Displaying publications 61 - 80 of 275 in total

Abstract:
Sort:
  1. Mukhopadhyay R, Bhaduri D, Sarkar B, Rusmin R, Hou D, Khanam R, et al.
    J Hazard Mater, 2020 02 05;383:121125.
    PMID: 31541959 DOI: 10.1016/j.jhazmat.2019.121125
    Contaminant removal from water involves various technologies among which adsorption is considered to be simple, effective, economical, and sustainable. In recent years, nanocomposites prepared by combining clay minerals and polymers have emerged as a novel technology for cleaning contaminated water. Here, we provide an overview of various types of clay-polymer nanocomposites focusing on their synthesis processes, characteristics, and possible applications in water treatment. By evaluating various mechanisms and factors involved in the decontamination processes, we demonstrate that the nanocomposites can overcome the limitations of individual polymer and clay components such as poor specificity, pH dependence, particle size sensitivity, and low water wettability. We also discuss different regeneration and wastewater treatment options (e.g., membrane, coagulant, and barrier/columns) using clay-polymer nanocomposites. Finally, we provide an economic analysis of the use of these adsorbents and suggest future research directions.
  2. Rashidi NA, Yusup S
    J Hazard Mater, 2021 02 05;403:123876.
    PMID: 33264948 DOI: 10.1016/j.jhazmat.2020.123876
    In this study, a binary mixture of petroleum coke and palm kernel shell had been investigated as potential starting materials for activated carbon production. Single-stage potassium carbonate (K2CO3) activation under nitrogen (N2) atmosphere was adopted in this research study. Effect of several operating parameters that included the impregnation ratio (1-3 wt./wt.), activation temperature (600-800 °C), and dwell time (1-2 hrs) were analyzed by using the Box-Behnken experimental design. Influence of these parameters towards activated carbon yield (Y1) and carbon dioxide (CO2) adsorption capacity at an atmospheric condition (Y2) were investigated. The optimum conditions for the activated carbon production were attained at impregnation ratio of 1.75:1, activation temperature of 680 °C, and dwell time of 1 h, with its corresponding Y1 and Y2 is 56.2 wt.% and 2.3991 mmol/g, respectively. Physicochemical properties of the pristine materials and synthesized activated carbon at the optimum conditions were analyzed in terms of their decomposition behavior, surface morphology, elemental composition, and textural characteristics. The study revealed that the blend of petroleum coke and palm kernel shell can be effectively used as the activated carbon precursors, and the experimental findings demonstrated comparable CO2 adsorption performance with commercial activated carbon as well as that in literatures.
  3. Huang M, Ma Y, Qian J, Sokolova IM, Zhang C, Waiho K, et al.
    J Hazard Mater, 2024 Apr 15;468:133801.
    PMID: 38377908 DOI: 10.1016/j.jhazmat.2024.133801
    Pollution with anthropogenic contaminants including antibiotics and nanoplastics leads to gradual deterioration of the marine environment, which threatens endangered species such as the horseshoe crab Tachypleus tridentatus. We assessed the potential toxic mechanisms of an antibiotic (norfloxacin, 0, 0.5, 5 μg/L) and polystyrene nanoparticles (104 particles/L) in T. tridentatus using biomarkers of tissue redox status, molting, and gut microbiota. Exposure to single and combined pollutants led to disturbance of redox balance during short-term (7 days) exposure indicated by elevated level of a lipid peroxidation product, malondialdehyde (MDA). After prolonged (14-21 days) exposure, compensatory upregulation of antioxidants (catalase and glutathione but not superoxide dismutase) was observed, and MDA levels returned to the baseline in most experimental exposures. Transcript levels of molting-related genes (ecdysone receptor, retinoic acid X alpha receptor and calmodulin A) and a molecular chaperone (cognate heat shock protein 70) showed weak evidence of response to polystyrene nanoparticles and norfloxacin. The gut microbiota T. tridentatus was altered by exposures to norfloxacin and polystyrene nanoparticles shown by elevated relative abundance of Bacteroidetes. At the functional level, evidence of suppression by norfloxacin and polystyrene nanoparticles was found in multiple intestinal microbiome pathways related to the genetic information processing, metabolism, organismal systems, and environmental information processing. Future studies are needed to assess the physiological and health consequences of microbiome dysbiosis caused by norfloxacin and polystyrene nanoparticles and assist the environmental risk assessment of these pollutants in the wild populations of the horseshoe crabs.
