Displaying publications 61 - 80 of 531 in total

Abstract:
Sort:
  1. Bello RO, Chin VK, Abd Rachman Isnadi MF, Abd Majid R, Atmadini Abdullah M, Lee TY, et al.
    Int J Mol Sci, 2018 Apr 11;19(4).
    PMID: 29641433 DOI: 10.3390/ijms19041149
    The recently identified cytokines-interleukin (IL)-35 and interleukin (IL)-37-have been described for their anti-inflammatory and immune-modulating actions in numerous inflammatory diseases, auto-immune disorders, malignancies, infectious diseases and sepsis. Either cytokine has been reported to be reduced and in some cases elevated and consequently contributed towards disease pathogenesis. In view of the recent advances in utilizing cytokine profiles for the development of biological macromolecules, beneficial in the management of certain intractable immune-mediated disorders, these recently characterized cytokines (IL-35 and IL-37) offer potential as reasonable targets for the discovery of novel immune-modulating anti-inflammatory therapies. A detailed comprehension of their sophisticated regulatory mechanisms and patterns of expression may provide unique opportunities for clinical application as highly selective and target specific therapeutic agents. This review seeks to summarize the recent advancements in discerning the dynamics, mechanisms, immunoregulatory and anti-inflammatory actions of IL-35 and IL-37 as they relate to disease pathogenesis.
  2. Yam MF, Loh YC, Tan CS, Khadijah Adam S, Abdul Manan N, Basir R
    Int J Mol Sci, 2018 Jul 24;19(8).
    PMID: 30042373 DOI: 10.3390/ijms19082164
    Pain has been considered as a concept of sensation that we feel as a reaction to the stimulus of our surrounding, putting us in harm's way and acting as a form of defense mechanism that our body has permanently installed into its system. However, pain leads to a huge chunk of finances within the healthcare system with continuous rehabilitation of patients with adverse pain sensations, which might reduce not only their quality of life but also their productivity at work setting back the pace of our economy. It may not look like a huge deal but factor in pain as an issue for majority of us, it becomes an economical burden. Although pain has been researched into and understood by numerous researches, from its definition, mechanism of action to its inhibition in hopes of finding an absolute solution for victims of pain, the pathways of pain sensation, neurotransmitters involved in producing such a sensation are not comprehensively reviewed. Therefore, this review article aims to put in place a thorough understanding of major pain conditions that we experience-nociceptive, inflammatory and physiologically dysfunction, such as neuropathic pain and its modulation and feedback systems. Moreover, the complete mechanism of conduction is compiled within this article, elucidating understandings from various researches and breakthroughs.
  3. Rahman RN, Zakaria II, Salleh AB, Basri M
    Int J Mol Sci, 2012;13(8):9673-91.
    PMID: 22949824 DOI: 10.3390/ijms13089673
    PpCHS is a member of the type III polyketide synthase family and catalyses the synthesis of the flavonoid precursor naringenin chalcone from p-coumaroyl-CoA. Recent research reports the production of pyrone derivatives using either hexanoyl-CoA or butyryl-CoA as starter molecule. The Cys-His-Asn catalytic triad found in other plant chalcone synthase predicted polypeptides is conserved in PpCHS. Site directed mutagenesis involving these amino acids residing in the active-site cavity revealed that the cavity volume of the active-site plays a significant role in the selection of starter molecules as well as product formation. Substitutions of Cys 170 with Arg and Ser amino acids decreased the ability of the PpCHS to utilize hexanoyl-CoA as a starter molecule, which directly effected the production of pyrone derivatives (products). These substitutions are believed to have a restricted number of elongations of the growing polypeptide chain due to the smaller cavity volume of the mutant's active site.
  4. Rahman RN, Kamarudin NH, Yunus J, Salleh AB, Basri M
    Int J Mol Sci, 2010;11(9):3195-208.
    PMID: 20957088 DOI: 10.3390/ijms11093195
    An organic solvent tolerant lipase gene from Staphylococcus epidermidis AT2 was successfully cloned and expressed with pTrcHis2 in E. coli TOP10. Sequence analysis revealed an open reading frame (ORF) of 1,933 bp in length which coded for a polypeptide of 643 amino acid residues. The polypeptide comprised of a signal peptide (37 amino acids), pro-peptide and a mature protein of 390 amino acids. Expression of AT2 lipase resulted in an 18-fold increase in activity, upon the induction of 0.6 mM IPTG after a 10 h incubation period. Interestingly, this lipase was stable in various organic solvents (25% (v/v), mainly toluene, octanol, p-xylene and n-hexane). Literature shows that most of the organic solvent stable bacterial lipases were produced by Pseudomonas sp. and Bacillus sp., but very few from Staphylococcus sp. This lipase demonstrates great potential to be employed in various industrial applications.
