Displaying publications 61 - 80 of 155 in total

Abstract:
Sort:
  1. Gholizadeh H, Abu Osman NA, Eshraghi A, Ali S
    Am J Phys Med Rehabil, 2014 Sep;93(9):809-23.
    PMID: 24743451 DOI: 10.1097/PHM.0000000000000094
    The purpose of this study was to find the scientific evidence pertaining to various transfemoral suspension systems to provide selection criteria for clinicians. To this end, databases of PubMed, Web of Science, and ScienceDirect were explored. The following key words, as well as their combinations and synonyms, were used for the search: transfemoral prosthesis, prosthetic suspension, lower limb prosthesis, above-knee prosthesis, prosthetic liner, transfemoral, and prosthetic socket. The study design, research instrument, sampling method, outcome measures, and protocols of articles were reviewed. On the basis of the selection criteria, 16 articles (11 prospective studies and 5 surveys) were reviewed. The main causes of reluctance to prosthesis, aside from energy expenditure, were socket-related problems such as discomfort, perspiration, and skin problems. Osseointegration was a suspension option, yet it is rarely applied because of several drawbacks, such as extended rehabilitation process, risk for fracture, and infection along with excessive cost. In conclusion, no clinical evidence was found as a "standard" system of suspension and socket design for all transfemoral amputees. However, among various suspension systems for transfemoral amputees, the soft insert or double socket was favored by most users in terms of function and comfort.
  2. Mortaza N, Abu Osman NA, Mehdikhani N
    Eur J Phys Rehabil Med, 2014 Dec;50(6):677-91.
    PMID: 24831570
    Fall is a common and a major cause of injuries. It is important to find elderlies who are prone to falls. The majority of serious falls occur during walking among the older adults. Analyzing the spatio-temporal parameters of walking is an easy way of assessment in the clinical setting, but is it capable of distinguishing a faller from a non-faller elderly? Through a systematic review of the literature, the objective of this systematic review was to identify and summarize the differences in the spatio-temporal parameters of walking in elderly fallers and non-fallers and to find out if these parameters are capable of distinguishing a faller from a non-faller. All original research articles which compared any special or temporal walking parameters in faller and non-faller elderlies were systematically searched within the Scopus and Embase databases. Effect size analysis was also done to standardize findings and compare the gait parameters of fallers and non-fallers across the selected studies. The electronic search led to 5381 articles. After title and abstract screening 30 articles were chosen; further assessment of the full texts led to 17 eligible articles for inclusion in the review. It seems that temporal measurements are more sensitive to the detection of risk of fall in elderly people. The results of the 17 selected studies showed that fallers have a tendency toward a slower walking speed and cadence, longer stride time, and double support duration. Also, fallers showed shorter stride and step length, wider step width and more variability in spatio-temporal parameters of gait. According to the effect size analysis, step length, gait speed, stride length and stance time variability were respectively more capable of differentiating faller from non-faller elderlies. However, because of the difference of methodology and number of studies which investigated each parameter, these results are prone to imprecision. Spatio-temporal analysis of level walking is not sufficient and cannot act as a reliable predictor of falls in elderly individuals.
  3. El-Sayed AM, Hamzaid NA, Abu Osman NA
    Sensors (Basel), 2014;14(12):23724-41.
    PMID: 25513823 DOI: 10.3390/s141223724
    Alternative sensory systems for the development of prosthetic knees are being increasingly highlighted nowadays, due to the rapid advancements in the field of lower limb prosthetics. This study presents the use of piezoelectric bimorphs as in-socket sensors for transfemoral amputees. An Instron machine was used in the calibration procedure and the corresponding output data were further analyzed to determine the static and dynamic characteristics of the piezoelectric bimorph. The piezoelectric bimorph showed appropriate static operating range, repeatability, hysteresis, and frequency response for application in lower prosthesis, with a force range of 0-100 N. To further validate this finding, an experiment was conducted with a single transfemoral amputee subject to measure the stump/socket pressure using the piezoelectric bimorph embedded inside the socket. The results showed that a maximum interface pressure of about 27 kPa occurred at the anterior proximal site compared to the anterior distal and posterior sites, consistent with values published in other studies. This paper highlighted the capacity of piezoelectric bimorphs to perform as in-socket sensors for transfemoral amputees. However, further experiments are recommended to be conducted with different amputees with different socket types.
