Displaying publications 61 - 80 of 147 in total

Abstract:
Sort:
  1. Marjoribanks J, Farquhar C, Roberts H, Lethaby A, Lee J
    Cochrane Database Syst Rev, 2017 Jan 17;1(1):CD004143.
    PMID: 28093732 DOI: 10.1002/14651858.CD004143.pub5
    BACKGROUND: Hormone therapy (HT) is widely provided for control of menopausal symptoms and has been used for the management and prevention of cardiovascular disease, osteoporosis and dementia in older women. This is an updated version of a Cochrane review first published in 2005. OBJECTIVES: To assess effects of long-term HT (at least 1 year's duration) on mortality, cardiovascular outcomes, cancer, gallbladder disease, fracture and cognition in perimenopausal and postmenopausal women during and after cessation of treatment. SEARCH METHODS: We searched the following databases to September 2016: Cochrane Gynaecology and Fertility Group Trials Register, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase and PsycINFO. We searched the registers of ongoing trials and reference lists provided in previous studies and systematic reviews. SELECTION CRITERIA: We included randomised double-blinded studies of HT versus placebo, taken for at least 1 year by perimenopausal or postmenopausal women. HT included oestrogens, with or without progestogens, via the oral, transdermal, subcutaneous or intranasal route. DATA COLLECTION AND ANALYSIS: Two review authors independently selected studies, assessed risk of bias and extracted data. We calculated risk ratios (RRs) for dichotomous data and mean differences (MDs) for continuous data, along with 95% confidence intervals (CIs). We assessed the quality of the evidence by using GRADE methods. MAIN RESULTS: We included 22 studies involving 43,637 women. We derived nearly 70% of the data from two well-conducted studies (HERS 1998; WHI 1998). Most participants were postmenopausal American women with at least some degree of comorbidity, and mean participant age in most studies was over 60 years. None of the studies focused on perimenopausal women.In relatively healthy postmenopausal women (i.e. generally fit, without overt disease), combined continuous HT increased the risk of a coronary event (after 1 year's use: from 2 per 1000 to between 3 and 7 per 1000), venous thromboembolism (after 1 year's use: from 2 per 1000 to between 4 and 11 per 1000), stroke (after 3 years' use: from 6 per 1000 to between 6 and 12 per 1000), breast cancer (after 5.6 years' use: from 19 per 1000 to between 20 and 30 per 1000), gallbladder disease (after 5.6 years' use: from 27 per 1000 to between 38 and 60 per 1000) and death from lung cancer (after 5.6 years' use plus 2.4 years' additional follow-up: from 5 per 1000 to between 6 and 13 per 1000).Oestrogen-only HT increased the risk of venous thromboembolism (after 1 to 2 years' use: from 2 per 1000 to 2 to 10 per 1000; after 7 years' use: from 16 per 1000 to 16 to 28 per 1000), stroke (after 7 years' use: from 24 per 1000 to between 25 and 40 per 1000) and gallbladder disease (after 7 years' use: from 27 per 1000 to between 38 and 60 per 1000) but reduced the risk of breast cancer (after 7 years' use: from 25 per 1000 to between 15 and 25 per 1000) and clinical fracture (after 7 years' use: from 141 per 1000 to between 92 and 113 per 1000) and did not increase the risk of coronary events at any follow-up time.Women over 65 years of age who were relatively healthy and taking continuous combined HT showed an increase in the incidence of dementia (after 4 years' use: from 9 per 1000 to 11 to 30 per 1000). Among women with cardiovascular disease, use of combined continuous HT significantly increased the risk of venous thromboembolism (at 1 year's use: from 3 per 1000 to between 3 and 29 per 1000). Women taking HT had a significantly decreased incidence of fracture with long-term use.Risk of fracture was the only outcome for which strong evidence showed clinical benefit derived from HT (after 5.6 years' use of combined HT: from 111 per 1000 to between 79 and 96 per 1000; after 7.1 years' use of oestrogen-only HT: from 141 per 1000 to between 92 and 113 per 1000). Researchers found no strong evidence that HT has a clinically meaningful impact on the incidence of colorectal cancer.One trial analysed subgroups of 2839 relatively healthy women 50 to 59 years of age who were taking combined continuous HT and 1637 who were taking oestrogen-only HT versus similar-sized placebo groups. The only significantly increased risk reported was for venous thromboembolism in women taking combined continuous HT: Their absolute risk remained low, at less than 1/500. However, other differences in risk cannot be excluded, as this study was not designed to have the power to detect differences between groups of women within 10 years of menopause.For most studies, risk of bias was low in most domains. The overall quality of evidence for the main comparisons was moderate. The main limitation in the quality of evidence was that only about 30% of women were 50 to 59 years old at baseline, which is the age at which women are most likely to consider HT for vasomotor symptoms. AUTHORS' CONCLUSIONS: Women with intolerable menopausal symptoms may wish to weigh the benefits of symptom relief against the small absolute risk of harm arising from short-term use of low-dose HT, provided they do not have specific contraindications. HT may be unsuitable for some women, including those at increased risk of cardiovascular disease, increased risk of thromboembolic disease (such as those with obesity or a history of venous thrombosis) or increased risk of some types of cancer (such as breast cancer, in women with a uterus). The risk of endometrial cancer among women with a uterus taking oestrogen-only HT is well documented.HT is not indicated for primary or secondary prevention of cardiovascular disease or dementia, nor for prevention of deterioration of cognitive function in postmenopausal women. Although HT is considered effective for the prevention of postmenopausal osteoporosis, it is generally recommended as an option only for women at significant risk for whom non-oestrogen therapies are unsuitable. Data are insufficient for assessment of the risk of long-term HT use in perimenopausal women and in postmenopausal women younger than 50 years of age.
  2. Lumbiganon P, Martis R, Laopaiboon M, Festin MR, Ho JJ, Hakimi M
    Cochrane Database Syst Rev, 2016 Dec 06;12(12):CD006425.
    PMID: 27922724 DOI: 10.1002/14651858.CD006425.pub4
    BACKGROUND: Breast milk is well recognised as the best food source for infants. The impact of antenatal breastfeeding (BF) education on the duration of BF has not been evaluated.

    OBJECTIVES: To assess the effectiveness of antenatal breastfeeding (BF) education for increasing BF initiation and duration.

    SEARCH METHODS: We searched Cochrane Pregnancy and Childbirth's Trials Register on 1 March 2016, CENTRAL (The Cochrane Library, 2016, Issue 3), MEDLINE (1966 to 1 March 2016) and Scopus (January 1985 to 1 March 2016). We contacted experts and searched reference lists of retrieved articles.

    SELECTION CRITERIA: All identified published, unpublished and ongoing randomised controlled trials (RCTs) assessing the effect of formal antenatal BF education or comparing two different methods of formal antenatal BF education, on the duration of BF. We included RCTs that only included antenatal interventions and excluded those that combined antenatal and intrapartum or postpartum BF education components. Cluster-randomised trials were included in this review. Quasi-randomised trials were not eligible for inclusion.

    DATA COLLECTION AND ANALYSIS: We assessed all potential studies identified as a result of the search strategy. Two review authors extracted data from each included study using the agreed form and assessed risk of bias. We resolved discrepancies through discussion. We assessed the quality of the evidence using the GRADE approach.

