Displaying publications 61 - 80 of 93 in total

Abstract:
Sort:
  1. Shuid AN, Ima Nirwana S, Das S
    Curr Drug Targets, 2013 Dec;14(14):1631.
    PMID: 24383964
  2. Rufus P, Mohamed N, Shuid AN
    Curr Drug Targets, 2013 Dec;14(14):1689-93.
    PMID: 24354584
    Osteoporosis is a metabolic bone disorder that affects both men and women worldwide. It causes low bone mass and therefore increases bone susceptibility to fracture when bone undergoes a minor trauma. Lack of estrogen is the principal cause of osteoporosis. Estrogen, calcium, calcitonin, vitamin D and several antioxidants help in the prevention of osteoporosis. In order to effectively treat osteoporosis, there has been an extended research on the biological activities of traditional medicines since synthetic medicines possess several side effects that reduce their efficacy. Therefore, there is a need to develop new treatment alternatives for osteoporosis. This review centres on the scientific researches carried out on the evaluation of Chinese traditional medicines in the treatment of osteoporosis. Various plants like Achyranthes bidentata, Davallia formosana, polygonatum sibiricum, Cibotium barometz, Er-Zhi-Wan, Curculigo orchioides and a combined treatment of Hachimi-jio-gan (Ba-Wei-Di-Huang-Wan) with alendronate proved active in preventing post-menopausal osteoporosis.
  3. Abdul Jalil MA, Shuid AN, Muhammad N
    Curr Drug Targets, 2013 Dec;14(14):1651-8.
    PMID: 24354586
    With improvements in living standards and healthcare, life expectancy has been increasing dramatically in most parts of the world. These situations lead to the increase in the reported cases of geriatrics-related diseases such as hypogonadal osteoporosis with skeletal fracture being the ultimate outcome, which eventually causes significant morbidity and mortality. The deficient gonadal hormones, which are the main cause of hypogonadal osteoporosis, could be substituted with hormone replacement therapy to hinder bone loss. However, the artificial hormonal therapy has been linked to grievous conditions such as breast and prostate cancers. In view of the various adverse effects associated with conventional treatment, many researchers are now focusing on finding alternative remedies from nature. This article explores the possibilities of certain medicinal plants native to Malaysia that possess androgenic and antioxidant properties to potentially be used in the treatment of fracture due to osteoporosis in ageing people.
  4. Ibrahim N', Mohamad S, Mohamed N, Shuid AN
    Curr Drug Targets, 2013 Dec;14(14):1642-50.
    PMID: 24350807
    Osteoporosis may cause bone fracture even under slight trauma. Osteoporotic fracture has become a major public health problem but until today, the treatments available are not satisfactory. Many pre-clinical testings on animals were done to find new agents that can be sourced from natural products and synthetic drugs for osteoporotic fracture healing. Animal models are more appropriate for fracture healing study than human subject due to several reasons including the ethical issues involved. The bones of rodents are similar to human in term of their morphological change and response to therapy. Small rodents such as rats and mice are suitable animal models for fracture healing studies as they have a similar bone remodeling system to human. To date, there is no specific guideline to carry out fracture healing studies in animal models for the evaluation of new agents. This paper highlights the protocols of various fracture and fixation methods for experimental osteoporotic fracture healing using rodent models.
  5. Shuid AN, Ibrahim N', Mohd Amin MC, Mohamed IN
    Curr Drug Targets, 2013 Dec;14(13):1558-64.
    PMID: 24200294
    Anti-osteoporotic drugs are available for treatment of osteoporosis and for preventing osteoporosis complications especially fractures. Most of the current anti-osteoporotic drugs are administered orally or parenterally to target the osteoporosis-affected bones. However, bone is a peripheral organ with limited blood supply. Therefore, the drugs delivered are exposed to various physicochemical and biological factors which affect the bioavailability of the drugs. In preclinical research, the dose of a potential anti-osteoporotic agent used in animal model may be too high for human application when administered via the conventional route of administration. The current anti-osteoporotic drugs need to be administered at higher doses to account for pharmacological interactions. However, this will expose the patients to adverse effects such as the cancer risks of postmenopausal women who took estrogen replacement therapy. There is also problem with patient compliance as anti-osteoporotic drugs may have to be taken for prolonged duration. The current deliveries of drugs need to be improved to overcome these problems. This review discussed several potential drug delivery systems which are able to contain the anti-osteoporosis drugs and release them slowly to the targeted bone. Among them are various carriers, polymers and microsponges, which may not only increase drug efficacy but also reduce adverse effects. The delivery systems allow the drugs to be administered locally at the targeted bone for longer duration, therefore reducing drug frequency and improving patient's compliance. It is hoped that these delivery systems may be applicable for the treatment of osteoporosis in the future to keep tab of the rising osteoporotic fracture incidence.