  4. Abdullah AZ, Bakar MZ, Bhatia S
    J Hazard Mater, 2006 Feb 28;129(1-3):39-49.
    PMID: 16310938
    The paper reports on the performance of chromium or/and copper supported on H-ZSM-5(Si/Al = 240) modified with silicon tetrachloride (Cr1.5/SiCl4-Z, Cu1.5/SiCl4-Z and Cr1.0Cu0.5/SiCl4-Z) as catalysts in the combustion of chlorinated VOCs (Cl-VOCs). A reactor operated at a gas hourly space velocity (GHSV) of 32,000 h(-1), a temperature between 100 and 500 degrees C with 2500 ppm of dichloromethane (DCM), trichloromethane (TCM) and trichloroethylene (TCE) is used for activity studies. The deactivation study is conducted at a GHSV of 3800 h(-1), at 400 degrees C for up to 12 h with a feed concentration of 35,000 ppm. Treatment with silicon tetrachloride improves the chemical resistance of H-ZSM-5 against hydrogen chloride. TCM is more reactive compared to DCM but it produces more by-products due to its high chlorine content. The stabilization of TCE is attributed to resonance effects. Water vapor increases the carbon dioxide yield through its role as hydrolysis agent forming reactive carbocations and acting as hydrogen-supplying agent to suppress chlorine-transfer reactions. The deactivation of Cr1.0Cu0.5/SiCl4-Z is mainly due to the chlorination of its metal species, especially with higher Cl/H feed. Coking is limited, particularly with DCM and TCM. In accordance with the Mars-van Krevelen model, the weakening of overall metal reducibility due to chlorination leads to a loss of catalytic activity.
  5. Chu KH, Hashim MA, Hayder G
    J Hazard Mater, 2024 Mar 05;465:133370.
    PMID: 38219576 DOI: 10.1016/j.jhazmat.2023.133370
    Addressing inaccuracies in review articles is essential to prevent the proliferation of misinformation. This communication is dedicated to rectifying factual errors identified in a recent review article featured in this journal, with a specific emphasis on addressing errors related to the Temkin, Flory-Huggins, Sips, and Baudu isotherm models. By elucidating and clarifying these inaccuracies, we aim to uphold the integrity of scientific discourse and ensure the accurate dissemination of information within the scholarly community.
  6. Abdullah FH, Abu Bakar NHH, Abu Bakar M
    J Hazard Mater, 2021 03 15;406:124779.
    PMID: 33338763 DOI: 10.1016/j.jhazmat.2020.124779
    Zinc oxide (ZnO) photocatalysts were successfully synthesized via chemical and green, environmentally-benign methods. The work highlights the valorization of banana peel (BP) waste extract as the reducing and capping agents to produce pure, low temperature, highly crystalline, and effective ZnO nanoparticles with superior photocatalytic activities for the removal of hazardous Basic Blue 9 (BB9), crystal violet (CV), and cresol red (CR) dyes in comparison to chemically synthesized ZnO. Their formation and morphologies were verified by various optical spectroscopic and electron microscopic techniques. XRD results revealed that the biosynthesized ZnO exhibited 15.3 nm crystallite size when determined by Scherrer equation, which was smaller than the chemically synthesized ZnO. The FTIR spectra confirmed the presence of biomolecules in the green-mediated catalyst. EDX and XPS analyses verified the purity and chemical composition of ZnO. Nitrogen sorption analysis affirmed the high surface area of bio-inspired ZnO. Maximum removal efficiencies were achieved with 30 mg green ZnO catalyst, 2.0 × 10-5 M BB9 solution, alkaline pH 12, and irradiation time 90 min. Green-mediated ZnO showed superior photodegradation efficiency and reusability than chemically synthesized ZnO. Therefore, this economical, environment-friendly photocatalyst is applicable for the removal of organic contaminants in wastewater treatment under visible light irradiation.