  4. Ataollahi Oshkour A, Pramanik S, Shirazi SF, Mehrali M, Yau YH, Abu Osman NA
    ScientificWorldJournal, 2014;2014:616804.
    PMID: 25538954 DOI: 10.1155/2014/616804
    This study investigated the impact of calcium silicate (CS) content on composition, compressive mechanical properties, and hardness of CS cermets with Ti-55Ni and Ti-6Al-4V alloys sintered at 1200°C. The powder metallurgy route was exploited to prepare the cermets. New phases of materials of Ni16Ti6Si7, CaTiO3, and Ni31Si12 appeared in cermet of Ti-55Ni with CS and in cermet of Ti-6Al-4V with CS, the new phases Ti5Si3, Ti2O, and CaTiO3, which were emerged during sintering at different CS content (wt%). The minimum shrinkage and density were observed in both groups of cermets for the 50 and 100 wt% CS content, respectively. The cermets with 40 wt% of CS had minimum compressive Young's modulus. The minimum of compressive strength and strain percentage at maximum load were revealed in cermets with 50 and 40 wt% of CS with Ti-55Ni and Ti-6Al-4V cermets, respectively. The cermets with 80 and 90 wt% of CS showed more plasticity than the pure CS. It concluded that the composition and mechanical properties of sintered cermets of Ti-55Ni and Ti-6Al-4V with CS significantly depend on the CS content in raw cermet materials. Thus, the different mechanical properties of the cermets can be used as potential materials for different hard tissues replacements.
  5. Jusman Y, Ng SC, Abu Osman NA
    ScientificWorldJournal, 2014;2014:289817.
    PMID: 25610902 DOI: 10.1155/2014/289817
    This paper investigated the effects of critical-point drying (CPD) and hexamethyldisilazane (HMDS) sample preparation techniques for cervical cells on field emission scanning electron microscopy and energy dispersive X-ray (FE-SEM/EDX). We investigated the visualization of cervical cell image and elemental distribution on the cervical cell for two techniques of sample preparation. Using FE-SEM/EDX, the cervical cell images are captured and the cell element compositions are extracted for both sample preparation techniques. Cervical cell image quality, elemental composition, and processing time are considered for comparison of performances. Qualitatively, FE-SEM image based on HMDS preparation technique has better image quality than CPD technique in terms of degree of spread cell on the specimen and morphologic signs of cell deteriorations (i.e., existence of plate and pellet drying artifacts and membrane blebs). Quantitatively, with mapping and line scanning EDX analysis, carbon and oxygen element compositions in HMDS technique were higher than the CPD technique in terms of weight percentages. The HMDS technique has shorter processing time than the CPD technique. The results indicate that FE-SEM imaging, elemental composition, and processing time for sample preparation with the HMDS technique were better than CPD technique for cervical cell preparation technique for developing computer-aided screening system.
  6. Oshkour AA, Talebi H, Shirazi SF, Bayat M, Yau YH, Tarlochan F, et al.
    ScientificWorldJournal, 2014;2014:807621.
    PMID: 25302331 DOI: 10.1155/2014/807621
    This study is focused on finite element analysis of a model comprising femur into which a femoral component of a total hip replacement was implanted. The considered prosthesis is fabricated from a functionally graded material (FGM) comprising a layer of a titanium alloy bonded to a layer of hydroxyapatite. The elastic modulus of the FGM was adjusted in the radial, longitudinal, and longitudinal-radial directions by altering the volume fraction gradient exponent. Four cases were studied, involving two different methods of anchoring the prosthesis to the spongy bone and two cases of applied loading. The results revealed that the FG prostheses provoked more SED to the bone. The FG prostheses carried less stress, while more stress was induced to the bone and cement. Meanwhile, less shear interface stress was stimulated to the prosthesis-bone interface in the noncemented FG prostheses. The cement-bone interface carried more stress compared to the prosthesis-cement interface. Stair climbing induced more harmful effects to the implanted femur components compared to the normal walking by causing more stress. Therefore, stress shielding, developed stresses, and interface stresses in the THR components could be adjusted through the controlling stiffness of the FG prosthesis by managing volume fraction gradient exponent.