  6. Ibrahim N', Mohamed N, Shuid AN
    Curr Drug Targets, 2013 Dec;14(13):1524-32.
    PMID: 23876090
    Fracture healing is a process of recovering injured bone tissue forms and functions. Osteoporosis can delay the healing process, which contributes to personal suffering and loss of activities. Osteoporosis patients tend to lose bone mass at the metaphyseal region which require treatment to increase bone mass. Postmenopausal osteoporosis is the most common osteoporosis that occurs in women which subsequently resulted in fractures even under slight trauma. Estrogen Replacement Therapy (ERT), the recommended therapy for postmenopausal osteoporosis, is associated with higher risk of breast cancer, ovarian cancer and cardiovascular diseases. As osteoporotic fractures are becoming a public health issue, alternative treatment is now being thoroughly explored. The potential agent is statins, the HMG-CoA reductase inhibitor which is widely used for hypercholesterolemia treatment. Statins have been found to increase bone mass by stimulation of Bone morphogenetic protein-2 (BMP-2) expression and Vascular Endothelial Growth Factor (VEGF) production. However, these bone forming effects were achieved at very high systemic doses. Therefore, studies on locally applied statins are required to further explore the ability of statins to stimulate bone formation at acceptable doses for better fracture healing. This review highlights the animal and clinical studies on fracture healing promotions by statins and the mechanisms involved.
  7. Mohd Fozi NF, Mazlan M, Shuid AN, Isa Naina M
    Curr Drug Targets, 2013 Dec;14(14):1659-66.
    PMID: 24093748
    Osteoporosis is a progressive disease of the skeleton characterised by bone fragility due to a reduction in bone mass and possibly to alteration in bone architecture that lead to a propensity to fracture with minimum trauma. Most osteoporotic fractures occur at locations rich in trabecular or cancellous bone and usually related to post menopausal women. Recently, silymarin received attention due to its alternative beneficial effect on bone formation. It is a mixture of flavonoids with powerful antioxidant properties. This review focuses on the use of milk thistle or silymarin for the treatment of osteoporosis that may be related to fracture bone. Silymarin shows potent antioxidant herb that may modulate multiple genes in favour of helping to build bone and prevent bone loss. In the mouse fracture healing model, silymarin supplementation improved tibial healing with elevated BMD and serum levels of ALP and osteocalcin. Silymarin also demonstrated clear estrogenic antiosteoporotic effects in bone structure. Silymarin appears to play a crucial role to prevent bone loss and might regulate osteogenesis and may be beneficial for fracture healing. If silymarin is considered for the use of post menopausal women, it may be used for the treatment of osteoporosis. It would be of great benefit to postmenopausal women to develop an oestrogen antagonist that is as potent and efficacious as oestrogen in preventing bone loss without the major side effect associated with HRT.
  8. Shuid AN, Mohamed IN
    Curr Drug Targets, 2013 Dec;14(13):1565-78.
    PMID: 24200293
    This review explores the effects of pomegranate on the pathogenesis of bone loss in osteoporosis, osteoarthritis and rheumatoid arthritis. A systematic review of the literature was conducted to identify the relevant studies on pomegranate and osteoporosis/osteoarthritis/rheumatoid arthritis. A comprehensive search was conducted in Medline and CINAHL for relevant studies published between the years 1946 to 2012. The main inclusion criteria were research articles published in English, studies had to report the association or effect of pomegranate and these bone and joint diseases: osteoporosis, osteoarthritis or rheumatoid arthritis. The literature search identified 35 potentially relevant articles, whereby 8 met the inclusion criteria. Two animal studies, two combinations of animal and in vitro studies, three in vitro studies and one human study were included in this review. All the studies reported positive effects of pomegranate extract or juice on osteoporosis, osteoarthritis and rheumatoid arthritis. This evidence-based review highlighted the potential of pomegranate extract being used for treating bone loss in osteoporosis, osteoarthritis and rheumatoid arthritis. Further studies are required to identify the active ingredients and molecular mechanisms before controlled human observational studies are conducted to provide stronger evidence.
  9. Effendy NM, Khamis MF, Shuid AN
    Curr Drug Targets, 2013 Dec;14(13):1542-51.
    PMID: 24010967