  7. Nemati K, Abu Bakar NK, Bin Abas MR, Sobhanzadeh E, Low KH
    J Hazard Mater, 2010 Oct 15;182(1-3):453-9.
    PMID: 20638781 DOI: 10.1016/j.jhazmat.2010.06.053
    The aim of this work was to evaluate two different digestion methods for the determination of the total concentration of metals (Zn, Cu, Cr, Ni, Pb and Cd) in shrimp sludge compost. The compost made from shrimp aquaculture sludge co-composted with organic materials (peat, crushed bark and manure) was used as an organic growing medium for crop. Open system digestion and microwave assisted digestion procedures were employed in sample preparation. Various combinations and volumes of hydrofluoric, nitric and hydrochloric acids were evaluated for the efficiency of both methods. A certified reference material (CRM 146) was used in the comparison of these two digestion methods. The results revealed a good agreement between both procedures and the certified valued. The best recoveries were found in the range between 95% and 99% for microwave assisted digestion with a mixture of 2 ml of HF, 6 ml of HNO(3) and 2 ml of HCl. This procedure was recommended as the method for digestion the compost herein based on the recovery analysis and time taken.
  8. Jalil AA, Panjang NF, Akhbar S, Sundang M, Tajuddin N, Triwahyono S
    J Hazard Mater, 2007 Sep 5;148(1-2):1-5.
    PMID: 17669589
    Electrochemical dechlorination of chlorobenzene in organic solutions was studied. Electrolysis of chlorobenzene in acetonitrile solution in a one-compartment cell fitted with a platinum cathode and a zinc anode at 60mA/cm(2) and 0 degrees C was found to be the optimum conditions, which gave complete dechlorination of chlorobenzene. However, similar result could not be achieved when applying these conditions to 1,3-dichlorobenzene and 1,2,4-trichlorobenzene. We found that the use of naphthalene which reacted as a mediator in the appropriate system could accelerate the reduction and gave complete dechlorination of those chlorobenzenes. Moreover, in the presence of naphthalene the reaction time could be shortened by half compared to dechlorination in the absence of naphthalene.
  9. Jalil AA, Triwahyono S, Razali NA, Hairom NH, Idris A, Muhid MN, et al.
    J Hazard Mater, 2010 Feb 15;174(1-3):581-5.
    PMID: 19864065 DOI: 10.1016/j.jhazmat.2009.09.091
    Electrochemical dechlorination of chlorobenzenes in the presence of various arene mediators such as naphthalene, biphenyl, phenanthrene, anthracene, and pyrene, was studied. The amount of mediator required was able to be reduced to 0.01 equiv. for all mediators except for anthracene, with the complete dechlorination of mono-, 1,3-di- and 1,2,4-trichlorobenzene still achieved. This catalytic amount of mediator plays an important role in accelerating the dechlorination through the rapid formation of radical anions prior to reduction of the chlorobenzenes.
  10. Rezania S, Taib SM, Md Din MF, Dahalan FA, Kamyab H
    J Hazard Mater, 2016 Nov 15;318:587-599.
    PMID: 27474848 DOI: 10.1016/j.jhazmat.2016.07.053
    Environmental pollution specifically water pollution is alarming both in the developed and developing countries. Heavy metal contamination of water resources is a critical issue which adversely affects humans, plants and animals. Phytoremediation is a cost-effective remediation technology which able to treat heavy metal polluted sites. This environmental friendly method has been successfully implemented in constructed wetland (CWs) which is able to restore the aquatic biosystem naturally. Nowadays, many aquatic plant species are being investigated to determine their potential and effectiveness for phytoremediation application, especially high growth rate plants i.e. macrophytes. Based on the findings, phytofiltration (rhizofiltration) is the sole method which defined as heavy metals removal from water by aquatic plants. Due to specific morphology and higher growth rate, free-floating plants were more efficient to uptake heavy metals in comparison with submerged and emergent plants. In this review, the potential of wide range of aquatic plant species with main focus on four well known species (hyper-accumulators): Pistia stratiotes, Eicchornia spp., Lemna spp. and Salvinia spp. was investigated. Moreover, we discussed about the history, methods and future prospects in phytoremediation of heavy metals by aquatic plants comprehensively.