    MAIN RESULTS: This review update includes 24 studies (10,056 women). Twenty studies (9789 women) contribute data to analyses. Most studies took place in high-income countries such as the USA, UK, Canada and Australia. In the first five comparisons, we display the included trials according to type of intervention without pooling data. For the 'Summary of findings' we pooled data for a summary effect.Five included studies were cluster-randomised trials: all of these adjusted data and reported adjustments as odds ratios (OR). We have analysed the data using the generic inverse variance method and presented results as odds ratios, because we were unable to derive a cluster-adjusted risk ratio from the published cluster-trial. We acknowledge that the use of odds ratio prevents the pooling of these cluster trials in our main analyses. One method of BF education with standard (routine) careThere were no group differences for duration of any BF in days or weeks. There was no evidence that interventions improved the proportion of women with any BF or exclusive BF at three or six months. Single trials of different interventions were unable to show that education improved initiation of BF, apart from one small trial at high risk of attrition bias. Many trial results marginally favoured the intervention but had wide confidence intervals crossing the line of no effect. BF complications such as mastitis and other BF problems were similar in treatment arms in single trials reporting these outcomes. Multiple methods of BF education versus standard careFor all trials included in this comparison we have presented the cluster-adjusted odds ratios as reported in trial publications. One three-arm study found the intervention of BF booklet plus video plus Lactation Consultant versus standard care improved the proportion of women exclusively BF at three months (OR 2.60, 95% CI 1.25 to 5.40; women = 159) and marginally at six months (OR 2.40, 95% CI 1.00 to 5.76; women = 175). For the same trial, an intervention arm without a lactation consultant but with the BF booklet and video did not have the same effect on proportion of women exclusively BF at three months (OR 1.80, 95% CI 0.80 to 4.05; women = 159) or six months (OR 0.90, 95% CI 0.30 to 2.70; women = 184). One study compared monthly BF sessions and weekly cell phone message versus standard care and reported improvements in the proportion of women exclusively BF at both three and six months (three months OR 1.80, 95% CI 1.10 to 2.95; women = 390; six months OR 2.40, 95% CI 1.40 to 4.11; women = 390). One study found monthly BF sessions and weekly cell phone messages improved initiation of BF over standard care (OR 2.61, 95% CI 1.61 to 4.24; women = 380). BF education session versus standard care, pooled analyses for 'Summary of findings' (SoF)This comparison does not include cluster-randomised trials reporting adjusted odds ratios. We did not downgrade any evidence for trials' lack of blinding; no trial had adequate blinding of staff and participants. The SoF table presents risk ratios for all outcomes analysed. For proportion of women exclusively BF there is no evidence that antenatal BF education improved BF at three months (RR 1.06, 95% CI 0.90 to 1.25; women = 822; studies = 3; moderate quality evidence) or at six months (RR 1.07, 95% CI 0.87 to 1.30; women = 2161; studies = 4; moderate quality evidence). For proportion of women with any BF there were no group differences in BF at three (average RR 0.98, 95% CI 0.82 to 1.18; women = 654; studies = 2; I² = 60%; low-quality evidence) or six months (average RR 1.05, 95% CI 0.90 to 1.23; women = 1636; studies = 4; I² = 61%; high-quality evidence). There was no evidence that antenatal BF education could improve initiation of BF (average RR 1.01, 95% CI 0.94 to 1.09; women = 3505; studies = 8; I² = 69%; high-quality evidence). Where we downgraded evidence this was due to small sample size or wide confidence intervals crossing the line of no effect, or both.There was insufficient data for subgroup analysis of mother's occupation or education.

    AUTHORS' CONCLUSIONS: There was no conclusive evidence supporting any antenatal BF education for improving initiation of BF, proportion of women giving any BF or exclusively BF at three or six months or the duration of BF. There is an urgent need to conduct a high-quality, randomised controlled study to evaluate the effectiveness and adverse effects of antenatal BF education, especially in low- and middle-income countries. Evidence in this review is primarily relevant to high-income settings.

  3. Lourijsen E, Avdeeva K, Gan KL, Pundir V, Fokkens W
    Cochrane Database Syst Rev, 2023 Feb 21;2(2):CD012843.
    PMID: 36808096 DOI: 10.1002/14651858.CD012843.pub2
    BACKGROUND: Chronic rhinosinusitis, with or without nasal polyps, can have a major impact on a person's quality of life. Treatment is usually conservative and may include nasal saline, intranasal corticosteroids, antibiotics or systemic corticosteroids. If these treatments fail endoscopic sinus surgery can be considered. During surgery, visibility of the surgical field is important for the identification of important anatomic landmarks and structures that contribute to safety. Impaired visualisation can lead to complications during surgery, inability to complete the operation or a longer duration of surgery. Different methods are used to decrease intraoperative bleeding, including induced hypotension, topical or systemic vasoconstrictors or total intravenous anaesthesia. Another option is tranexamic acid, an antifibrinolytic agent, which can be administered topically or intravenously.

    OBJECTIVES: To assess the effects of peri-operative tranexamic acid versus no therapy or placebo on operative parameters in patients with chronic rhinosinusitis (with or without nasal polyps) who are undergoing functional endoscopic sinus surgery (FESS).

    SEARCH METHODS: The Cochrane ENT Information Specialist searched the Cochrane ENT Trials Register; Central Register of Controlled Trials (CENTRAL); Ovid MEDLINE; Ovid Embase; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 10 February 2022.

    SELECTION CRITERIA: Randomised controlled trials (RCTs) comparing intravenous, oral or topical tranexamic acid with no therapy or placebo in the treatment of patients (adults and children) with chronic rhinosinusitis, with or without nasal polyps, undergoing FESS.

    DATA COLLECTION AND ANALYSIS: We used the standard methodological procedures expected by Cochrane. Primary outcome measures were surgical field bleeding score (e.g. Wormald or Boezaart grading system), intraoperative blood loss and significant adverse effects (seizures or thromboembolism within 12 weeks of surgery). Secondary outcomes were duration of surgery, incomplete surgery, surgical complications and postoperative bleeding (placing of packing or revision surgery) in the first two weeks after surgery. We performed subgroup analyses for methods of administration, different dosages, different forms of anaesthesia, use of thromboembolic prophylaxis and children versus adults. We evaluated each included study for risk of bias and used GRADE to assess the certainty of the evidence.

    MAIN RESULTS: We included 14 studies in the review, with a total of 942 participants. Sample sizes in the included studies ranged from 10 to 170. All but two studies included adult patients (≥ 18 years). Two studies included children. Most studies had more male patients (range 46.6% to 80%). All studies were placebo-controlled and four studies had three treatment arms. Three studies investigated topical tranexamic acid; the other studies reported the use of intravenous tranexamic acid. For our primary outcome, surgical field bleeding score measured with the Boezaart or Wormald grading score, we pooled data from 13 studies. The pooled result demonstrated that tranexamic acid probably reduces the surgical field bleeding score, with a standardised mean difference (SMD) of -0.87 (95% confidence interval (CI) -1.23 to -0.51; 13 studies, 772 participants; moderate-certainty evidence). A SMD below -0.70 represents a large effect (in either direction). Tranexamic acid may result in a slight reduction in blood loss during surgery compared to placebo with a mean difference (MD) of -70.32 mL (95% CI -92.28 to -48.35 mL; 12 studies, 802 participants; low-certainty evidence). Tranexamic acid probably has little to no effect on the development of significant adverse events (seizures or thromboembolism) within 24 hours of surgery, with no events in either group and a risk difference (RD) of 0.00 (95% CI -0.02 to 0.02; 8 studies, 664 participants; moderate-certainty evidence). However, there were no studies reporting significant adverse event data with a longer duration of follow-up. Tranexamic acid probably results in little difference in the duration of surgery with a MD of -13.04 minutes (95% CI -19.27 to -6.81; 10 studies, 666 participants; moderate-certainty evidence). Tranexamic acid probably results in little to no difference in the incidence of incomplete surgery, with no events in either group and a RD of 0.00 (95% CI -0.09 to 0.09; 2 studies, 58 participants; moderate-certainty evidence) and likely results in little to no difference in surgical complications, again with no events in either group and a RD of 0.00 (95% CI -0.09 to 0.09; 2 studies, 58 participants; moderate-certainty evidence), although these numbers are too small to draw robust conclusions. Tranexamic acid may result in little to no difference in the likelihood of postoperative bleeding (placement of packing or revision surgery within three days of surgery) (RD -0.01, 95% CI -0.04 to 0.02; 6 studies, 404 participants; low-certainty evidence). There were no studies with longer follow-up.

