Displaying publications 61 - 80 of 172 in total

Abstract:
Sort:
  1. Behera DP, Kolandhasamy P, Sigamani S, Devi LP, Ibrahim YS
    Mar Pollut Bull, 2021 Apr;165:112100.
    PMID: 33581571 DOI: 10.1016/j.marpolbul.2021.112100
    Marine debris is a global issue with adverse impacts on marine organisms, ecological processes, aesthetics, and economies of nations. Several studies have been conducted to quantify the plastic debris along Indian beaches. This baseline study describes the results of a survey conducted on the types of plastic litters and their quantification during January to March 2020 along Mandvi beach in Gujarat. A quadrate having 10 × 10 m size was used for sampling the plastic litter on the shoreline. A total of 10 quadrates along the shore was considered for quantification of the plastic materials based on their density, color, and weight. The plastic material observed includes gutkha pouches, food wrappers, and fragments, along with plastic straws, cutleries, and fragments of various dimensions and thickness. The major contributing factors for the debris abundance in Mandvi beach are land-based sources and recreational activities. The results suggest that similar long-term projects covering extensive areas should be undertaken for accurate quantification of available debris and their impacts on coastal habitats of Gujarat.
  2. Hamzah SR, Altrawneh RS, Anuar ST, Khalik WMAWM, Kolandhasamy P, Ibrahim YS
    Mar Pollut Bull, 2021 Sep;170:112617.
    PMID: 34139586 DOI: 10.1016/j.marpolbul.2021.112617
    In this study, the ingestion of microplastics by the deposit-feeding polychaete Namalycastis sp. in the estuarine area of the Setiu Wetlands, Malaysia was confirmed. Samples were collected from six stations, covering the wetland from the south to the north, bimonthly between November 2016 and November 2017. Microplastics were extracted from polychaete samples following digestion in an alkaline solution (10 M NaOH). They were identified by physical characteristics (i.e., shape and color under dissecting microscope and scanning electron microscope), and chemical analysis using a LUMOS Fourier Transform Infrared Microscope (μ-FTIR). A total of 3277 pieces were identified, which were dominated by filaments (99.79%) and with the majority transparent in color (84.71%). Most of the microplastics identified were polypropylene (PP) followed by polyamide (PA) based on their main peak in the of μ-FTIR spectrum. Principal component analysis demonstrated the dominance of microplastics at stations 3 and 4 of the sampling area, probably because of the influx from the open sea and from aquaculture. The findings of this research provide baseline information on microplastics ingested by benthic organisms and their fate in the estuarine food web.
  3. Yusof KMKK, Anuar ST, Mohamad Y, Jaafar M, Mohamad N, Bachok Z, et al.
    Mar Pollut Bull, 2023 Sep;194(Pt B):115268.
    PMID: 37451046 DOI: 10.1016/j.marpolbul.2023.115268
    Malaysia is bounded by the South China Sea with many islands that support species megadiversity and coral reef ecosystems. This study investigates the distribution of microplastics (MPs) in the surface water around the four marine park islands (Perhentian, Redang, Kapas, and Tenggol) during COVID-19. The global pandemic has reset human activities, impacting the environment while possibly reducing anthropogenic contributions of microplastic pollution near the South China Sea islands. It was found that Pulau Perhentian recorded the most abundance of MPs (588.33 ± 111.77 items/L), followed by Pulau Redang (314.67 ± 58.08 items/L), Pulau Kapas (359.8 ± 87.70 items/L) and Pulau Tenggol (294.33 ± 101.64 items/L). Kruskal-Wallis analysis indicates a significant difference in total MPs abundance between islands. There are moderate correlations between salinity, pH, temperature and MPs variability. Among these parameters, only temperature is significant (p 
  4. Rakib MRJ, Ertaş A, Walker TR, Rule MJ, Khandaker MU, Idris AM
    Mar Pollut Bull, 2022 Jan;174:113246.