  7. Khalaj N, Abu Osman NA, Mokhtar AH, George J, Abas WA
    ScientificWorldJournal, 2014;2014:815184.
    PMID: 25136689 DOI: 10.1155/2014/815184
    Knee osteoarthritis is a common cause of disability which influences the quality of life. It is associated with impaired knee joint proprioception, which affects postural stability. Postural stability is critical for mobility and physical activities. Different types of treatment including nonsurgical and surgical are used for knee osteoarthritis. Hyaluronic acid injection is a nonsurgical popular treatment used worldwide. The aim of this study was to demonstrate the effect of hyaluronic acid injections on postural stability in individuals with bilateral knee osteoarthritis. Fifty patients aged between 50 and 70 years with mild and moderate bilateral knee osteoarthritis participated in our study. They were categorized into treatment (n = 25) and control (n = 25) groups. The treatment group received five weekly hyaluronic acid injections for both knees, whereas the control group did not receive any treatment. Postural stability and fall risk were assessed using the Biodex Stability System and clinical "Timed Up and Go" test. All the participants completed the study. The treatment group showed significant decrease in postural stability and fall risk scores after five hyaluronic acid injections. In contrast, the control group showed significant increase. This study illustrated that five intra-articular hyaluronic acid injections could significantly improve postural stability and fall risk in bilateral knee osteoarthritis patients. This trial is registered with: NCT02063373.
  8. Razak NA, Osman NA, Gholizadeh H, Ali S
    Biomed Eng Online, 2014;13:108.
    PMID: 25085005 DOI: 10.1186/1475-925X-13-108
    The interface pressure between the residual limb and prosthetic socket has a significant effect on an amputee's satisfaction and comfort. This paper presents the design and performance of a new prosthetic socket that uses an air splint system.
  9. Tripathy A, Pramanik S, Cho J, Santhosh J, Osman NA
    Sensors (Basel), 2014;14(9):16343-422.
    PMID: 25256110 DOI: 10.3390/s140916343
    The humidity sensing characteristics of different sensing materials are important properties in order to monitor different products or events in a wide range of industrial sectors, research and development laboratories as well as daily life. The primary aim of this study is to compare the sensing characteristics, including impedance or resistance, capacitance, hysteresis, recovery and response times, and stability with respect to relative humidity, frequency, and temperature, of different materials. Various materials, including ceramics, semiconductors, and polymers, used for sensing relative humidity have been reviewed. Correlations of the different electrical characteristics of different doped sensor materials as the most unique feature of a material have been noted. The electrical properties of different sensor materials are found to change significantly with the morphological changes, doping concentration of different materials and film thickness of the substrate. Various applications and scopes are pointed out in the review article. We extensively reviewed almost all main kinds of relative humidity sensors and how their electrical characteristics vary with different doping concentrations, film thickness and basic sensing materials. Based on statistical tests, the zinc oxide-based sensing material is best for humidity sensor design since it shows extremely low hysteresis loss, minimum response and recovery times and excellent stability.
  10. Ali S, Abu Osman NA, Arifin N, Gholizadeh H, Abd Razak NA, Abas WA
    ScientificWorldJournal, 2014;2014:769810.
    PMID: 25184154 DOI: 10.1155/2014/769810
    This study aimed to compare the effect of satisfaction and perceived problems between Pelite, Dermo with shuttle lock, and Seal-In X5 liners on the transtibial amputees.
  11. Jusman Y, Ng SC, Abu Osman NA
    ScientificWorldJournal, 2014;2014:810368.
    PMID: 24955419 DOI: 10.1155/2014/810368
    Advent of medical image digitalization leads to image processing and computer-aided diagnosis systems in numerous clinical applications. These technologies could be used to automatically diagnose patient or serve as second opinion to pathologists. This paper briefly reviews cervical screening techniques, advantages, and disadvantages. The digital data of the screening techniques are used as data for the computer screening system as replaced in the expert analysis. Four stages of the computer system are enhancement, features extraction, feature selection, and classification reviewed in detail. The computer system based on cytology data and electromagnetic spectra data achieved better accuracy than other data.
  12. Pirouzi G, Abu Osman NA, Oshkour AA, Ali S, Gholizadeh H, Abas WA
    Sensors (Basel), 2014;14(9):16754-65.