  11. Issabayeva G, Aroua MK, Sulaiman NM
    J Hazard Mater, 2008 Jun 30;155(1-2):109-13.
    PMID: 18179867 DOI: 10.1016/j.jhazmat.2007.11.036
    The continuous adsorption of lead ions from aqueous solution on commercial, granular, unpretreated palm shell activated carbon (PSAC) was studied. Effect of pH, flow rates and presence of complexing agents (malonic and boric acids) were examined. The breakthrough period was longer at pH 5 indicating higher adsorption capacity of lead ions at higher pH. Increase of the flow rate, expectedly, resulted in the faster saturation of the carbon bed. Presence of complexing agents did not improve adsorption uptake of lead ions. However, presence of malonic acid resulted in smoother pH stabilization of solution compared to single lead and lead with boric acid systems. The results on continuous adsorption of lead were applied to the model proposed by Wang et al. [Y.-H. Wang, S.-H. Lin, R.-S. Juang, Removal of heavy metals ions from aqueous solutions using various low-cost adsorbents, J. Hazard. Mater. B 102 (2003) 291-302]. The agreement between experimental and modelled breakthrough curves was satisfactory at both pHs.
  12. Phoon BL, Ong CC, Mohamed Saheed MS, Show PL, Chang JS, Ling TC, et al.
    J Hazard Mater, 2020 12 05;400:122961.
    PMID: 32947727 DOI: 10.1016/j.jhazmat.2020.122961
    Antibiotics and pharmaceuticals related products are used to enhance public health and quality of life. The wastewater that is produced from pharmaceutical industries still contains noticeable amount of antibiotics, and this has remained one of the major environmental problems facing public health. The conventional wastewater remediation approach employed by the pharmaceutical industries for the antibiotics wastewater removal is unable to remove the antibiotics completely. Besides, municipal and livestock wastewater also contain unmetabolized antibiotics released by human and animal, respectively. The antibiotic found in wastewater leads to antibiotic resistance challenges, also emergence of superbugs. Currently, numerous technological approaches have been developed to remove antibiotics from the wastewater. Therefore, it was imperative to critically review the weakness and strength of these current advanced technological approaches in use. Besides, the conventional methods for removal of antibiotics such as Klavaroti et al., Homem and Santos also discussed. Although, membrane treatment is discovered as the ultimate choice of approach, to completely remove the antibiotics, while the filtered antibiotics are still retained on the membrane. This study found, hybrid processes to be the best solution antibiotics removal from wastewater. Nevertheless, real-time monitoring system is also recommended to ascertain that, wastewater is cleared of antibiotics.
  13. Khan MI, Mubashir M, Zaini D, Mahnashi MH, Alyami BA, Alqarni AO, et al.
    J Hazard Mater, 2021 08 05;415:125364.
    PMID: 33740721 DOI: 10.1016/j.jhazmat.2021.125364
    In the present research work, a comprehensive tool for cumulative ecotoxicological impact assessment of ionic liquids (ILs) to aquatic life has been constructed. Using the probabilistic tool, impact of individual ILs to a group of aquatic species is assessed by chemical toxicity distributions (CTDs). The impact of group of ILs to individual aquatic species is assessed by species sensitivity distributions (SSDs). Acute toxicity data of imidazolium ILs with chloride (Cl-), bromide (Br-), tetrafluoroborate (BF4-), and hexafluorophosphate (PF6-) anions are used in CTD and SSD. Allowable concentrations for a group of Imidazolium ILs with the same mode of action (SMOA) to five aquatic species; Daphnia magna, Vibrio fischeri, Algae, Zebrafish, and Escherichia coli are estimated by CTDs. It has been concluded that 1-Butyl-3-methylimidazolium chloride (BMIMCl) possess the lowest risk at an acceptable risk value of 750 × 10-5 mmol/L which is 12% less than that of OMIMCl. Furthermore, the sensitivities towards the aquatic species reveal that from the studied ILs, BMIMBF4 with an acceptable risk value of 3200 × 10-5 mmol/L is the most suitable IL towards the selected aquatic species. Hence, current work provides cumulative allowable concentrations and acceptable risk values for ILs which release to aquatic compartment of ecosystem.