    PMID: 34952406 DOI: 10.1016/j.marpolbul.2021.113246
    Macro-sized marine litter (>2.5 cm) was collected, characterized, and enumerated along the Cox's Bazar Coast, Bangladesh. Marine litter abundance was converted to density (number of items/m2). Beach cleanliness was evaluated using the clean-coast index (CCI). Plastic polythene bags were the most abundant litter items, followed by plastic cups. Total marine litter abundance was 54,401 ± 184 items. Major sources of marine litter were from tourism, fishery and residential activities. Of 10 sites surveyed, two were classified as dirty, two were moderate, four were clean and two were very clean using the CCI. Marine litter pollution along the Cox's Bazar Coast represents a potential threat to coastal and marine environments. This baseline study will help to establish mitigation strategies that are urgently required to reduce marine litter pollution along the Cox's Bazar Coast.
  5. Islam MS, Phoungthong K, Islam ARMT, Ali MM, Ismail Z, Shahid S, et al.
    Mar Pollut Bull, 2022 Dec;185(Pt B):114362.
    PMID: 36410195 DOI: 10.1016/j.marpolbul.2022.114362
    Marine debris is often detected everywhere in the oceans after it enters the marine ecosystems from various sources. Marine litter pollution is a major threat to the marine ecosystem in Bangladesh. A preliminary study was conducted to identify the sources of marine litter (plastics, foamed plastic, clothes, glass, ceramic, metals, paper, and cardboard) along the Bay of Bengal coast. From the observations, the range of abundance of the collected marine litter was 0.14-0.58 items/m2. From the ten sampling sites, the highest amount of marine litter was observed for aluminium cans (3500), followed by plastic bottles (3200). The spatial distribution pattern indicated that all the study areas had beach litter of all types of materials. The present investigation showed that plastics were the dominating pollutants in the marine ecosystem in Bangladesh. The clean-coast index (CCI) value indicated that the Cox's Bazar coast was clean to dirty class. The abundance, distribution, and pollution of marine litter along the coastal belts pose a potential threat to the entire ecosystem. This study will help come up with ways to manage and get rid of marine litter along the coast in an effective way.
  6. Islam MS, Islam MT, Antu UB, Saikat MSM, Ismail Z, Shahid S, et al.
    Mar Pollut Bull, 2023 Dec;197:115720.
    PMID: 37939519 DOI: 10.1016/j.marpolbul.2023.115720
    Safe levels of heavy metals in the surface water and sediment of the eastern Bay of Bengal coast have not been universally established. Current study characterized heavy metals such as arsenic (As), chromium (Cr), cadmium (Cd) and lead (Pb) in surface water and sediments of the most important fishing resource at the eastern Bay of Bengal coast, Bangladesh. Both water and sediment samples were analyzed using inductively coupled plasma mass spectrometer. Considering both of the seasons, the mean concentrations of Cr, As, Cd, and Pb in water samples were 33.25, 8.14, 0.48, and 21.14 μg/L, respectively and in sediment were 30.47, 4.48, 0.20, and 19.98 mg/kg, respectively. Heavy metals concentration in water samples surpassed the acceptable limits of usable water quality, indicating that water from this water resource is not safe for drinking, cooking, bathing, and any other uses. Enrichment factors also directed minor enrichment of heavy metals in sediment of the coast. Other indexes for ecological risk assessment such as pollution load index (PLI), contamination factor (CF), geoaccumulation index (Igeo), modified contamination degree (mCd), and potential ecological risk index (PERI) also indicated that sediment of the coastal watershed was low contamination. In-depth inventorying of heavy metals in both water and sediment of the study area are required to determine ecosystem health for holistic risk assessment and management.
  7. Mishra M, Acharyya T, Kar D, Debanath M, Santos CAG, Silva RMD, et al.
    Mar Pollut Bull, 2021 Nov;172:112881.