    Bone quality assessment is important in assessments of potential agents for the prevention and treatment of osteoporosis. Bone density, microarchitecture and strength are important determinants in osteoporotic study which are widely studied using Dual-Energy X-ray Absorptiometry (DXA), histomorphometry and radiological imaging techniques. In recent years, high resolution micro-CT has become feasible for in vitro or in vivo evaluation of bone architecture. Three-dimensional images of micro-CT reflected high correlations with the conventional histomorphometry and DXA. In comparison to other imaging techniques, micro-CT is the most effective tool in detecting early bone changes for fracture prediction and assessments of potential anti-osteoporotic agents. It is crucial to define an ideal setting with safe radiation doses and appropriate methods for image reconstruction and segmentation to obtain high resolution images. Micro-CT evaluation provides a better insight of bone structure as well as non-metric parameters such as connectivity density, structural model index (SMI) and degree of anisotropy (DA). This non- invasive imaging technique is also equipped with finite element analysis for evaluation of bone biomechanical strength. Micro-CT allows a compressive understanding of the relationships between bone density, microarchitecture and strength which is fundamental to development of pharmacological interventions.
  10. Mohd Ramli ES, Suhaimi F, Ahmad F, Shuid AN, Mohamad N, Ima-Nirwana S
    Curr Drug Targets, 2013 Dec;14(14):1675-82.
    PMID: 24107234
    Osteoporosis is a major global health problem. Osteoporosis is characterized by the loss of bone mass and strength which leads to an increased risk of fracture. Glucocorticoid treatment is the leading cause of secondary osteoporosis. Glucocorticoid action in bone depends upon the expression of 11beta-hydroxysteroid dehydrogenase type 1 enzyme (11β-HSD1). The oestrogen deficient state causes osteoporosis due to enhancement of osteoclastogenesis by oxidative stress which leads to increased bone resorption. Piper sarmentosum (Daun Kaduk) is commonly used in the local cuisine of South East Asia. It is also traditionally used to treat many diseases such as inflammation, dermatitis and joint pain. Studies have revealed antioxidant properties through its flavonoids compound naringenin which acts as a superoxide scavenger that may help in the endogenous antioxidant defence system to protect bone against osteoporosis. Recent studies found that Ps extract has the ability to inhibit the expression and activity of 11β-HSD1 in adipose tissue and bone which restored bone structure and strength. It also accelerates fracture healing in the oestrogen deficient state through its antioxidant properties. The cost of conventional treatment is high and together with the adverse effects it leads to noncompliance. Treatment modalities with herbal medicine, less side effects and is cheaper need to be explored.This review focused on the therapeutic effect of Ps extract on fracture healing in ovariectomized rats and its protective effects against glucocorticoid induced osteoporotic rats.
  11. Ei Thu H, Hussain Z, Shuid AN
    Curr Drug Targets, 2018;19(8):865-876.
    PMID: 27894237 DOI: 10.2174/1389450117666161125174625
    Psychotic disorders are recognized as severe mental disorders that rigorously affect patient's personality, critical thinking, and perceptional ability. High prevalence, global dissemination and limitations of conventional pharmacological approaches compel a significant burden to the patient, medical professionals and the healthcare system. To date, numerous orally administered therapies are available for the management of depressive disorders, schizophrenia, anxiety, bipolar disorders and autism spectrum problems. However, poor water solubility, erratic oral absorption, extensive first-pass metabolism, low oral bioavailability and short half-lives are the major factors which limit the pharmaceutical significance and therapeutic feasibility of these agents. In recent decades, nanotechnology-based delivery systems have gained remarkable attention of the researchers to mitigate the pharmaceutical issues related to the antipsychotic therapies and to optimize their oral drug delivery, therapeutic outcomes, and patient compliance. Therefore, the present review was aimed to summarize the available in vitro and in vivo evidences signifying the pharmaceutical importance of the advanced delivery systems in improving the aqueous solubility, transmembrane permeability, oral bioavailability and therapeutic outcome of the antipsychotic agents.
  12. Thu HE, Hussain Z, Mohamed IN, Shuid AN
    Curr Drug Targets, 2018;19(10):1109-1126.
    PMID: 28721818 DOI: 10.2174/1389450118666170718151913
    BACKGROUND: Eurycoma longifolia is a well-documented herbal medicine that has gained widespread recognition due to its versatile pharmacological activities including anticancer, antimalarial, antimicrobial, antioxidant, aphrodisiac, anti-inflammatory, anxiolytic, anti-diabetic, antirheumatism and anti-ulcer. Plethora of in vitro and in vivo studies evidenced their excellent antiproliferative and anticancer efficacy against various types of human cancers.