  5. Bahrami A, Talib ZA, Shahriari E, Yunus WM, Kasim A, Behzad K
    Int J Mol Sci, 2012;13(1):918-28.
    PMID: 22312294 DOI: 10.3390/ijms13010918
    The effects of multi-walled carbon nanotube (MWNT) concentration on the structural, optical and electrical properties of conjugated polymer-carbon nanotube composite are discussed. Multi-walled carbon nanotube-polypyrrole nanocomposites were synthesized by electrochemical polymerization of monomers in the presence of different amounts of MWNTs using sodium dodecylbenzensulfonate (SDBS) as surfactant at room temperature and normal pressure. Field emission scanning electron microscopy (FESEM) indicates that the polymer is wrapped around the nanotubes. Measurement of the nonlinear refractive indices (n(2)) and the nonlinear absorption (β) of the samples with different MWNT concentrations measurements were performed by a single Z-scan method using continuous wave (CW) laser beam excitation wavelength of λ = 532 nm. The results show that both nonlinear optical parameters increased with increasing the concentration of MWNTs. The third order nonlinear susceptibilities were also calculated and found to follow the same trend as n(2) and β. In addition, the conductivity of the composite film was found to increase rapidly with the increase in the MWNT concentration.
  6. Eremeev A, Pikina A, Ruchko Y, Bogomazova A
    Int J Mol Sci, 2023 Sep 22;24(19).
    PMID: 37833856 DOI: 10.3390/ijms241914408
    Inflammatory joint diseases, among which osteoarthritis and rheumatoid arthritis are the most common, are characterized by progressive degeneration of the cartilage tissue, resulting in the threat of limited or lost joint functionality in the absence of treatment. Currently, treating these diseases is difficult, and a number of existing treatment and prevention measures are not entirely effective and are complicated by the patients' conditions, the multifactorial nature of the pathology, and an incomplete understanding of the etiology. Cellular technologies based on induced pluripotent stem cells (iPSCs) can provide a vast cellular resource for the production of artificial cartilage tissue for replacement therapy and allow the possibility of a personalized approach. However, the question remains whether a number of etiological abnormalities associated with joint disease are transmitted from the source cell to iPSCs and their chondrocyte derivatives. Some data state that there is no difference between the iPSCs and their derivatives from healthy and sick donors; however, there are other data indicating a dissimilarity. Therefore, this topic requires a thorough study of the differentiation potential of iPSCs and the factors influencing it, the risk factors associated with joint diseases, and a comparative analysis of the characteristics of cells obtained from patients. Together with cultivation optimization methods, these measures can increase the efficiency of obtaining cell technology products and make their wide practical application possible.
  7. Ayoub AA, Mahmoud AH, Ribeiro JS, Daghrery A, Xu J, Fenno JC, et al.
    Int J Mol Sci, 2022 Nov 09;23(22).
    PMID: 36430238 DOI: 10.3390/ijms232213761
    This study was aimed at engineering photocrosslinkable azithromycin (AZ)-laden gelatin methacryloyl fibers via electrospinning to serve as a localized and biodegradable drug delivery system for endodontic infection control. AZ at three distinct amounts was mixed with solubilized gelatin methacryloyl and the photoinitiator to obtain the following fibers: GelMA+5%AZ, GelMA+10%AZ, and GelMA+15%AZ. Fiber morphology, diameter, AZ incorporation, mechanical properties, degradation profile, and antimicrobial action against Aggregatibacter actinomycetemcomitans and Actinomyces naeslundii were also studied. In vitro compatibility with human-derived dental pulp stem cells and inflammatory response in vivo using a subcutaneous rat model were also determined. A bead-free fibrous microstructure with interconnected pores was observed for all groups. GelMA and GelMA+10%AZ had the highest fiber diameter means. The tensile strength of the GelMA-based fibers was reduced upon AZ addition. A similar pattern was observed for the degradation profile in vitro. GelMA+15%AZ fibers led to the highest bacterial inhibition. The presence of AZ, regardless of the concentration, did not pose significant toxicity. In vivo findings indicated higher blood vessel formation, mild inflammation, and mature and thick well-oriented collagen fibers interweaving with the engineered fibers. Altogether, AZ-laden photocrosslinkable GelMA fibers had adequate mechanical and degradation properties, with 15%AZ displaying significant antimicrobial activity without compromising biocompatibility.