    PMID: 34454383 DOI: 10.1016/j.marpolbul.2021.112881
    In this study, we have analyzed how geo-ecological cues for endangered Olive Ridley turtles' mass nesting behavior got modified by impact of four severe cyclones during 2010-2019 that made landfall in the vicinity of Rushikulya estuary, which is one of the largest mass nesting congregation (arribada) sites in the world. Analyzing last 10 years of shoreline dynamics, we show that even the slightest modification in beach morphology influenced their nesting behavior in Rushikulya rookery. Shoreline change analysis showed periodic phases of high/low erosion and the northward longshore sediment movement, which becomes impeded by the southern spit, the length of which increased by about 1800 m. During the analyzed period, the nesting behavior of Olive Ridley turtle was greatly influenced by changes in land use and land cover pattern around the Rushikulya rookery. Such reductions in tree cover and marshy land areas were majorly driven by anthropogenic activities and extreme weather events, such as cyclones. We also report increased mortality of turtles, no or false mass nesting events due to significant loss and/or erosion of the nesting sites due to cyclones. The results indicate that conservation of Olive Ridley turtles should be more holistic, or ecosystem centric, rather than species centric. It is important to maintain the ecological integrity of their habitat for highly synchronized mass nesting event and eventually their survival.
  8. Rahmatin NM, Soegianto A, Irawan B, Payus CM, Indriyasari KN, Marchellina A, et al.
    Mar Pollut Bull, 2024 Jan;198:115906.
    PMID: 38070399 DOI: 10.1016/j.marpolbul.2023.115906
    This study evaluated microplastic (MP) abundances and physico-chemical characteristics in sediments and Anadara granosa along the East Java coast and their health implications. Fibers (74 %) dominated sediment MPs at south coast, while fragments (49-61 %) dominated north coast. Fiber (43-52 %) is the predominant MP in cockle tissues in all locations. Most MP in sediments (31-47 %) and cockle tissues (41-49 %) is black. The majority of microplastics (100-1500 μm) are found in sediment (73-90 %), and cockles (77-79 %). Very weak correlations found between the amount of MP and the length of the cockle shell. However, Spearman correlation shows that as the amount of MP in sediment increases, so does the amount of MP in cockle tissue. Each year, individuals of varying ages consume an average of 20,800 to 156,000 MP items. Cockles contain plasticizer components and microplastic polymers which are classified from II to V regarding of hazard levels, with V being the most hazardous.
  9. Marchellina A, Soegianto A, Putranto TWC, Mukholladun W, Payus CM, Irnidayanti Y
    Mar Pollut Bull, 2024 Apr 14;202:116375.
    PMID: 38621352 DOI: 10.1016/j.marpolbul.2024.116375
    The massive industrial growth in Gresik, East Java, Indonesia has the potential to result in metal contamination in the nearby coastal waters. The purpose of this study was to analyze the metal concentrations in edible species from the Gresik coastal waters and evaluate the potential health risks linked to this metal contamination. Metal concentrations (Cu, Fe, Pb, Zn, As, Cd, Ni, Hg, and Cr) in fish and shrimp samples mostly met the maximum limits established by national and international regulatory organizations. The concentrations of As in Scatophagus argus exceed both the permissible limit established by Indonesia and the provisional tolerable weekly intake (PTWI). The As concentration in Arius bilineatus is equal to the PTWI. The target cancer risk (TCR) values for both As and Cr in all analyzed species exceed the threshold of 0.0001, suggesting that these two metals possess the potential to provide a cancer risk to humans.
  10. Khandaker MU, Asaduzzaman K, Sulaiman AFB, Bradley DA, Isinkaye MO
    Mar Pollut Bull, 2018 Feb;127:654-663.
