor components that are likely to be their precursors. Water degumming remarkably reduced 3-MCPD ester formation by up to 84%, from 9.79 mg/kg to 1.55 mg/kg. Bleaching with synthetic magnesium silicate caused a further 10% reduction, to 0.487 mg/kg. The reduction in 3-MCPD ester formation could be due to the removal of related precursors prior to the deodorisation step. The phosphorus content of bleached palm oil showed a significant correlation with 3-MCPD ester formation.
  8. Liu Y, Lee WJ, Tan CP, Lai OM, Wang Y, Qiu C
    Food Chem, 2022 Mar 15;372:131305.
    PMID: 34653777 DOI: 10.1016/j.foodchem.2021.131305
    High internal phase emulsions (HIPEs) show promising application in food and cosmetic industries. In this work, diacylglycerol (DAG) was applied to fabricate water-in-oil (W/O) HIPEs. DAG-based emulsion can hold 60% water and the emulsion rigidity increased with water content, indicating the water droplets acted as "active fillers". Stable HIPE with 80% water fraction was formed through the combination of 6 wt% DAG with 1 wt% polyglycerol polyricinoleate (PGPR). The addition of 1 w% kappa (κ)-carrageenan and 0.5 M NaCl greatly reduced the droplet size and enhanced emulsion rigidity, and the interfacial tension of the internal phase was reduced. Benefiting from the Pickering crystals-stabilized interface by DAG as revealed by the microscopy and enhanced elastic modulus of emulsions with the gelation agents, the HIPEs demonstrated good retaining ability for anthocyanin and β-carotene. This study provides insights for the development of W/O HIPEs to fabricate low-calories margarines, spread or cosmetic creams.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links