  8. Jubaidi FF, Zainalabidin S, Mariappan V, Budin SB
    Int J Mol Sci, 2020 Aug 22;21(17).
    PMID: 32842567 DOI: 10.3390/ijms21176043
    As the powerhouse of the cells, mitochondria play a very important role in ensuring that cells continue to function. Mitochondrial dysfunction is one of the main factors contributing to the development of cardiomyopathy in diabetes mellitus. In early development of diabetic cardiomyopathy (DCM), patients present with myocardial fibrosis, dysfunctional remodeling and diastolic dysfunction, which later develop into systolic dysfunction and eventually heart failure. Cardiac mitochondrial dysfunction has been implicated in the development and progression of DCM. Thus, it is important to develop novel therapeutics in order to prevent the progression of DCM, especially by targeting mitochondrial dysfunction. To date, a number of studies have reported the potential of phenolic acids in exerting the cardioprotective effect by combating mitochondrial dysfunction, implicating its potential to be adopted in DCM therapies. Therefore, the aim of this review is to provide a concise overview of mitochondrial dysfunction in the development of DCM and the potential role of phenolic acids in combating cardiac mitochondrial dysfunction. Such information can be used for future development of phenolic acids as means of treating DCM by alleviating the cardiac mitochondrial dysfunction.
  9. Jubaidi FF, Zainalabidin S, Taib IS, Hamid ZA, Budin SB
    Int J Mol Sci, 2021 May 12;22(10).
    PMID: 34065781 DOI: 10.3390/ijms22105094
    Diabetic cardiomyopathy is one of the major mortality risk factors among diabetic patients worldwide. It has been established that most of the cardiac structural and functional alterations in the diabetic cardiomyopathy condition resulted from the hyperglycemia-induced persistent oxidative stress in the heart, resulting in the maladaptive responses of inflammation and apoptosis. Flavonoids, the most abundant phytochemical in plants, have been reported to exhibit diverse therapeutic potential in medicine and other biological activities. Flavonoids have been widely studied for their effects in protecting the heart against diabetes-induced cardiomyopathy. The potential of flavonoids in alleviating diabetic cardiomyopathy is mainly related with their remedial actions as anti-hyperglycemic, antioxidant, anti-inflammatory, and anti-apoptotic agents. In this review, we summarize the latest findings of flavonoid treatments on diabetic cardiomyopathy as well as elucidating the mechanisms involved.
  10. Sapian S, Taib IS, Latip J, Katas H, Chin KY, Mohd Nor NA, et al.
    Int J Mol Sci, 2021 Oct 27;22(21).
    PMID: 34769045 DOI: 10.3390/ijms222111616
    Diabetes cardiomyopathy is one of the key factors of mortality among diabetic patients around the globe. One of the prior contributors to the progression of diabetic cardiomyopathy is cardiac mitochondrial dysfunction. The cardiac mitochondrial dysfunction can induce oxidative stress in cardiomyocytes and was found to be the cause of majority of the heart morphological and dynamical changes in diabetic cardiomyopathy. To slow down the occurrence of diabetic cardiomyopathy, it is crucial to discover therapeutic agents that target mitochondrial-induced oxidative stress. Flavonoid is a plentiful phytochemical in plants that shows a wide range of biological actions against human diseases. Flavonoids have been extensively documented for their ability to protect the heart from diabetic cardiomyopathy. Flavonoids' ability to alleviate diabetic cardiomyopathy is primarily attributed to their antioxidant properties. In this review, we present the mechanisms involved in flavonoid therapies in ameliorating mitochondrial-induced oxidative stress in diabetic cardiomyopathy.
  11. Haleagrahara N, Varkkey J, Chakravarthi S
    Int J Mol Sci, 2011;12(10):7100-13.