    PMID: 29475708 DOI: 10.1016/j.marpolbul.2017.12.055
    Study is made of the radioactivity in the beach sands of Langkawi island, a well-known tourist destination. Investigation is made of the relative presence of the naturally occurring radionuclide 40K and the natural-series indicator radionuclides 226Ra and 232Th, the gamma radiation exposure also being estimated. Sample quantities of black and white sand were collected for gamma ray spectrometry, yielding activity concentration in black sands of 226Ra, 232Th and 40K from 451±9 to 2411±65Bqkg-1 (mean of 1478Bqkg-1); 232±4 to 1272±35Bqkg-1 (mean of 718Bqkg-1) and 61±6 to 136±7Bqkg-1 (mean of 103Bqkg-1) respectively. Conversely, in white sands the respective values for 226Ra and 232Th were appreciably lower, at 8.3±0.5 to 13.7±1.4Bqkg-1 (mean of 9.8Bqkg-1) and 4.5±0.7 to 9.4±1.0Bqkg-1 (mean of 5.9Bqkg-1); 40K activities differed insubstantially from that in black sands, at 85±4 to 133±7Bqkg-1 with a mean of 102Bqkg-1. The mean activity concentrations of 226Ra and 232Th in black sands are comparable with that of high background areas elsewhere in the world. The heavy minerals content gives rise to elevated 226Ra and 232Th activity concentrations in all of black sand samples. Evaluation of the various radiological risk parameters points to values which in some cases could be in excess of recommendations providing for safe living and working. Statistical analysis examines correlations between the origins of the radionuclides, also identifying and classifying the radiological parameters. Present results may help to form an interest in rare-earth resources for the electronics industry, power generation and the viability of nuclear fuels cycle resources.
  11. Mohamat-Yusuff F, Zulkarnain Z, Anuar NZA, Joni AAM, Kusin FM, Mohamed KN, et al.
    Mar Pollut Bull, 2020 Dec;161(Pt A):111698.
    PMID: 33022498 DOI: 10.1016/j.marpolbul.2020.111698
    Examination of the impact of Diuron contamination on blood cockles (Tegillarca granosa) was conducted by combining field screening at three sampling events and a toxicity test. Diuron was extracted using the liquid-liquid extraction (LLE) technique and analyzed using HPLC-UV. The median lethal concentration (LC50) of Diuron on T. granosa was tested under a 72-h exposure. Diuron in water samples ranged from not detected (ND) to 3910 ppb, which was the highest concentration detected in samples after the irrigation water was discharged from the paddy plantation. Diuron was not detected in sediment samples. Mortality of T. granosa ranged from 4.74 to 38.33% with the highest percentages recorded after the release of the irrigation water. The LC50 value of Diuron was 1.84 ppm. This study suggests that irrigation water from paddy plantation that drifts to coastal areas containing Diuron harms T. granosa at the study area.
  12. Mohamat-Yusuff F, Sarah-Nabila AG, Zulkifli SZ, Azmai MNA, Ibrahim WNW, Yusof S, et al.
    Mar Pollut Bull, 2018 Feb;127:150-153.
    PMID: 29475647 DOI: 10.1016/j.marpolbul.2017.11.046
    This study was conducted to investigate the median lethal concentration (LC50) of copper pyrithione (CuPT) at 96-hr exposure on adult Javanese medaka (Oryzias javanicus) in revealing toxicological effects of CuPT contamination in the tropical area. Wild stock fishes were acclimatized for 14-days prior analysis. Triplicate of test tanks for seven test concentrations were placed with ten fishes each, this includes two control tanks. The behaviour of the tested fishes was manually observed through a camera. The LC50 of CuPT at 96-h was found to be 16.58mg/L. Tested fishes swam slowly in vertical movement and swam fast towards food during feeding time as the sign of stress behaviour. Meanwhile, fishes in the two control groups swam actively in a horizontal manner and no excitement during feeding time. No mortality in control groups. Results indicate CuPT to be toxic to Javanese medaka at low concentration and caused behavioural stress.
  13. Hanapiah M, Zulkifli SZ, Mustafa M, Mohamat-Yusuff F, Ismail A
    Mar Pollut Bull, 2018 Feb;127:453-457.
    PMID: 29475685 DOI: 10.1016/j.marpolbul.2017.12.015
    Diuron is an alternative biocide suggested to replace organotin in formulating antifouling paints to be applied on water-going vessels hull. However, it is potentially harmful to various non-targeted marine organisms due to its toxic properties. Present study aimed to isolate, screen and identify the potential of Diuron-degrading bacteria collected from the marine sediments of Port Klang, Malaysia. Preliminary screening was conducted by exposing isolated bacteria to 430ng/L (background level), followed by 600ng/L and 1000ng/L of Diuron concentrations. Nine bacteria colonies survived the exposure of the above concentrations. However, only two strains can tolerate to survive up to 1000μg/L, which were then characterised and identified using phenotypic tests and the standard 16S rRNA molecular identification. The strains were identified as Comamonas jiangduensis SZZ 10 and Bacillus aerius SZZ 19 (GenBank accession numbers: KU942479 and KU942480, respectively). Both strains have the potential of Diuron biodegradation for future use.