    AUTHORS' CONCLUSIONS: There is moderate-certainty evidence to support the beneficial value of topical or intravenous tranexamic acid during endoscopic sinus surgery with respect to surgical field bleeding score. Low- to moderate-certainty evidence suggests a slight decrease in total blood loss during surgery and duration of surgery. Whilst there is moderate-certainty evidence that tranexamic acid does not lead to more immediate significant adverse events compared to placebo, there is no evidence regarding the risk of serious adverse events more than 24 hours after surgery. There is low-certainty evidence that tranexamic acid may not change postoperative bleeding. There is not enough evidence available to draw robust conclusions about incomplete surgery or surgical complications.

  4. Lee SWH, Chen WS, Sellappans R, Md Sharif SB, Metzendorf MI, Lai NM
    Cochrane Database Syst Rev, 2023 Jul 12;7(7):CD013178.
    PMID: 37435938 DOI: 10.1002/14651858.CD013178.pub2
    BACKGROUND: Fasting during Ramadan is obligatory for adult Muslims, except those who have a medical illness. Many Muslims with type 2 diabetes (T2DM) choose to fast, which may increase their risks of hypoglycaemia and dehydration.

    OBJECTIVES: To assess the effects of interventions for people with type 2 diabetes fasting during Ramadan.

    SEARCH METHODS: We searched CENTRAL, MEDLINE, PsycINFO, CINAHL, WHO ICTRP and ClinicalTrials.gov (29 June 2022) without language restrictions.

    SELECTION CRITERIA: Randomised controlled trials (RCTs) conducted during Ramadan that evaluated all pharmacological or behavioural interventions in Muslims with T2DM.

    DATA COLLECTION AND ANALYSIS: Two authors screened and selected records, assessed risk of bias and extracted data independently. Discrepancies were resolved by a third author. For meta-analyses we used a random-effects model, with risk ratios (RRs) for dichotomous outcomes and mean differences (MDs) for continuous outcomes with their associated 95% confidence intervals (CIs). We assessed the certainty of evidence using the GRADE approach.

    MAIN RESULTS: We included 17 RCTs with 5359 participants, with a four-week study duration and at least four weeks of follow-up. All studies had at least one high-risk domain in the risk of bias assessment. Four trials compared dipeptidyl-peptidase-4 (DPP-4) inhibitors with sulphonylurea. DPP-4 inhibitors may reduce hypoglycaemia compared to sulphonylureas (85/1237 versus 165/1258, RR 0.53, 95% CI 0.41 to 0.68; low-certainty evidence). Serious hypoglycaemia was similar between groups (no events were reported in two trials; 6/279 in the DPP-4 versus 4/278 in the sulphonylurea group was reported in one trial, RR 1.49, 95% CI 0.43 to 5.24; very low-certainty evidence). The evidence was very uncertain about the effects of DPP-4 inhibitors on adverse events other than hypoglycaemia (141/1207 versus 157/1219, RR 0.90, 95% CI 0.52 to 1.54) and HbA1c changes (MD -0.11%, 95% CI -0.57 to 0.36) (very low-certainty evidence for both outcomes). No deaths were reported (moderate-certainty evidence). Health-related quality of life (HRQoL) and treatment satisfaction were not evaluated. Two trials compared meglitinides with sulphonylurea. The evidence is very uncertain about the effect on hypoglycaemia (14/133 versus 21/140, RR 0.72, 95% CI 0.40 to 1.28) and HbA1c changes (MD 0.38%, 95% CI 0.35% to 0.41%) (very low-certainty evidence for both outcomes). Death, serious hypoglycaemic events, adverse events, treatment satisfaction and HRQoL were not evaluated. One trial compared sodium-glucose co-transporter-2 (SGLT-2) inhibitors with sulphonylurea. SGLT-2 may reduce hypoglycaemia compared to sulphonylurea (4/58 versus 13/52, RR 0.28, 95% CI 0.10 to 0.79; low-certainty evidence). The evidence was very uncertain for serious hypoglycaemia (one event reported in both groups, RR 0.90, 95% CI 0.06 to 13.97) and adverse events other than hypoglycaemia (20/58 versus 18/52, RR 1.00, 95% CI 0.60 to 1.67) (very low-certainty evidence for both outcomes). SGLT-2 inhibitors result in little or no difference in HbA1c (MD 0.27%, 95% CI -0.04 to 0.58; 1 trial, 110 participants; low-certainty evidence). Death, treatment satisfaction and HRQoL were not evaluated. Three trials compared glucagon-like peptide 1 (GLP-1) analogues with sulphonylurea. GLP-1 analogues may reduce hypoglycaemia compared to sulphonylurea (20/291 versus 48/305, RR 0.45, 95% CI 0.28 to 0.74; low-certainty evidence). The evidence was very uncertain for serious hypoglycaemia (0/91 versus 1/91, RR 0.33, 95% CI 0.01 to 7.99; very low-certainty evidence). The evidence suggests that GLP-1 analogues result in little to no difference in adverse events other than hypoglycaemia (78/244 versus 55/255, RR 1.50, 95% CI 0.86 to 2.61; very low-certainty evidence), treatment satisfaction (MD -0.18, 95% CI -3.18 to 2.82; very low-certainty evidence) or change in HbA1c (MD -0.04%, 95% CI -0.45% to 0.36%; 2 trials, 246 participants; low-certainty evidence). Death and HRQoL were not evaluated. Two trials compared insulin analogues with biphasic insulin. The evidence was very uncertain about the effects of insulin analogues on hypoglycaemia (47/256 versus 81/244, RR 0.43, 95% CI 0.13 to 1.40) and serious hypoglycaemia (4/131 versus 3/132, RR 1.34, 95% CI 0.31 to 5.89) (very low-certainty evidence for both outcomes). The evidence was very uncertain for the effect of insulin analogues on adverse effects other than hypoglycaemia (109/256 versus 114/244, RR 0.83, 95% CI 0.44 to 1.56; very low-certainty evidence), all-cause mortality (1/131 versus 0/132, RR 3.02, 95% CI 0.12 to 73.53; very low-certainty evidence) and HbA1c changes (MD 0.03%, 95% CI -0.17% to 0.23%; 1 trial, 245 participants; very low-certainty evidence). Treatment satisfaction and HRQoL were not evaluated. Two trials compared telemedicine with usual care. The evidence was very uncertain about the effect of telemedicine on hypoglycaemia compared with usual care (9/63 versus 23/58, RR 0.42, 95% CI 0.24 to 0.74; very low-certainty evidence), HRQoL (MD 0.06, 95% CI -0.03 to 0.15; very low-certainty evidence) and HbA1c change (MD -0.84%, 95% CI -1.51% to -0.17%; very low-certainty evidence). Death, serious hypoglycaemia, AEs other than hypoglycaemia and treatment satisfaction were not evaluated. Two trials compared Ramadan-focused patient education with usual care. The evidence was very uncertain about the effect of Ramadan-focused patient education on hypoglycaemia (49/213 versus 42/209, RR 1.17, 95% CI 0.82 to 1.66; very low-certainty evidence) and HbA1c change (MD -0.40%, 95% CI -0.73% to -0.06%; very low-certainty evidence). Death, serious hypoglycaemia, adverse events other than hypoglycaemia, treatment satisfaction and HRQoL were not evaluated. One trial compared drug dosage reduction with usual care. The evidence is very uncertain about the effect of drug dosage reduction on hypoglycaemia (19/452 versus 52/226, RR 0.18, 95% CI 0.11 to 0.30; very low-certainty evidence). No participants experienced adverse events other than hypoglycaemia during the study (very low-certainty evidence). Death, serious hypoglycaemia, treatment satisfaction, HbA1c change and HRQoL were not evaluated.

    AUTHORS' CONCLUSIONS: There is no clear evidence of the benefits or harms of interventions for individuals with T2DM who fast during Ramadan. All results should be interpreted with caution due to concerns about risk of bias, imprecision and inconsistency between studies, which give rise to low- to very low-certainty evidence. Major outcomes, such as mortality, health-related quality of life and severe hypoglycaemia, were rarely evaluated. Sufficiently powered studies that examine the effects of various interventions on these outcomes are needed.