    OBJECTIVE: This review was aimed to critically analyze the therapeutic viability and anticancer efficacy of Eurycoma longifolia in the treatment of cancer and also to propose its molecular and translational mechanism of cytotoxicity against cancerous cells.

    RESULTS: Among a range of medicinally active compounds isolated from various parts (roots, stem, bark and leaves) of Eurycoma longifolia, 16 compounds have shown promising anti-proliferative and anticancer efficacies. Eurycomanone, one of the most active medicinal compounds of Eurycoma longifolia, displayed a strong dose-dependent anticancer efficacy against lung carcinoma (A-549 cells) and breast cancer (MCF-7 cells); however, showed moderate efficacy against gastric (MGC-803 cells) and intestinal carcinomas (HT-29 cells). The prime mode of cytotoxicity of Eurycoma longifolia and its medicinal compounds is the induction of apoptosis (programmed cell death) via the up-regulation of the expression of p53 (tumor suppressor protein) and pro-apoptotic protein (Bax) and downregulation of the expression of anti-apoptotic protein (Bcl-2). A remarkable alleviation in the mRNA expression of various cancer-associated biomarkers including heterogeneous nuclear ribonucleoprotein (hnRNP), prohibitin (PHB), annexin-1 (ANX1) and endoplasmic reticulum protein-28 (ERp28) has also been evidenced.

    CONCLUSION: Eurycoma longifolia and its medicinal constituents exhibit promising anticancer efficacy and thus can be considered as potential complementary therapy for the treatment of various types of human cancers.

  13. Hussain Z, Thu HE, Shuid AN, Katas H, Hussain F
    Curr Drug Targets, 2018;19(5):527-550.
    PMID: 28676002 DOI: 10.2174/1389450118666170704132523
    BACKGROUND: Diabetic foot ulcers (DFUs) are the chronic, non-healing complications of diabetic mellitus which compels a significant burden to the patients and the healthcare system. Peripheral vascular disease, diabetic neuropathy, and abnormal cellular and cytokine/chemokine activity are among the prime players which exacerbate the severity and prevent wound repair. Unlike acute wounds, DFUs impose a substantial challenge to the conventional wound dressings and demand the development of novel and advanced wound healing modalities. In general, an ideal wound dressing should provide a moist wound environment, offer protection from secondary infections, eliminate wound exudate and stimulate tissue regeneration.

    OBJECTIVE: To date, numerous conventional wound dressings are employed for the management of DFUs but there is a lack of absolute and versatile choice. The current review was therefore aimed to summarize and critically discuss the available evidences related to pharmaceutical and therapeutic viability of polymer-based dressings for the treatment of DFUs.

    RESULTS: A versatile range of naturally-originated polymers including chitosan (CS), hyaluronic acid (HA), cellulose, alginate, dextran, collagen, gelatin, elastin, fibrin and silk fibroin have been utilized for the treatment of DFUs. These polymers have been used in the form of hydrogels, films, hydrocolloids, foams, membranes, scaffolds, microparticles, and nanoparticles. Moreover, the wound healing viability and clinical applicability of various mutually modified, semi-synthetic or synthetic polymers have also been critically discussed.