    PMID: 22072938 DOI: 10.3390/ijms12107100
    The aim of the present study was to look into the possible protective effects of glycyrrhizic acid (GA) against isoproterenol-induced acute myocardial infarction in Sprague-Dawley rats. The effect of three doses of glycyrrhizic acid in response to isoproterenol (ISO)-induced changes in 8-isoprostane, lipid hydroperoxides, super oxide dismutase and total glutathione were evaluated. Male Sprague-Dawley rats were divided into control, ISO-control, glycyrrhizic acid alone (in three doses-5, 10 and 20 mg/kg BW) and ISO with glycyrrhizic acid (in three doses) groups. ISO was administered at 85 mg/kg BW at two consecutive days and glycyrrhizic acid was administered intraperitoneally for 14 days. There was a significant increase in 8-isoprostane (IP) and lipid hydroperoxide (LPO) level in ISO-control group. A significant decrease in total superoxide dismutase (SOD) and total glutathione (GSH) was seen with ISO-induced acute myocardial infarction. Treatment with GA significantly increased SOD and GSH levels and decreased myocardial LPO and IP levels. Histopathologically, severe myocardial necrosis and nuclear pyknosis and hypertrophy were seen in ISO-control group, which was significantly reduced with GA treatment. Gycyrrhizic acid treatment proved to be effective against isoproterenol-induced acute myocardial infarction in rats and GA acts as a powerful antioxidant and reduces the myocardial lipid hydroperoxide and 8-isoprostane level.
  12. Purmal K, Chin S, Pinto J, Yin WF, Chan KG
    Int J Mol Sci, 2010 Sep 16;11(9):3349-56.
    PMID: 20957099 DOI: 10.3390/ijms11093349
    This study aimed to test the sterility of new unused orthodontic buccal tubes received from manufacturers. Four different types of buccal tubes were used straight from the manufactures package without any additional sterilizing step. Of these buccal tubes tested, three genera of bacteria, implicated as opportunistic pathogens, namely Micrococcus luteus, Staphylococcus haemolyticus and Acinetobacter calcoaceticus were recovered from these buccal tubes. Our data showing microbial contamination on buccal tubes highlights the need of sterilization before clinical use. We also suggest that manufacturers should list the sterility state of orthodontic buccal tubes on their packaging or instructions stating the need for sterilization.
  13. Chan KG
    Int J Mol Sci, 2009 Jan;10(1):345-53.
    PMID: 19333449
    Mycobacterium neoaurum is a soil saprophyte and obligate aerobic bacterium. This group of mycobacterium is relatively fast-growing. They form colonies on nutrient agar at 37 masculineC within 3 - 4 days. In natural soil habitats, bioavailability of iron is limited. To facilitate iron uptake, most mycobacteria produce siderophores. One example is exochelin, which is extracellular and water-soluble. In this report, the production of exochelin in M. neoaurum was induced in iron-deficiency, but repressed under ironsufficiency growth conditions. It is however not induced under zinc-deficiency growth conditions. The growth of this mycobacterium was correlated with exochelin secretion under iron-deficiency culture conditions. When M. neoaurum was grown in defined medium containing 0.04 microg Fe(III)/mL (final concentration), the production of exochelin reached a maximum and the corresponding cell growth was comparable to that under iron-sufficiency conditions. In this study, exochelin was purified from spent supernatant of M. neoaurum by semi-preparative chromatography. When saturated ferric chloride solution was added into the purified exochelin, a ferri-exochelin complex was formed. It is proposed that iron uptake in M. neoaurum is exochelin-mediated.
  14. Show PL, Tang MS, Nagarajan D, Ling TC, Ooi CW, Chang JS
    Int J Mol Sci, 2017 Jan 22;18(1).
    PMID: 28117737 DOI: 10.3390/ijms18010215
    Microalgae contribute up to 60% of the oxygen content in the Earth's atmosphere by absorbing carbon dioxide and releasing oxygen during photosynthesis. Microalgae are abundantly available in the natural environment, thanks to their ability to survive and grow rapidly under harsh and inhospitable conditions. Microalgal cultivation is environmentally friendly because the microalgal biomass can be utilized for the productions of biofuels, food and feed supplements, pharmaceuticals, nutraceuticals, and cosmetics. The cultivation of microalgal also can complement approaches like carbon dioxide sequestration and bioremediation of wastewaters, thereby addressing the serious environmental concerns. This review focuses on the factors affecting microalgal cultures, techniques adapted to obtain high-density microalgal cultures in photobioreactors, and the conversion of microalgal biomass into biofuels. The applications of microalgae in carbon dioxide sequestration and phycoremediation of wastewater are also discussed.