  5. Lambert P, Cyna AM, Knight N, Middleton P
    Cochrane Database Syst Rev, 2014 Jan 28;2014(1):CD009633.
    PMID: 24470114 DOI: 10.1002/14651858.CD009633.pub2
    BACKGROUND: Postoperative pain remains a significant problem following paediatric surgery. Premedication with a suitable agent may improve its management. Clonidine is an alpha-2 adrenergic agonist which has sedative, anxiolytic and analgesic properties. It may therefore be a useful premedication for reducing postoperative pain in children.

    OBJECTIVES: To evaluate the evidence for the effectiveness of clonidine, when given as a premedication, in reducing postoperative pain in children less than 18 years of age. We also sought evidence of any clinically significant side effects.

    SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library (Issue 12, 2012), Ovid MEDLINE (1966 to 21 December 2012) and Ovid EMBASE (1982 to 21 December 2012), as well as reference lists of other relevant articles and online trial registers.

    SELECTION CRITERIA: We included all randomized (or quasi-randomized), controlled trials comparing clonidine premedication to placebo, a higher dose of clonidine, or another agent when used for surgical or other invasive procedures in children under the age of 18 years and where pain or a surrogate (principally the need for supplementary analgesia) was reported.

    DATA COLLECTION AND ANALYSIS: Two authors independently performed the database search, decided on the inclusion eligibility of publications, ascertained study quality and extracted data. They then resolved any differences between their results by discussion. The data were entered into RevMan 5 for analyses and presentation. Sensitivity analyses were performed, as appropriate, to exclude studies with a high risk of bias.

    MAIN RESULTS: We identified 11 trials investigating a total of 742 children in treatment arms relevant to our study question. Risks of bias in the studies were mainly low or unclear, but two studies had aspects of their methodology that had a high risk of bias. Overall, the quality of the evidence from pooled studies was low or had unclear risk of bias. Four trials compared clonidine with a placebo or no treatment, six trials compared clonidine with midazolam, and one trial compared clonidine with fentanyl. There was substantial methodological heterogeneity between trials; the dose and route of clonidine administration varied as did the patient populations, the types of surgery and the outcomes measured. It was therefore difficult to combine the outcomes of some trials for meta-analysis.When clonidine was compared to placebo, pooling studies of low or unclear risk of bias, the need for additional analgesia was reduced when clonidine premedication was given orally at 4 µg/kg (risk ratio (RR) 0.24, 95% confidence interval (CI) 0.11 to 0.51). Only one small trial (15 patients per arm) compared clonidine to midazolam for the same outcome; this also found a reduction in the need for additional postoperative analgesia (RR 0.25, 95% CI 0.09 to 0.71) when clonidine premedication was given orally at 2 or 4 µg/kg compared to oral midazolam at 0.5 mg/kg. A trial comparing oral clonidine at 4 µg/kg with intravenous fentanyl at 3 µg/kg found no statistically significant difference in the need for rescue analgesia (RR 0.89, 95% CI 0.56 to 1.42). When clonidine 4 µg/kg was compared to clonidine 2 µg/kg, there was a statistically significant difference in the number of patients requiring additional analgesia, in favour of the higher dose, as reported by a single, higher-quality trial (RR 0.38, 95% CI 0.23 to 0.65).The effect of clonidine on pain scores was hard to interpret due to differences in study methodology, the doses and route of drug administration, and the pain scale used. However, when given at a dose of 4 µg/kg, clonidine may have reduced analgesia requirements after surgery. There were no significant side effects of clonidine that were reported such as severe hypotension, bradycardia, or excessive sedation requiring intervention. However, several studies used atropine prophylactically with the aim of preventing such adverse effects.

    AUTHORS' CONCLUSIONS: There were only 11 relevant trials studying 742 children having surgery where premedication with clonidine was compared to placebo or other drug treatment. Despite heterogeneity between trials, clonidine premedication in an adequate dosage (4 µg/kg) was likely to have a beneficial effect on postoperative pain in children. Side effects were minimal, but some of the studies used atropine prophylactically with the intention of preventing bradycardia and hypotension. Further research is required to determine under what conditions clonidine premedication is most effective in providing postoperative pain relief in children.

  6. Lai NM, Rajadurai SV, Tan KH
    PMID: 16856077
    Preterm infants with bronchopulmonary dysplasia/chronic lung disease have nutritional deficits that may contribute to short and long term morbidity and mortality. Increasing the daily energy intake for these infants may improve their respiratory, growth and neurodevelopmental outcomes.
  7. Lai NM, Taylor JE, Tan K, Choo YM, Ahmad Kamar A, Muhamad NA
    Cochrane Database Syst Rev, 2016 Mar 23;3:CD011082.
    PMID: 27007217 DOI: 10.1002/14651858.CD011082.pub2
    BACKGROUND: Central venous catheters (CVCs) provide secured venous access in neonates. Antimicrobial dressings applied over the CVC sites have been proposed to reduce catheter-related blood stream infection (CRBSI) by decreasing colonisation. However, there may be concerns on the local and systemic adverse effects of these dressings in neonates.

    OBJECTIVES: We assessed the effectiveness and safety of antimicrobial (antiseptic or antibiotic) dressings in reducing CVC-related infections in newborn infants. Had there been relevant data, we would have evaluated the effects of antimicrobial dressings in different subgroups, including infants who received different types of CVCs, infants who required CVC for different durations, infants with CVCs with and without other antimicrobial modifications, and infants who received an antimicrobial dressing with and without a clearly defined co-intervention.

    SEARCH METHODS: We used the standard search strategy of the Cochrane Neonatal Review Group (CNRG). We searched the Cochrane Central Register of Controlled Trials (The Cochrane Library 2015, Issue 9), MEDLINE (PubMed), EMBASE (EBCHOST), CINAHL and references cited in our short-listed articles using keywords and MeSH headings, up to September 2015.

    SELECTION CRITERIA: We included randomised controlled trials that compared an antimicrobial CVC dressing against no dressing or another dressing in newborn infants.

    DATA COLLECTION AND ANALYSIS: We extracted data using the standard methods of the CNRG. Two review authors independently assessed the eligibility and risk of bias of the retrieved records. We expressed our results using risk difference (RD) and risk ratio (RR) with 95% confidence intervals (CIs).

    MAIN RESULTS: Out of 173 articles screened, three studies were included. There were two comparisons: chlorhexidine dressing following alcohol cleansing versus polyurethane dressing following povidone-iodine cleansing (one study); and silver-alginate patch versus control (two studies). A total of 855 infants from level III neonatal intensive care units (NICUs) were evaluated, 705 of whom were from a single study. All studies were at high risk of bias for blinding of care personnel or unclear risk of bias for blinding of outcome assessors. There was moderate-quality evidence for all major outcomes.The single study comparing chlorhexidine dressing/alcohol cleansing against polyurethane dressing/povidone-iodine cleansing showed no significant difference in the risk of CRBSI (RR 1.18, 95% CI 0.53 to 2.65; RD 0.01, 95% CI -0.02 to 0.03; 655 infants, moderate-quality evidence) and sepsis without a source (RR 1.06, 95% CI 0.75 to 1.52; RD 0.01, 95% CI -0.04 to 0.06; 705 infants, moderate-quality evidence). There was a significant reduction in the risk of catheter colonisation favouring chlorhexidine dressing/alcohol cleansing group (RR 0.62, 95% CI 0.45 to 0.86; RD -0.09, 95% CI -0.15 to -0.03; number needed to treat for an additional beneficial outcome (NNTB) 11, 95% CI 7 to 33; 655 infants, moderate-quality evidence). However, infants in the chlorhexidine dressing/alcohol cleansing group were significantly more likely to develop contact dermatitis, with 19 infants in the chlorhexidine dressing/alcohol cleansing group having developed contact dermatitis compared to none in the polyurethane dressing/povidone-iodine cleansing group (RR 43.06, 95% CI 2.61 to 710.44; RD 0.06, 95% CI 0.03 to 0.08; number needed to treat for an additional harmful outcome (NNTH) 17, 95% CI 13 to 33; 705 infants, moderate-quality evidence). The roles of chlorhexidine dressing in the outcomes reported were unclear, as the two assigned groups received different co-interventions in the form of different skin cleansing agents prior to catheter insertion and during each dressing change.In the other comparison, silver-alginate patch versus control, the data for CRBSI were analysed separately in two subgroups as the two included studies reported the outcome using different denominators: one using infants and another using catheters. There were no significant differences between infants who received silver-alginate patch against infants who received standard line dressing in CRBSI, whether expressed as the number of infants (RR 0.50, 95% CI 0.14 to 1.78; RD -0.12, 95% CI -0.33 to 0.09; 1 study, 50 participants, moderate-quality evidence) or as the number of catheters (RR 0.72, 95% CI 0.27 to 1.89; RD -0.05, 95% CI -0.20 to 0.10; 1 study, 118 participants, moderate-quality evidence). There was also no significant difference between the two groups in mortality (RR 0.55, 95% CI 0.15 to 2.05; RD -0.04, 95% CI -0.13 to 0.05; two studies, 150 infants, I² = 0%, moderate-quality evidence). No adverse skin reaction was recorded in either group.