    PMID: 25207872 DOI: 10.3390/s140916754
    The suspension system and socket fitting of artificial limbs have major roles and vital effects on the comfort, mobility, and satisfaction of amputees. This paper introduces a new pneumatic suspension system that overcomes the drawbacks of current suspension systems in donning and doffing, change in volume during daily activities, and pressure distribution in the socket-stump interface. An air pneumatic suspension system (APSS) for total-contact sockets was designed and developed. Pistoning and pressure distribution in the socket-stump interface were tested for the new APSS. More than 95% of the area between each prosthetic socket and liner was measured using a Tekscan F-Scan pressure measurement which has developed matrix-based pressure sensing systems. The variance in pressure around the stump was 8.76 kPa. APSS exhibits less pressure concentration around the stump, improved pressure distribution, easy donning and doffing, adjustability to remain fitted to the socket during daily activities, and more adaptability to the changes in stump volume. The volume changes were adjusted by utility of air pressure sensor. The vertical displacement point and reliability of suspension were assessed using a photographic method. The optimum pressure in every level of loading weight was 55 kPa, and the maximum displacement was 6 mm when 90 N of weight was loaded.
  13. Mehrali M, Moghaddam E, Seyed Shirazi SF, Baradaran S, Mehrali M, Latibari ST, et al.
    PLoS One, 2014;9(9):e106802.
    PMID: 25229540 DOI: 10.1371/journal.pone.0106802
    Calcium silicate (CaSiO3, CS) ceramic composites reinforced with graphene nanoplatelets (GNP) were prepared using hot isostatic pressing (HIP) at 1150°C. Quantitative microstructural analysis suggests that GNP play a role in grain size and is responsible for the improved densification. Raman spectroscopy and scanning electron microscopy showed that GNP survived the harsh processing conditions of the selected HIP processing parameters. The uniform distribution of 1 wt.% GNP in the CS matrix, high densification and fine CS grain size help to improve the fracture toughness by ∼130%, hardness by ∼30% and brittleness index by ∼40% as compared to the CS matrix without GNP. The toughening mechanisms, such as crack bridging, pull-out, branching and deflection induced by GNP are observed and discussed. The GNP/CS composites exhibit good apatite-forming ability in the simulated body fluid (SBF). Our results indicate that the addition of GNP decreased pH value in SBF. Effect of addition of GNP on early adhesion and proliferation of human osteoblast cells (hFOB) was measured in vitro. The GNP/CS composites showed good biocompatibility and promoted cell viability and cell proliferation. The results indicated that the cell viability and proliferation are affected by time and concentration of GNP in the CS matrix.
  14. Farzadi A, Solati-Hashjin M, Asadi-Eydivand M, Abu Osman NA
    PLoS One, 2014;9(9):e108252.
    PMID: 25233468 DOI: 10.1371/journal.pone.0108252
    Powder-based inkjet 3D printing method is one of the most attractive solid free form techniques. It involves a sequential layering process through which 3D porous scaffolds can be directly produced from computer-generated models. 3D printed products' quality are controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The printed scaffolds of 0.8 mm pore size, with different layer thickness and printing orientation, were subjected to the depowdering step. The effects of four layer thicknesses and printing orientations, (parallel to X, Y and Z), on the physical and mechanical properties of printed scaffolds were investigated. It was observed that the compressive strength, toughness and Young's modulus of samples with 0.1125 and 0.125 mm layer thickness were more than others. Furthermore, the results of SEM and μCT analyses showed that samples with 0.1125 mm layer thickness printed in X direction have more dimensional accuracy and significantly close to CAD software based designs with predefined pore size, porosity and pore interconnectivity.
  15. Arifin N, Abu Osman NA, Ali S, Gholizadeh H, Abas WA
    ScientificWorldJournal, 2014;2014:856279.
    PMID: 25003155 DOI: 10.1155/2014/856279
    This study aimed to evaluate the effects of prosthetic foot types on the postural stability among transtibial amputees when standing on different support surfaces.
  16. Gholizadeh H, Osman NA, Eshraghi A, Abd Razak NA
    Biomed Eng Online, 2014;13:89.