  14. Abdullah FH, Bakar NHHA, Bakar MA
    J Hazard Mater, 2022 Feb 15;424(Pt B):127416.
    PMID: 34655867 DOI: 10.1016/j.jhazmat.2021.127416
    Industrial wastewaters contain hazardous contaminants that pollute the environment and cause socioeconomic problems, thus demanding the employment of effective remediation procedures such as photocatalysis. Zinc oxide (ZnO) nanomaterials have emerged to be a promising photocatalyst for the removal of pollutants in wastewater owing to their excellent and attractive characteristics. The dynamic tunable features of ZnO allow a wide range of functionalization for enhanced photocatalytic efficiency. The current review summarizes the recent advances in the fabrication, modification, and industrial application of ZnO photocatalyst based on the analysis of the latest studies, including the following aspects: (1) overview on the properties, structures, and features of ZnO, (2) employment of dopants, heterojunction, and immobilization techniques for improved photodegradation performance, (3) applicability of suspended and immobilized photocatalytic systems, (4) application of ZnO hybrids for the removal of various types of hazardous pollutants from different wastewater sources in industries, and (5) potential of bio-inspired ZnO hybrid nanomaterials for photocatalytic applications using renewable and biodegradable resources for greener photocatalytic technologies. In addition, the knowledge gap in this field of work is also highlighted.
  15. Daud NK, Hameed BH
    J Hazard Mater, 2010 Apr 15;176(1-3):938-44.
    PMID: 20042285 DOI: 10.1016/j.jhazmat.2009.11.130
    The decolorization of Acid Red 1 (AR1) in aqueous solution was investigated by Fenton-like process. The effect of different reaction parameters such as different iron ions loading on rice husk ash (RHA), dosage of catalyst, initial pH, the initial hydrogen peroxide concentration ([H(2)O(2)](o)), the initial concentration of AR1 ([AR1](o)) and the reaction temperature on the decolorization of AR1 was studied. The optimal reacting conditions were found to be 0.070 wt.% of iron (III) oxide loading on RHA, dosage of catalyst=5.0 g L(-1), initial pH=2.0, [H(2)O(2)](o)=8 mM, [AR1](o)=50 mg L(-1) at temperature 30 degrees C. Under optimal condition, 96% decolorization efficiency of AR1 was achieved within 120 min of reaction.
  16. Yavari S, Sapari NB, Malakahmad A, Yavari S
    J Hazard Mater, 2019 03 15;366:636-642.
    PMID: 30579230 DOI: 10.1016/j.jhazmat.2018.12.022
    Imidazolinones as a persistent and active herbicides group have potential risks to non-target organisms in the environment. Biochar is a carbon-rich sorbent used as an amendment to change soil properties and its microbial communities effective on pesticides degradation rate. The present study was the first to compare empty fruit bunch (EFB) of oil palm and rice husk (RH) biomasses as biochar feedstock for remediation of imidazolinones-contaminated soils. Degradations of imazapic, imazapyr, and a mixture of them (Onduty®) was investigated in the presence of the optimized biochars in the soil during a 70-days incubation. Based on the results, the polar herbicides were resistant to hydrolysis degradation. Photolysis rates of the herbicides reduced significantly in the presence of the biochars in the soil. EFB biochar had greater effects due to its chemical compositions and surface functional groups. Photo-degradation of imazapyr was more affected by biochars amendment. The imidazolinones bio-degradation, however, accelerated significantly with the presence of EFB and RH biochars in soil with the greater effects of RH biochar. It was concluded that the application of the optimized EFB and RH biochars as an innovative sustainable strategy has the potential to decrease the persistence of the imidazolinones and minimize their environmental hazards.
  17. Hameed BH, Lee TW
    J Hazard Mater, 2009 May 30;164(2-3):468-72.