    AUTHORS' CONCLUSIONS: Based on moderate-quality evidence, chlorhexidine dressing/alcohol skin cleansing reduced catheter colonisation, but made no significant difference in major outcomes like sepsis and CRBSI compared to polyurethane dressing/povidone-iodine cleansing. Chlorhexidine dressing/alcohol cleansing posed a substantial risk of contact dermatitis in preterm infants, although it was unclear whether this was contributed mainly by the dressing material or the cleansing agent. While silver-alginate patch appeared safe, evidence is still insufficient for a recommendation in practice. Future research that evaluates antimicrobial dressing should ensure blinding of caregivers and outcome assessors and ensure that all participants receive the same co-interventions, such as the skin cleansing agent. Major outcomes like sepsis, CRBSI and mortality should be assessed in infants of different gestation and birth weight.

  8. Lai NM, Lai NA, O'Riordan E, Chaiyakunapruk N, Taylor JE, Tan K
    Cochrane Database Syst Rev, 2016 Jul 13;7:CD010140.
    PMID: 27410189 DOI: 10.1002/14651858.CD010140.pub2
    BACKGROUND: The central venous catheter (CVC) is a device used for many functions, including monitoring haemodynamic indicators and administering intravenous medications, fluids, blood products and parenteral nutrition. However, as a foreign object, it is susceptible to colonisation by micro-organisms, which may lead to catheter-related blood stream infection (BSI) and in turn, increased mortality, morbidities and health care costs.

    OBJECTIVES: To assess the effects of skin antisepsis as part of CVC care for reducing catheter-related BSIs, catheter colonisation, and patient mortality and morbidities.

    SEARCH METHODS: In May 2016 we searched: The Cochrane Wounds Specialised Register; The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library); Ovid MEDLINE (including In-Process & Other Non-Indexed Citations and Epub Ahead of Print); Ovid EMBASE and EBSCO CINAHL Plus. We also searched clinical trial registries for ongoing and unpublished studies. There were no restrictions with respect to language, date of publication or study setting.

    SELECTION CRITERIA: We included randomised controlled trials (RCTs) that assessed any type of skin antiseptic agent used either alone or in combination, compared with one or more other skin antiseptic agent(s), placebo or no skin antisepsis in patients with a CVC in place.

    DATA COLLECTION AND ANALYSIS: Two authors independently assessed the studies for their eligibility, extracted data and assessed risk of bias. We expressed our results in terms of risk ratio (RR), absolute risk reduction (ARR) and number need to treat for an additional beneficial outcome (NNTB) for dichotomous data, and mean difference (MD) for continuous data, with 95% confidence intervals (CIs).

    MAIN RESULTS: Thirteen studies were eligible for inclusion, but only 12 studies contributed data, with a total of 3446 CVCs assessed. The total number of participants enrolled was unclear as some studies did not provide such information. The participants were mainly adults admitted to intensive care units, haematology oncology units or general wards. Most studies assessed skin antisepsis prior to insertion and regularly thereafter during the in-dwelling period of the CVC, ranging from every 24 h to every 72 h. The methodological quality of the included studies was mixed due to wide variation in their risk of bias. Most trials did not adequately blind the participants or personnel, and four of the 12 studies had a high risk of bias for incomplete outcome data.Three studies compared different antisepsis regimens with no antisepsis. There was no clear evidence of a difference in all outcomes examined, including catheter-related BSI, septicaemia, catheter colonisation and number of patients who required systemic antibiotics for any of the three comparisons involving three different antisepsis regimens (aqueous povidone-iodine, aqueous chlorhexidine and alcohol compared with no skin antisepsis). However, there were great uncertainties in all estimates due to underpowered analyses and the overall very low quality of evidence presented.There were multiple head-to-head comparisons between different skin antiseptic agents, with different combinations of active substance and base solutions. The most frequent comparison was chlorhexidine solution versus povidone-iodine solution (any base). There was very low quality evidence (downgraded for risk of bias and imprecision) that chlorhexidine may reduce catheter-related BSI compared with povidone-iodine (RR of 0.64, 95% CI 0.41 to 0.99; ARR 2.30%, 95% CI 0.06 to 3.70%). This evidence came from four studies involving 1436 catheters. None of the individual subgroup comparisons of aqueous chlorhexidine versus aqueous povidone-iodine, alcoholic chlorhexidine versus aqueous povidone-iodine and alcoholic chlorhexidine versus alcoholic povidone-iodine showed clear differences for catheter-related BSI or mortality (and were generally underpowered). Mortality was only reported in a single study.There was very low quality evidence that skin antisepsis with chlorhexidine may also reduce catheter colonisation relative to povidone-iodine (RR of 0.68, 95% CI 0.56 to 0.84; ARR 8%, 95% CI 3% to 12%; ; five studies, 1533 catheters, downgraded for risk of bias, indirectness and inconsistency).Evaluations of other skin antiseptic agents were generally in single, small studies, many of which did not report the primary outcome of catheter-related BSI. Trials also poorly reported other outcomes, such as skin infections and adverse events.

    AUTHORS' CONCLUSIONS: It is not clear whether cleaning the skin around CVC insertion sites with antiseptic reduces catheter related blood stream infection compared with no skin cleansing. Skin cleansing with chlorhexidine solution may reduce rates of CRBSI and catheter colonisation compared with cleaning with povidone iodine. These results are based on very low quality evidence, which means the true effects may be very different. Moreover these results may be influenced by the nature of the antiseptic solution (i.e. aqueous or alcohol-based). Further RCTs are needed to assess the effectiveness and safety of different skin antisepsis regimens in CVC care; these should measure and report critical clinical outcomes such as sepsis, catheter-related BSI and mortality.

  9. Lai NM, Chang SMW, Ng SS, Tan SL, Chaiyakunapruk N, Stanaway F
    Cochrane Database Syst Rev, 2019 11 25;2019(11).
    PMID: 31763689 DOI: 10.1002/14651858.CD013243.pub2
    BACKGROUND: Dementia is a chronic condition which progressively affects memory and other cognitive functions, social behaviour, and ability to carry out daily activities. To date, no treatment is clearly effective in preventing progression of the disease, and most treatments are symptomatic, often aiming to improve people's psychological symptoms or behaviours which are challenging for carers. A range of new therapeutic strategies has been evaluated in research, and the use of trained animals in therapy sessions, termed animal-assisted therapy (AAT), is receiving increasing attention.

    OBJECTIVES: To evaluate the efficacy and safety of animal-assisted therapy for people with dementia.

    SEARCH METHODS: We searched ALOIS: the Cochrane Dementia and Cognitive Improvement Group's Specialised Register on 5 September 2019. ALOIS contains records of clinical trials identified from monthly searches of major healthcare databases, trial registries, and grey literature sources. We also searched MEDLINE (OvidSP), Embase (OvidSP), PsycINFO (OvidSP), CINAHL (EBSCOhost), ISI Web of Science, ClinicalTrials.gov, and the WHO's trial registry portal.