  14. Praveena SM, Chen KS, Ismail SN
    Mar Pollut Bull, 2013 Nov 15;76(1-2):417-9.
    PMID: 24050128 DOI: 10.1016/j.marpolbul.2013.08.028
    This study aims to determine the concentrations of total coliforms and Escherichia coli (E. coli) in beach water, Teluk Kemang beach. This study was also aimed to determine relationship between total coliforms, E. coli and physicochemical parameters. As perceived health symptoms among beach visitors are rarely incorporated in beach water studies, this element was also assessed in this study. A total of eight water sampling points were selected randomly along Teluk Kemang beach. Total coliforms concentrations were found between 20 and 1940 cfu/100ml. E. coli concentrations were between 0 and 90 cfu/100ml. Significant correlations were found between total coliforms and E. coli with pH, temperature and oxidation reduction potential. Skin and eyes symptoms were the highest reported though in small numbers. Microbiological water quality in Teluk Kemang public beach was generally safe for recreational activities except sampling location near with sewage outfall.
  15. Yusup Y, Swesi AE, Sigid MF, Almdhun HM, Jamshidi EJ
    Mar Pollut Bull, 2023 Aug;193:115106.
    PMID: 37302202 DOI: 10.1016/j.marpolbul.2023.115106
    This paper analyzes CO2 flux between the atmosphere and a tropical coastal sea using the eddy covariance technique. Coastal carbon dioxide flux studies are limited, particularly in tropical regions. Data was collected from the study site in Pulau Pinang, Malaysia, since 2015. The research found that the site is a moderate CO2 sink and experiences seasonal monsoonal changes that affect its carbon-sink or carbon-source capability. The analysis showed that the coastal sea systematically shifted from being a carbon-sink at night to a weak carbon-source during the day possibly due to cause by the synergistic influence of wind speed and seawater temperature. The CO2 flux are also influenced by small-scale, unpredictable winds, limited fetch, developing waves, and high-buoyancy conditions caused by low wind speeds and an unstable surface layer. Furthermore, it exhibited a linear relationship with wind speed. In stable conditions, the flux was influenced by wind speed and drag coefficient, while in unstable conditions, it was mostly controlled by friction velocity and atmospheric stability. These findings could improve our understanding of the critical factors that drive CO2 flux at the tropical coast.
  16. Sreenivasulu G, Praseetha BS, Daud NR, Varghese TI, Prakash TN, Jayaraju N
    Mar Pollut Bull, 2019 Jan;138:341-351.
    PMID: 30660283 DOI: 10.1016/j.marpolbul.2018.11.058
    The benthic foraminiferal diversity index was computed from Beypore estuary sediments. The abundance and diversity of Quinqueloculina lata, Textularia agglutinans, Haplophagmoides canariensis, and Quinqueloculina stelligera were dominated by stress-tolerant taxa such as Ammonia tepida, A.parkinsoniana, Nonion grateloupi, and N. scaphum in the estuary. The small-size foraminifera probably perished in a juvenile stage because of the high temperature and low salinity that prevailed in the ecosystem. The dominance of stress tolerant benthic foraminifera and absence of Elphidium species in the estuary suggest the prevalence of hypoxic (low-oxygen) conditions. The consistent low-diversity index of foraminifera indicates that the ecosystem is moderate to highly stressed ecologically in the Beypore estuary. The application of benthic foraminifera as a bioindicator for assessing the environmental stress in the Beypore estuary is key in monitoring these fragile coastal ecosystems.
  17. Santodomingo N, Perry C, Waheed Z, Syed Hussein MAB, Rosedy A, Johnson KG
    Mar Pollut Bull, 2021 Dec;173(Pt A):112998.