  15. Zainal Z, Abdul Rahim A, Khaza'ai H, Chang SK
    Int J Mol Sci, 2019 Apr 10;20(7).
    PMID: 30974772 DOI: 10.3390/ijms20071764
    Synthetic therapeutic drugs for asthma, a chronic airway inflammation characterised by strong eosinophil, mast cell, and lymphocyte infiltration, mucus hyper-production, and airway hyper-responsiveness, exhibit numerous side effects. Alternatively, the high antioxidant potential of palm oil phytonutrients, including vitamin E (tocotrienol-rich fractions; TRF) and carotene, may be beneficial for alleviating asthma. Here, we determined the therapeutic efficacy of TRF, carotene, and dexamethasone in ovalbumin-challenged allergic asthma in Brown Norway rats. Asthmatic symptoms fully developed within 8 days after the second sensitization, and were preserved throughout the time course via intranasal ovalbumin re-challenge. Asthmatic rats were then orally administered 30 mg/kg body weight TRF or carotene. TRF-treated animals exhibited reduced inflammatory cells in bronchial alveolar lavage fluid. TRF- and carotene-treated rats exhibited notable white blood cell reduction comparable to that from dexamethasone. TRF- and carotene-treatment also downregulated pro-inflammatory markers (IL-β, IL-6, TNF-α), coincident with anti-inflammatory marker IL-4 and IL-13 upregulation. Treatment significantly reduced asthmatic rat plasma CRP and IgE, signifying improved systemic inflammation. Asthmatic lung histology displayed severe edema and inflammatory cell infiltration in the bronchial wall, whereas treated animals retained healthy, normal-appearing lungs. The phytonutrients tocotrienol and carotene thus exhibit potential benefits for consumption as nutritional adjuncts in asthmatic disease.
  16. Azhany Y, Rahman WFWA, Jaafar H, Low JH, Yusuf WNW, Liza-Sharmini AT, et al.
    Int J Mol Sci, 2023 Apr 17;24(8).
    PMID: 37108535 DOI: 10.3390/ijms24087372
    Post-surgical scarring is a known cause of trabeculectomy failure. The aim of this study was to investigate the effectiveness of ranibizumab as an adjuvant anti-scarring agent in experimental trabeculectomy. Forty New Zealand white rabbits were randomised into four eye treatment groups: groups A (control), B (ranibizumab 0.5 mg/mL), C (mitomycin C [MMC] 0.4 mg/mL), and D (ranibizumab 0.5 mg/mL and MMC 0.4 mg/mL). Modified trabeculectomy was performed. Clinical parameters were assessed on post-operative days 1, 2, 3, 7, 14, and 21. Twenty rabbits were euthanised on day 7, and the other twenty were euthanised on day 21. Eye tissue samples were obtained from the rabbits and stained with haematoxylin and eosin (H&E). All treatment groups showed a significant difference in IOP reduction compared with group A (p < 0.05). Groups C and D showed a significant difference in bleb status on days 7 (p = 0.001) and 21 (p = 0.002) relative to group A. H&E staining showed significantly low fibrotic activity (p < 0.001) in group C on both days and inflammatory cell grade in group B on day 7 (p < 0.001). The grade for new vessel formation was significantly low in groups B and D on day 7 (p < 0.001) and in group D on day 21 (p = 0.007). Ranibizumab plays a role in reducing scarring, and a single application of the ranibizumab-MMC combination showed a moderate wound-modulating effect in the early post-operative phase.
  17. Heng WS, Kruyt FAE, Cheah SC
    Int J Mol Sci, 2021 May 27;22(11).
    PMID: 34071790 DOI: 10.3390/ijms22115697
    Lung cancer is still one of the deadliest cancers, with over two million incidences annually. Prevention is regarded as the most efficient way to reduce both the incidence and death figures. Nevertheless, treatment should still be improved, particularly in addressing therapeutic resistance due to cancer stem cells-the assumed drivers of tumor initiation and progression. Phytochemicals in plant-based diets are thought to contribute substantially to lung cancer prevention and may be efficacious for targeting lung cancer stem cells. In this review, we collect recent literature on lung homeostasis, carcinogenesis, and phytochemicals studied in lung cancers. We provide a comprehensive overview of how normal lung tissue operates and relate it with lung carcinogenesis to redefine better targets for lung cancer stem cells. Nine well-studied phytochemical compounds, namely curcumin, resveratrol, quercetin, epigallocatechin-3-gallate, luteolin, sulforaphane, berberine, genistein, and capsaicin, are discussed in terms of their chemopreventive and anticancer mechanisms in lung cancer and potential use in the clinic. How the use of phytochemicals can be improved by structural manipulations, targeted delivery, concentration adjustments, and combinatorial treatments is also highlighted. We propose that lung carcinomas should be treated differently based on their respective cellular origins. Targeting quiescence-inducing, inflammation-dampening, or reactive oxygen species-balancing pathways appears particularly interesting.