    SELECTION CRITERIA: We included randomised controlled trials (RCTs), cluster-randomised trials, and randomised cross-over trials that compared AAT versus no AAT, AAT using live animals versus alternatives such as robots or toys, or AAT versus any other active intervention.

    DATA COLLECTION AND ANALYSIS: We extracted data using the standard methods of Cochrane Dementia. Two review authors independently assessed the eligibility and risk of bias of the retrieved records. We expressed our results using mean difference (MD), standardised mean difference (SMD), and risk ratio (RR) with their 95% confidence intervals (CIs) where appropriate.

    MAIN RESULTS: We included nine RCTs from 10 reports. All nine studies were conducted in Europe and the US. Six studies were parallel-group, individually randomised RCTs; one was a randomised cross-over trial; and two were cluster-RCTs that were possibly related where randomisation took place at the level of the day care and nursing home. We identified two ongoing trials from trial registries. There were three comparisons: AAT versus no AAT (standard care or various non-animal-related activities), AAT using live animals versus robotic animals, and AAT using live animals versus the use of a soft animal toy. The studies evaluated 305 participants with dementia. One study used horses and the remainder used dogs as the therapy animal. The duration of the intervention ranged from six weeks to six months, and the therapy sessions lasted between 10 and 90 minutes each, with a frequency ranging from one session every two weeks to two sessions per week. There was a wide variety of instruments used to measure the outcomes. All studies were at high risk of performance bias and unclear risk of selection bias. Our certainty about the results for all major outcomes was very low to moderate. Comparing AAT versus no AAT, participants who received AAT may be slightly less depressed after the intervention (MD -2.87, 95% CI -5.24 to -0.50; 2 studies, 83 participants; low-certainty evidence), but they did not appear to have improved quality of life (MD 0.45, 95% CI -1.28 to 2.18; 3 studies, 164 participants; moderate-certainty evidence). There were no clear differences in all other major outcomes, including social functioning (MD -0.40, 95% CI -3.41 to 2.61; 1 study, 58 participants; low-certainty evidence), problematic behaviour (SMD -0.34, 95% CI -0.98 to 0.30; 3 studies, 142 participants; very-low-certainty evidence), agitation (SMD -0.39, 95% CI -0.89 to 0.10; 3 studies, 143 participants; very-low-certainty evidence), activities of daily living (MD 4.65, 95% CI -16.05 to 25.35; 1 study, 37 participants; low-certainty evidence), and self-care ability (MD 2.20, 95% CI -1.23 to 5.63; 1 study, 58 participants; low-certainty evidence). There were no data on adverse events. Comparing AAT using live animals versus robotic animals, one study (68 participants) found mixed effects on social function, with longer duration of physical contact but shorter duration of talking in participants who received AAT using live animals versus robotic animals (median: 93 seconds with live versus 28 seconds with robotic for physical contact; 164 seconds with live versus 206 seconds with robotic for talk directed at a person; 263 seconds with live versus 307 seconds with robotic for talk in total). Another study showed no clear differences between groups in behaviour measured using the Neuropsychiatric Inventory (MD -6.96, 95% CI -14.58 to 0.66; 78 participants; low-certainty evidence) or quality of life (MD -2.42, 95% CI -5.71 to 0.87; 78 participants; low-certainty evidence). There were no data on the other outcomes. Comparing AAT using live animals versus a soft toy cat, one study (64 participants) evaluated only social functioning, in the form of duration of contact and talking. The data were expressed as median and interquartile ranges. Duration of contact was slightly longer in participants in the AAT group and duration of talking slightly longer in those exposed to the toy cat. This was low-certainty evidence.

    AUTHORS' CONCLUSIONS: We found low-certainty evidence that AAT may slightly reduce depressive symptoms in people with dementia. We found no clear evidence that AAT affects other outcomes in this population, with our certainty in the evidence ranging from very-low to moderate depending on the outcome. We found no evidence on safety or effects on the animals. Therefore, clear conclusions cannot yet be drawn about the overall benefits and risks of AAT in people with dementia. Further well-conducted RCTs are needed to improve the certainty of the evidence. In view of the difficulty in achieving blinding of participants and personnel in such trials, future RCTs should work on blinding outcome assessors, document allocation methods clearly, and include major patient-important outcomes such as affect, emotional and social functioning, quality of life, adverse events, and outcomes for animals.

  10. Lai NM, Chaiyakunapruk N, Lai NA, O'Riordan E, Pau WS, Saint S
    Cochrane Database Syst Rev, 2016 Mar 16;3(3):CD007878.
    PMID: 26982376 DOI: 10.1002/14651858.CD007878.pub3
    BACKGROUND: The central venous catheter (CVC) is essential in managing acutely ill patients in hospitals. Bloodstream infection is a major complication in patients with a CVC. Several infection control measures have been developed to reduce bloodstream infections, one of which is impregnation of CVCs with various forms of antimicrobials (either with an antiseptic or with antibiotics). This review was originally published in June 2013 and updated in 2016.

    OBJECTIVES: Our main objective was to assess the effectiveness of antimicrobial impregnation, coating or bonding on CVCs in reducing clinically-diagnosed sepsis, catheter-related blood stream infection (CRBSI), all-cause mortality, catheter colonization and other catheter-related infections in adult participants who required central venous catheterization, along with their safety and cost effectiveness where data were available. We undertook the following comparisons: 1) catheters with antimicrobial modifications in the form of antimicrobial impregnation, coating or bonding, against catheters without antimicrobial modifications and 2) catheters with one type of antimicrobial impregnation against catheters with another type of antimicrobial impregnation. We planned to analyse the comparison of catheters with any type of antimicrobial impregnation against catheters with other antimicrobial modifications, e.g. antiseptic dressings, hubs, tunnelling, needleless connectors or antiseptic lock solutions, but did not find any relevant studies. Additionally, we planned to conduct subgroup analyses based on the length of catheter use, settings or levels of care (e.g. intensive care unit, standard ward and oncology unit), baseline risks, definition of sepsis, presence or absence of co-interventions and cost-effectiveness in different currencies.

    SEARCH METHODS: We used the standard search strategy of the Cochrane Anaesthesia, Critical and Emergency Care Review Group (ACE). In the updated review, we searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2015, Issue 3), MEDLINE (OVID SP; 1950 to March 2015), EMBASE (1980 to March 2015), CINAHL (1982 to March 2015), and other Internet resources using a combination of keywords and MeSH headings. The original search was run in March 2012.

    SELECTION CRITERIA: We included randomized controlled trials (RCTs) that assessed any type of impregnated catheter against either non-impregnated catheters or catheters with another type of impregnation in adult patients cared for in the hospital setting who required CVCs. We planned to include quasi-RCT and cluster-RCTs, but we identified none. We excluded cross-over studies.

    DATA COLLECTION AND ANALYSIS: We extracted data using the standard methodological procedures expected by Cochrane. Two authors independently assessed the relevance and risk of bias of the retrieved records. We expressed our results using risk ratio (RR), absolute risk reduction (ARR) and number need to treat to benefit (NNTB) for categorical data and mean difference (MD) for continuous data, where appropriate, with their 95% confidence intervals (CIs).