    CONCLUSION: In summary, this review enlightens the most recent developments in polymer-based wound dressings with special emphasis on advanced polymeric biomaterials, innovative therapeutic strategies and delivery approaches for the treatment of DFUs.

  14. Hairi HA, Shuid AN, Ibrahim N', Jamal JA, Mohamed N, Mohamed IN
    Curr Drug Targets, 2019;20(2):192-200.
    PMID: 28814228 DOI: 10.2174/1389450118666170816123740
    BACKGROUND: Phytoestrogens have recently been claimed to positively influence menopausal discomforts, including hot flashes. However, little is known about the influence of phytoestrogens on core body temperature during oestrogen fluctuation at menopause.

    OBJECTIVE: Previously published findings showed that phytoestrogens could relieve menopausal complaints, thus, the present review was aimed at assessing the effects of phytoestrogens on thermoregulatory mechanism during menopausal transition.

    RESULTS: The molecular mechanisms underlying hot flashes are complex. Oestrogen fluctuations cause hypothalamic thermoregulatory centre dysfunction, which leads to hot flashes during menopause. The phytoestrogens of interest, in relation to human health, include isoflavones, lignans, coumestans, and stilbenes, which are widely distributed in nature. The phytoestrogens are capable of reducing hot flashes via their oestrogen-like hormone actions. The potential effects of phytoestrogens on hot flashes and their molecular mechanisms of action on thermoregulatory centre are discussed in this review.

    CONCLUSION: The effects of phytoestrogens on these mechanisms may help explain their beneficial effects in alleviating hot flashes and other menopausal discomforts.

  15. Mohamed N, Muhammad N, Shuid AN, Soelaiman IN
    Curr Drug Targets, 2018;19(12):1424-1430.
    PMID: 28950810 DOI: 10.2174/1389450118666170925154428
    Nicotine is one of the most abused substances worldwide and can cause several harmful effects on health. One of the harmful effects, which is often ignored, is osteoporosis. Smoking has been shown to cause a decrease in bone mineral density in humans. Animal studies have proven that nicotine exerts negative effects on bone. The number of people who smoke increases each day. Those who smoke start at a very young age and they usually smoke for years. This will increase the risk of developing osteoporosis. As the prevalence of osteoporosis increases, the risk of fractures also increases. The major concerns are disability following fractures, mortality due to complications after fractures and the increasing cost of management and therapy. This paper will review the effects of nicotine on bone and the potential natural products which can be used as treatment for nicotine-induced osteoporosis.
  16. Thu HE, Hussain Z, Mohamed IN, Shuid AN
    Curr Drug Targets, 2018;19(14):1657-1671.
    PMID: 29468964 DOI: 10.2174/1389450119666180219123815
    BACKGROUND: Eurycoma longifolia (E. longifolia) has gained widespread recognition due to its versatile pharmacological activities including aphrodisiac, anticancer, antimicrobial, antioxidant, anti-inflammatory, anxiolytic, anti-diabetic, ergogenic, insecticidal, anti-rheumatism, bone protection, and anti-ulcer effects.

    OBJECTIVE: This review was aimed to critically overview the literature and summarizes the antibacterial, antiprotozoal, and antifungal trends of E. longifolia and its medicinally active components.

    RESULTS: Besides its well-documented safety, efficacy, and tolerability, a plethora of in vitro, in vivo, and human clinical studies has evidenced the antimicrobial efficacy of E. longifolia and its bioactive constituents. Phytochemical screening of various types of extracts (methanolic, ethyl acetate, and nbutanolic) from different parts (roots, stem, and leaves) of E. longifolia displayed a dose-dependent antibacterial, antiprotozoal, and antifungal responses. Comparative analysis revealed that the root extract of E. longifolia exhibited the highest antimicrobial efficacy compared to other parts of the plant. Bioactivity-guided fractionation identified that among all of the medicinal compounds isolated/ extracted from different parts of E. longifolia, eurycomanone displayed the strongest antibacterial, antiprotozoal and antifungal activities.

    CONCLUSION: Based on the critical analysis of the literature, we identified that E. longifolia exhibits promising antibacterial, antiprotozoal, and antifungal efficacies against various pathogenic microbes and thus can be considered as a potential complementary and alternative antimicrobial therapy.