  18. Mu AK, Bee PC, Lau YL, Chen Y
    Int J Mol Sci, 2014;15(11):19952-61.
    PMID: 25372941 DOI: 10.3390/ijms151119952
    Malaria is caused by parasitic protozoans of the genus Plasmodium and is one of the most prevalent infectious diseases in tropical and subtropical regions. For this reason, effective and practical diagnostic methods are urgently needed to control the spread of malaria. The aim of the current study was to identify a panel of new malarial markers, which could be used to diagnose patients infected with various Plasmodium species, including P. knowlesi, P. vivax and P. falciparum. Sera from malaria-infected patients were pooled and compared to control sera obtained from healthy individuals using the isobaric tags for relative and absolute quantitation (iTRAQ) technique. Mass spectrometry was used to identify serum proteins and quantify their relative abundance. We found that the levels of several proteins were increased in pooled serum from infected patients, including cell adhesion molecule-4 and C-reactive protein. In contrast, the serum concentration of haptoglobin was reduced in malaria-infected individuals, which we verified by western blot assay. Therefore, these proteins might represent infectious markers of malaria, which could be used to develop novel diagnostic tools for detecting P. knowlesi, P. vivax and P. falciparum. However, these potential malarial markers will need to be validated in a larger population of infected individuals.
  19. Kugan HM, Rejab NA, Sahruzaini NA, Harikrishna JA, Baisakh N, Cheng A
    Int J Mol Sci, 2021 Apr 27;22(9).
    PMID: 33925559 DOI: 10.3390/ijms22094588
    The natural timing devices of organisms, commonly known as biological clocks, are composed of specific complex folding molecules that interact to regulate the circadian rhythms. Circadian rhythms, the changes or processes that follow a 24-h light-dark cycle, while endogenously programmed, are also influenced by environmental factors, especially in sessile organisms such as plants, which can impact ecosystems and crop productivity. Current knowledge of plant clocks emanates primarily from research on Arabidopsis, which identified the main components of the circadian gene regulation network. Nonetheless, there remain critical knowledge gaps related to the molecular components of circadian rhythms in important crop groups, including the nitrogen-fixing legumes. Additionally, little is known about the synergies and trade-offs between environmental factors and circadian rhythm regulation, especially how these interactions fine-tune the physiological adaptations of the current and future crops in a rapidly changing world. This review highlights what is known so far about the circadian rhythms in legumes, which include major as well as potential future pulse crops that are packed with nutrients, particularly protein. Based on existing literature, this review also identifies the knowledge gaps that should be addressed to build a sustainable food future with the reputed "poor man's meat".
  20. Kao YW, Hsu SK, Chen JY, Lin IL, Chen KJ, Lee PY, et al.
    Int J Mol Sci, 2020 Dec 28;22(1).
    PMID: 33379248 DOI: 10.3390/ijms22010212
    Curcumin is one of the most valuable natural products due to its pharmacological activities. However, the low bioavailability of curcumin has long been a problem for its medicinal use. Large studies have been conducted to improve the use of curcumin; among these studies, curcumin metabolites have become a relatively new research focus over the past few years. Additionally, accumulating evidence suggests that curcumin or curcuminoid metabolites have similar or better biological activity than the precursor of curcumin. Recent studies focus on the protective role of plasma tetrahydrocurcumin (THC), a main metabolite of curcumin, against tumors and chronic inflammatory diseases. Nevertheless, studies of THC in eye diseases have not yet been conducted. Since ophthalmic conditions play a crucial role in worldwide public health, the prevention and treatment of ophthalmic diseases are of great concern. Therefore, the present study investigated the antioxidative, anti-inflammatory, antiangiogenic, and neuroprotective effects of THC on four major ocular diseases: age-related cataracts, glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR). While this study aimed to show curcumin as a promising potential solution for eye conditions and discusses the involved mechanistic pathways, further work is required for the clinical application of curcumin.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links