    PMID: 18804913 DOI: 10.1016/j.jhazmat.2008.08.018
    In this study, advanced oxidation process utilizing Fenton's reagent was investigated for degradation of malachite green (MG). The effects of different reaction parameters such as the initial MG concentration, initial pH, the initial hydrogen peroxide concentration, the initial ferrous concentration and the reaction temperature on the oxidative degradation of MG have been investigated. The optimal reacting conditions were experimentally found to be pH 3.40, initial hydrogen peroxide concentration=0.50mM and initial ferrous concentration=0.10mM for initial MG concentration of 20mg/L at 30 degrees C. Under optimal conditions, 99.25% degradation efficiency of dye in aqueous solution was achieved after 60 min of reaction.
  18. Foo KY, Hameed BH
    J Hazard Mater, 2010 Mar 15;175(1-3):1-11.
    PMID: 19879688 DOI: 10.1016/j.jhazmat.2009.10.014
    Concern about environmental protection has increased over the years from a global viewpoint. To date, the percolation of pesticide waste into the groundwater tables and aquifer systems remains an aesthetic issue towards the public health and food chain interference. With the renaissance of activated carbon, there has been a consistent growing interest in this research field. Confirming the assertion, this paper presents a state of art review of pesticide agrochemical practice, its fundamental characteristics, background studies and environmental implications. Moreover, the key advance of activated carbon adsorption, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbon adsorption represents a plausible and powerful circumstance, leading to the superior improvement of environmental preservation.
  19. Jamil A, Ching OP, Iqbal T, Rafiq S, Zia-Ul-Haq M, Shahid MZ, et al.
    J Hazard Mater, 2021 Sep 05;417:126000.
    PMID: 33992016 DOI: 10.1016/j.jhazmat.2021.126000
    This study presents an extended thermodynamic and phenomenological combined model to mitigate the environmental hazardous acid gas over composite membranes. The model has been applied to an acid gas such as carbon dioxide (CO2) for its permeation through polyetherimide incorporated montmorillonite (Mt) nanoparticles hollow fiber asymmetric composite membranes. The well-established non-equilibrium lattice fluid (NELF) model for penetrating low molecular weight penetrant in a glassy polyetherimide (PEI) was extended to incorporate the other important polymer/filler system features such as tortuosity in acid gas diffusion pathways resulted from layered filler aspect ratio and concentration. The model mentioned above predicts the behavior of acid gas in PEI-Mt composite membranes based on thermodynamic characteristics of CO2 and PEI and tortuosity due to Mt. The calculated results are compared to experimentally determined values of CO2 permeability through PEI-Mt composite asymmetric hollow fiber membranes at varying transmembrane pressures and Mt concentrations. A reasonable agreement was found between the model predicted behavior and experimentally determined data in terms of CO2 solubility, Mt concentration and aspect ratio were calculated based on average absolute relative error (%AARE). The proposed modified model efficiently predicts the CO2 permeance across MMMs up to 3 wt% Mt loadings and 6 bar pressure with ± 10%AARE.
  20. Khoo SC, Peng WX, Yang Y, Ge SB, Soon CF, Ma NL, et al.
    J Hazard Mater, 2020 12 05;400:123296.
    PMID: 32947701 DOI: 10.1016/j.jhazmat.2020.123296
    Synthetic adhesives in the plywood industry are usually volatile compounds such as formaldehyde-based chemical which are costly and hazardous to health and the environment. This phenomenon promotes an interest in developing bio-boards without synthetic adhesives. This study proposed a novel application of natural mycelium produced during mushroom cultivation as natural bio-adhesive material that convert spent mushroom substrate (SMS) into high-performance bio-board material. Different types of spent mushroom substrates were compressed with specific designed mould with optimal temperature at 160 °C and 10 mPa for 20 min. The bio-board made from Ganoderma lucidum SMS had the highest internal bonding strength up to 2.51 mPa. This is far above the 0.4-0.8 range of China and US national standards. In addition, the material had high water and fire resistance, high bonding and densified structures despite free of any adhesive chemicals. These properties and the low cost one step procedure show the potential as a zero-waste economy chain for sustainable agricultural practice for waste and remediation.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links