  17. Estai MA, Suhaimi F, Das S, Shuid AN, Mohamed Z, Soelaiman IN
    Clinics (Sao Paulo), 2011;66(12):2113-9.
    PMID: 22189738
    OBJECTIVES: Previous studies have reported that osteoporosis due to estrogen deficiency influences fracture healing. Transforming growth factor (TGF-b) has been found to be involved in fracture healing via the regulation of the differentiation and activation of osteoblasts and osteoclasts. The current study aimed to determine the effects of estrogen on the expression of TGF-β1 during fracture healing in ovariectomized rats.

    METHODS: Thirty female Sprague-Dawley rats weighing 200-250 g were assigned to: (i) a sham-operated group that was given a normal saline; (ii) an ovariectomized control group that was given a normal saline; or (iii) an ovariectomized + estrogen (100 mg/kg/day) group that was treated with conjugated equine estrogen. The right femur of all rats was fractured, and a Kirschner wire was inserted six weeks post-ovariectomy. Treatment with estrogen was given for another six weeks post-fracture. At the end of the study, blood samples were taken, and the right femur was harvested and subjected to biomechanical strength testing.

    RESULTS: The percentage change in the plasma TGF-β1 level before treatment was significantly lower in the ovariectomized control and estrogen groups when compared with the sham group (p<0.001). After six weeks of treatment, the percentage change in the plasma TGF-β1 level in the estrogen group was significantly higher compared with the level in the ovariectomized control group (p = 0.001). The mean ultimate force was significantly increased in the ovariectomized rats treated with estrogen when compared with the ovariectomized control group (p = 0.02).

    CONCLUSION: These data suggest that treatment with conjugated equine estrogen enhanced the strength of the healed bone in estrogen-deficient rats by most likely inducing the expression of TGF-β1.

  18. Estai MA, Suhaimi FH, Das S, Fadzilah FM, Alhabshi SM, Shuid AN, et al.
    Clinics (Sao Paulo), 2011;66(5):865-72.
    PMID: 21789393
    INTRODUCTION: Osteoporotic fractures are common during osteoporotic states. Piper sarmentosum extract is known to possess antioxidant and anti-inflammatory properties.

    OBJECTIVES: To observe the radiological changes in fracture calluses following administration of a Piper sarmentosum extract during an estrogen-deficient state.

    METHODS: A total of 24 female Sprague-Dawley rats (200-250 g) were randomly divided into 4 groups: (i) the sham-operated group; (ii) the ovariectomized-control group; (iii) the ovariectomized + estrogen-replacement therapy (ovariectomized-control + estrogen replacement therapy) group, which was supplemented with estrogen (100 μg/kg/day); and (iv) the ovariectomized + Piper sarmentosum (ovariectomized + Piper sarmentosum) group, which was supplemented with a water-based Piper sarmentosum extract (125 mg/kg). Six weeks after an ovariectomy, the right femora were fractured at the mid-diaphysis, and a K-wire was inserted. Each group of rats received their respective treatment for 6 weeks. Following sacrifice, the right femora were subjected to radiological assessment.

    RESULTS: The mean axial callus volume was significantly higher in the ovariectomized-control group (68.2 ± 11.74 mm³) than in the sham-operated, estrogen-replacement-therapy and Piper sarmentosum groups (20.4 ± 4.05, 22.4 ± 4.14 and 17.5 ± 3.68 mm³, respectively). The median callus scores for the sham-operated, estrogen-replacement-therapy and Piper sarmentosum groups had median (range, minimum - maximum value) as 1.0 (0 - 2), 1.0 (1 - 2) and 1.0 (1 - 2), respectively, which were significantly lower than the ovariectomized-control group score of 2.0 (2 - 3). The median fracture scores for the sham-operated, estrogen-replacement-therapy and Piper sarmentosum groups were 3.0 (3 - 4), 3.0 (2 - 3) and 3.0 (2 - 3), respectively, which were significantly higher than the ovariectomized-control group score of 2.0 (1 - 2) (p<0.05).

    CONCLUSION: The Piper sarmentosum extract improved fracture healing, as assessed by the reduced callus volumes and reduced callus scores. This extract is beneficial for fractures in osteoporotic states.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links