    PMID: 24981801 DOI: 10.1186/1475-925X-13-89
    Prosthesis suspension systems can alter the distribution of pressure within the prosthetic socket. This study evaluates a new suspension system for lower limb prostheses, and aims to compare the interface pressure and amputees' satisfaction with the new system compared with a common prosthetic suspension system (pin/lock).
  17. El-Sayed AM, Hamzaid NA, Abu Osman NA
    ScientificWorldJournal, 2014;2014:297431.
    PMID: 25110727 DOI: 10.1155/2014/297431
    Several studies have presented technological ensembles of active knee systems for transfemoral prosthesis. Other studies have examined the amputees' gait performance while wearing a specific active prosthesis. This paper combined both insights, that is, a technical examination of the components used, with an evaluation of how these improved the gait of respective users. This study aims to offer a quantitative understanding of the potential enhancement derived from strategic integration of core elements in developing an effective device. The study systematically discussed the current technology in active transfemoral prosthesis with respect to its functional walking performance amongst above-knee amputee users, to evaluate the system's efficacy in producing close-to-normal user performance. The performances of its actuator, sensory system, and control technique that are incorporated in each reported system were evaluated separately and numerical comparisons were conducted based on the percentage of amputees' gait deviation from normal gait profile points. The results identified particular components that contributed closest to normal gait parameters. However, the conclusion is limitedly extendable due to the small number of studies. Thus, more clinical validation of the active prosthetic knee technology is needed to better understand the extent of contribution of each component to the most functional development.
  18. Pirouzi G, Abu Osman NA, Eshraghi A, Ali S, Gholizadeh H, Wan Abas WA
    ScientificWorldJournal, 2014;2014:849073.
    PMID: 25197716 DOI: 10.1155/2014/849073
    Socket is an important part of every prosthetic limb as an interface between the residual limb and prosthetic components. Biomechanics of socket-residual limb interface, especially the pressure and force distribution, have effect on patient satisfaction and function. This paper aimed to review and evaluate studies conducted in the last decades on the design of socket, in-socket interface pressure measurement, and socket biomechanics. Literature was searched to find related keywords with transtibial amputation, socket-residual limb interface, socket measurement, socket design, modeling, computational modeling, and suspension system. In accordance with the selection criteria, 19 articles were selected for further analysis. It was revealed that pressure and stress have been studied in the last decaeds, but quantitative evaluations remain inapplicable in clinical settings. This study also illustrates prevailing systems, which may facilitate improvements in socket design for improved quality of life for individuals ambulating with transtibial prosthesis. It is hoped that the review will better facilitate the understanding and determine the clinical relevance of quantitative evaluations.
  19. Gholizadeh H, Abu Osman NA, Eshraghi A, Ali S
    PLoS One, 2014;9(5):e94520.
    PMID: 24827560 DOI: 10.1371/journal.pone.0094520
    The suction sockets that are commonly prescribed for transtibial amputees are believed to provide a better suspension than the pin/lock systems. Nevertheless, their effect on amputees' gait performance has not yet been fully investigated. The main intention of this study was to understand the potential effects of the Seal-in (suction) and the Dermo (pin/lock) suspension systems on amputees' gait performance.
  20. Khalaj N, Abu Osman NA, Mokhtar AH, Mehdikhani M, Wan Abas WA
    PLoS One, 2014;9(3):e92270.
    PMID: 24642715 DOI: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC39584
    Balance is essential for mobility and performing activities of daily living. People with knee osteoarthritis display impairment in knee joint proprioception. Thus, the aim of this study was to evaluate balance and risk of fall in individuals with bilateral mild and moderate knee osteoarthritis. Sixty subjects aged between 50 and 70 years volunteered in this study. They were categorized into three groups which were healthy (n = 20), mild (n = 20) and moderate (n = 20) bilateral knee osteoarthritis groups. Dynamic and static balance and risk of fall were assessed using Biodex Stability System. In addition, Timed Up and Go test was used as a clinical test for balance. Results of this study illustrated that there were significant differences in balance (dynamic and static) and risk of fall between three groups. In addition, the main (most significant) difference was found to be between healthy group and moderate group. Furthermore, on clinical scoring of balance, the "Timed Up and Go" test, all three groups showed significant difference. In conclusion, bilateral knee osteoarthritis impaired the balance and increased the risk of fall, particularly in people with moderate knee osteoarthritis.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links