    PMID: 34624630 DOI: 10.1016/j.marpolbul.2021.112998
    Marine litter is recognized as an increasing component of marine ecosystem pollution. In this baseline study, we document the magnitude, types, sources, and potential impacts of litter on six coral reefs in East Sabah. We applied a simplified classification of litter to extract abundance data from video transects. The average density was 10.7 items per 100 m2. Plastics represent 91% and the remaining 9% were metal, glass, and wood. Most (~70%) plastics are single-use items derived from dumping. Discarded fishing gear accounts for ~25%. Litter pollution increases closer to urban developments, with Sakar reef having higher densities (51 items per 100 m2), and higher Clean Coast Index (CCI = 10.2, dirty) and higher Plastic Abundance Index (PAI = 4.68) scores. This method could and should be readily integrated into ongoing monitoring programs to support assessments of the extent and magnitude of marine litter pollution on reefs worldwide.
  18. Gazzaz NM, Yusoff MK, Ramli MF, Aris AZ, Juahir H
    Mar Pollut Bull, 2012 Apr;64(4):688-98.
    PMID: 22330076 DOI: 10.1016/j.marpolbul.2012.01.032
    This study employed three chemometric data mining techniques (factor analysis (FA), cluster analysis (CA), and discriminant analysis (DA)) to identify the latent structure of a water quality (WQ) dataset pertaining to Kinta River (Malaysia) and to classify eight WQ monitoring stations along the river into groups of similar WQ characteristics. FA identified the WQ parameters responsible for variations in Kinta River's WQ and accentuated the roles of weathering and surface runoff in determining the river's WQ. CA grouped the monitoring locations into a cluster of low levels of water pollution (the two uppermost monitoring stations) and another of relatively high levels of river pollution (the mid-, and down-stream stations). DA confirmed these clusters and produced a discriminant function which can predict the cluster membership of new and/or unknown samples. These chemometric techniques highlight the potential for reasonably reducing the number of WQVs and monitoring stations for long-term monitoring purposes.
  19. Rozainah MZ, Nazri MN, Sofawi AB, Hemati Z, Juliana WA
    Mar Pollut Bull, 2018 Dec;137:237-245.
    PMID: 30503430 DOI: 10.1016/j.marpolbul.2018.10.023
    This paper evaluated the total carbon stock of mangrove ecosystems in two contrasting sites: a fishing village in Delta Kelantan (DK) and Ramsar sites in Johor Park (JP). In both sites, aboveground carbon was significantly higher than belowground carbon, and stems contained more carbon than leaf and root partitions. The average carbon concentration of individual mangrove species (44.9-48.1%) was not significantly different but the larger biomass of the DK samples resulted in vegetation carbon stock that was higher than that in JP. Season played an important role in soil carbon stock-a pronounced wet season in DK coincided with the dry season in JP. The total carbon pool was estimated to be 427.88 t ha-1 in JP and 512.51 t ha-1 in DK, where at least 80% was contributed by soil carbon. The carbon dioxide equivalent was 1570.32 t ha-1 CO2e (JP) and 1880.91 t ha-1 CO2e (DK).
  20. Sarbatly R, Krishnaiah D, Kamin Z
    Mar Pollut Bull, 2016 May 15;106(1-2):8-16.
    PMID: 27016959 DOI: 10.1016/j.marpolbul.2016.03.037
    The growths of oil and gas exploration and production activities have increased environmental problems, such as oil spillage and the resulting pollution. The study of the methods for cleaning up oil spills is a critical issue to protect the environment. Various techniques are available to contain oil spills, but they are typically time consuming, energy inefficient and create secondary pollution. The use of a sorbent, such as a nanofibre sorbent, is a technique for controlling oil spills because of its good physical and oil sorption properties. This review discusses about the application of nanofibre sorbent for oil removal from water and its current developments. With their unique physical and mechanical properties coupled with their very high surface area and small pore sizes, nanofibre sorbents are alternative materials for cleaning up oil spills.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links