    MAIN RESULTS: We included one new study (338 participants/catheters) in this update, which brought the total included to 57 studies with 16,784 catheters and 11 types of impregnations. The total number of participants enrolled was unclear, as some studies did not provide this information. Most studies enrolled participants from the age of 18, including patients in intensive care units (ICU), oncology units and patients receiving long-term total parenteral nutrition. There were low or unclear risks of bias in the included studies, except for blinding, which was impossible in most studies due to the catheters that were being assessed having different appearances. Overall, catheter impregnation significantly reduced catheter-related blood stream infection (CRBSI), with an ARR of 2% (95% CI 3% to 1%), RR of 0.62 (95% CI 0.52 to 0.74) and NNTB of 50 (high-quality evidence). Catheter impregnation also reduced catheter colonization, with an ARR of 9% (95% CI 12% to 7%), RR of 0.67 (95% CI 0.59 to 0.76) and NNTB of 11 (moderate-quality evidence, downgraded due to substantial heterogeneity). However, catheter impregnation made no significant difference to the rates of clinically diagnosed sepsis (RR 1.0, 95% CI 0.88 to 1.13; moderate-quality evidence, downgraded due to a suspicion of publication bias), all-cause mortality (RR 0.92, 95% CI 0.80 to 1.07; high-quality evidence) and catheter-related local infections (RR 0.84, 95% CI 0.66 to 1.07; 2688 catheters, moderate quality evidence, downgraded due to wide 95% CI).In our subgroup analyses, we found that the magnitudes of benefits for impregnated CVCs varied between studies that enrolled different types of participants. For the outcome of catheter colonization, catheter impregnation conferred significant benefit in studies conducted in ICUs (RR 0.70;95% CI 0.61 to 0.80) but not in studies conducted in haematological and oncological units (RR 0.75; 95% CI 0.51 to 1.11) or studies that assessed predominantly patients who required CVCs for long-term total parenteral nutrition (RR 0.99; 95% CI 0.74 to 1.34). However, there was no such variation for the outcome of CRBSI. The magnitude of the effects was also not affected by the participants' baseline risks.There were no significant differences between the impregnated and non-impregnated groups in the rates of adverse effects, including thrombosis/thrombophlebitis, bleeding, erythema and/or tenderness at the insertion site.

    AUTHORS' CONCLUSIONS: This review confirms the effectiveness of antimicrobial CVCs in reducing rates of CRBSI and catheter colonization. However, the magnitude of benefits regarding catheter colonization varied according to setting, with significant benefits only in studies conducted in ICUs. A comparatively smaller body of evidence suggests that antimicrobial CVCs do not appear to reduce clinically diagnosed sepsis or mortality significantly. Our findings call for caution in routinely recommending the use of antimicrobial-impregnated CVCs across all settings. Further randomized controlled trials assessing antimicrobial CVCs should include important clinical outcomes like the overall rates of sepsis and mortality.

  11. Lai NM, Foong SC, Foong WC, Tan K
    Cochrane Database Syst Rev, 2016 Apr 14;4(4):CD008313.
    PMID: 27075527 DOI: 10.1002/14651858.CD008313.pub3
    BACKGROUND: The increased birth rate of twins during recent decades and the improved prognosis of preterm infants have resulted in the need to explore measures that could optimize their growth and neurodevelopmental outcomes. It has been postulated that co-bedding simulates twins' intrauterine experiences in which co-regulatory behaviors between them are observed. These behaviors are proposed to benefit twins by reducing their stress, which may promote growth and development. However, in practice, uncertainty surrounds the benefit-risk profile of co-bedding.

    OBJECTIVES: We aimed to assess the effectiveness of co-bedding compared with separate (individual) care for stable preterm twins in the neonatal nursery in promoting growth and neurodevelopment and reducing short- and long-term morbidities, and to determine whether co-bedding is associated with significant adverse effects.As secondary objectives, we sought to evaluate effects of co-bedding via the following subgroup analyses: twin pairs with different weight ranges (very low birth weight [VLBW] < 1500 grams vs non-VLBW), twins with versus without significant growth discordance at birth, preterm versus borderline preterm twins, twins co-bedded in incubator versus cot at study entry, and twins randomized by twin pair versus neonatal unit.

    SEARCH METHODS: We used the standard search strategy of the Cochrane Neonatal Review Group (CNRG). We used keywords and medical subject headings (MeSH) to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 2), MEDLINE (via PubMed), EMBASE (hosted by EBSCOHOST), the Cumulative Index to Nursing and Allied Health Literature (CINAHL), and references cited in our short-listed articles, up to February 29, 2016.

    SELECTION CRITERIA: We included randomized controlled trials with randomization by twin pair and/or by neonatal unit. We excluded cross-over studies.

    DATA COLLECTION AND ANALYSIS: We extracted data using standard methods of the CNRG. Two review authors independently assessed the relevance and risk of bias of retrieved records. We contacted the authors of included studies to request important information missing from their published papers. We expressed our results using risk ratios (RRs) and mean differences (MDs) when appropriate, along with 95% confidence intervals (95% CIs). We adjusted the unit of analysis from individual infants to twin pairs by averaging measurements for each twin pair (continuous outcomes) or by counting outcomes as positive if developed by either twin (dichotomous outcomes).

    MAIN RESULTS: Six studies met the inclusion criteria; however, only five studies provided data for analysis. Four of the six included studies were small and had significant limitations in design. As each study reported outcomes differently, data for most outcomes were effectively contributed by a single study. Study authors reported no differences between co-bedded twins and twins receiving separate care in terms of rate of weight gain (MD 0.20 grams/kg/d, 95% CI -1.60 to 2.00; one study; 18 pairs of twins; evidence of low quality); apnea, bradycardia, and desaturation (A/B/D) episodes (RR 0.85, 95% CI 0.18 to 4.05; one study; 62 pairs of twins; evidence of low quality); episodes in co-regulated states (MD 0.96, 95% CI -3.44 to 5.36; one study; three pairs of twins; evidence of very low quality); suspected or proven infection (RR 0.84, 95% CI 0.30 to 2.31; three studies; 65 pairs of twins; evidence of very low quality); length of hospital stay (MD -4.90 days, 95% CI -35.23 to 25.43; one study; three pairs of twins; evidence of very low quality); and parental satisfaction measured on a scale of 0 to 55 (MD -0.38, 95% CI -4.49 to 3.73; one study; nine pairs of twins; evidence of moderate quality). Although co-bedded twins appeared to have lower pain scores 30 seconds after heel lance on a scale of 0 to 21 (MD -0.96, 95% CI -1.68 to -0.23; two studies; 117 pairs of twins; I(2) = 75%; evidence of low quality), they had higher pain scores 90 seconds after the procedure (MD 1.00, 95% CI 0.14 to 1.86; one study; 62 pairs of twins). Substantial heterogeneity in the outcome of infant pain response after heel prick at 30 seconds post procedure and conflicting results at 30 and 90 seconds post procedure precluded clear conclusions.

    AUTHORS' CONCLUSIONS: Evidence on the benefits and harms of co-bedding for stable preterm twins was insufficient to permit recommendations for practice. Future studies must be adequately powered to detect clinically important differences in growth and neurodevelopment. Researchers should assess harms such as infection, along with medication errors and caregiver satisfaction.

  12. Lai NM, Ahmad Kamar A, Choo YM, Kong JY, Ngim CF
    Cochrane Database Syst Rev, 2017 Aug 01;8(8):CD011891.
    PMID: 28762235 DOI: 10.1002/14651858.CD011891.pub2
    BACKGROUND: Neonatal hyperbilirubinaemia is a common problem which carries a risk of neurotoxicity. Certain infants who have hyperbilirubinaemia develop bilirubin encephalopathy and kernicterus which may lead to long-term disability. Phototherapy is currently the mainstay of treatment for neonatal hyperbilirubinaemia. Among the adjunctive measures to compliment the effects of phototherapy, fluid supplementation has been proposed to reduce serum bilirubin levels. The mechanism of action proposed includes direct dilutional effects of intravenous (IV) fluids, or enhancement of peristalsis to reduce enterohepatic circulation by oral fluid supplementation.

    OBJECTIVES: To assess the risks and benefits of fluid supplementation compared to standard fluid management in term and preterm newborn infants with unconjugated hyperbilirubinaemia who require phototherapy.

    SEARCH METHODS: We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 5), MEDLINE via PubMed (1966 to 7 June 2017), Embase (1980 to 7 June 2017), and CINAHL (1982 to 7 June 2017). We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials.

    SELECTION CRITERIA: We included randomised controlled trials that compared fluid supplementation against no fluid supplementation, or one form of fluid supplementation against another.

    DATA COLLECTION AND ANALYSIS: We extracted data using the standard methods of the Cochrane Neonatal Review Group using the Covidence platform. Two review authors independently assessed the eligibility and risk of bias of the retrieved records. We expressed our results using mean difference (MD), risk difference (RD), and risk ratio (RR) with 95% confidence intervals (CIs).

    MAIN RESULTS: Out of 1449 articles screened, seven studies were included. Three articles were awaiting classification, among them, two completed trials identified from the trial registry appeared to be unpublished so far.There were two major comparisons: IV fluid supplementation versus no fluid supplementation (six studies) and IV fluid supplementation versus oral fluid supplementation (one study). A total of 494 term, healthy newborn infants with unconjugated hyperbilirubinaemia were evaluated. All studies were at high risk of bias for blinding of care personnel, five studies had unclear risk of bias for blinding of outcome assessors, and most studies had unclear risk of bias in allocation concealment. There was low- to moderate-quality evidence for all major outcomes.In the comparison between IV fluid supplementation and no supplementation, no infant in either group developed bilirubin encephalopathy in the one study that reported this outcome. Serum bilirubin was lower at four hours postintervention for infants who received IV fluid supplementation (MD -34.00 μmol/L (-1.99 mg/dL), 95% CI -52.29 (3.06) to -15.71 (0.92); participants = 67, study = 1) (low quality of evidence, downgraded one level for indirectness and one level for suspected publication bias). Beyond eight hours postintervention, serum bilirubin was similar between the two groups. Duration of phototherapy was significantly shorter for fluid-supplemented infants, but the estimate was affected by heterogeneity which was not clearly explained (MD -10.70 hours, 95% CI -15.55 to -5.85; participants = 218; studies = 3; I² = 67%). Fluid-supplemented infants were less likely to require exchange transfusion (RR 0.39, 95% CI 0.21 to 0.71; RD -0.01, 95% CI -0.04 to 0.02; participants = 462; studies = 6; I² = 72%) (low quality of evidence, downgraded one level due to inconsistency, and another level due to suspected publication bias), and the estimate was similarly affected by unexplained heterogeneity. The frequencies of breastfeeding were similar between the fluid-supplemented and non-supplemented infants in days one to three based on one study (estimate on day three: MD 0.90 feeds, 95% CI -0.40 to 2.20; participants = 60) (moderate quality of evidence, downgraded one level for imprecision).One study contributed to all outcome data in the comparison of IV versus oral fluid supplementation. In this comparison, no infant in either group developed abnormal neurological signs. Serum bilirubin, as well as the rate of change of serum bilirubin, were similar between the two groups at four hours after phototherapy (serum bilirubin: MD 11.00 μmol/L (0.64 mg/dL), 95% CI -21.58 (-1.26) to 43.58 (2.55); rate of change of serum bilirubin: MD 0.80 μmol/L/hour (0.05 mg/dL/hour), 95% CI -2.55 (-0.15) to 4.15 (0.24); participants = 54 in both outcomes) (moderate quality of evidence for both outcomes, downgraded one level for indirectness). The number of infants who required exchange transfusion was similar between the two groups (RR 1.60, 95% CI 0.60 to 4.27; RD 0.11, 95% CI -0.12 to 0.34; participants = 54). No infant in either group developed adverse effects including vomiting or abdominal distension.

    AUTHORS' CONCLUSIONS: There is no evidence that IV fluid supplementation affects important clinical outcomes such as bilirubin encephalopathy, kernicterus, or cerebral palsy in healthy, term newborn infants with unconjugated hyperbilirubinaemia requiring phototherapy. In this review, no infant developed these bilirubin-associated clinical complications. Low- to moderate-quality evidence shows that there are differences in total serum bilirubin levels between fluid-supplemented and control groups at some time points but not at others, the clinical significance of which is uncertain. There is no evidence of a difference between the effectiveness of IV and oral fluid supplementations in reducing serum bilirubin. Similarly, no infant developed adverse events or complications from fluid supplementation such as vomiting or abdominal distension. This suggests a need for future research to focus on different population groups with possibly higher baseline risks of bilirubin-related neurological complications, such as preterm or low birthweight infants, infants with haemolytic hyperbilirubinaemia, as well as infants with dehydration for comparison of different fluid supplementation regimen.

  13. Kumbargere Nagraj S, George RP, Shetty N, Levenson D, Ferraiolo DM, Shrestha A
    Cochrane Database Syst Rev, 2017 12 20;12:CD010470.
    PMID: 29260510 DOI: 10.1002/14651858.CD010470.pub3
    BACKGROUND: The sense of taste is very much essential to the overall health of an individual. It is a necessary component to enjoy one's food, which in turn provides nutrition to an individual. Any disturbance in taste perception can hamper quality of life in such patients by influencing their appetite, body weight and psychological well-being. Taste disorders have been treated using different modalities of treatment and there is no consensus for the best intervention. Hence this Cochrane Review was undertaken. This is an update of the Cochrane Review first published in November 2014.

    OBJECTIVES: To assess the effects of interventions for the management of patients with taste disturbances.

    SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 4 July 2017); the Cochrane Central Register of Controlled Trials (CENTRAL; 2017 Issue 6) in the Cochrane Library (searched 4 July 2017); MEDLINE Ovid (1946 to 4 July 2017); Embase Ovid (1980 to 4 July 2017); CINAHL EBSCO (1937 to 4 July 2017); and AMED Ovid (1985 to 4 July 2017). The US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for trials. Abstracts from scientific meetings and conferences were searched on 25 September 2017. No restrictions were placed on the language or date of publication when searching the electronic databases.

    SELECTION CRITERIA: We included all randomised controlled trials (RCTs) comparing any pharmacological agent with a control intervention or any non-pharmacological agent with a control intervention. We also included cross-over trials in the review.

    DATA COLLECTION AND ANALYSIS: Two pairs of review authors independently, and in duplicate, assessed the quality of trials and extracted data. Wherever possible, we contacted trial authors for additional information. We collected adverse events information from the trials.

    MAIN RESULTS: We included 10 trials (581 participants), nine of which we were able to include in the quantitative analyses (566 participants). We assessed three trials (30%) as having a low risk of bias, four trials (40%) at high risk of bias and three trials (30%) as having an unclear risk of bias. We only included studies on taste disorders in this review that were either idiopathic, or resulting from zinc deficiency or chronic renal failure.Of these, nine trials with 544 people compared zinc supplements to placebo for patients with taste disorders. The participants in two trials were children and adolescents with respective mean ages of 10 and 11.2 years and the other seven trials had adult participants. Out of these nine, two trials assessed the patient-reported outcome for improvement in taste acuity using zinc supplements (risk ratio (RR) 1.40, 95% confidence interval (CI) 0.94 to 2.09; 119 participants, very low-quality evidence). We meta-analysed for taste acuity improvement using objective outcome (continuous data) in idiopathic and zinc-deficient taste disorder patients (standardised mean difference (SMD) 0.44, 95% CI 0.23 to 0.65; 366 participants, three trials, very low-quality evidence). We also analysed one cross-over trial separately using the first half of the results for taste detection (mean difference (MD) 2.50, 95% CI 0.93 to 4.07; 14 participants, very low-quality evidence), and taste recognition (MD 3.00, 95% CI 0.66 to 5.34; 14 participants, very low-quality evidence). We meta-analysed taste acuity improvement using objective outcome (dichotomous data) in idiopathic and zinc-deficient taste disorder patients (RR 1.42, 95% 1.09 to 1.84; 292 participants, two trials, very low-quality evidence). Out of the nine trials using zinc supplementation, four reported adverse events like eczema, nausea, abdominal pain, diarrhoea, constipation, decrease in blood iron, increase in blood alkaline phosphatase, and minor increase in blood triglycerides.One trial tested taste discrimination using acupuncture (MD 2.80, 95% CI -1.18 to 6.78; 37 participants, very low-quality evidence). No adverse events were reported in the acupuncture trial.None of the included trials could be included in the meta-analysis for health-related quality of life in taste disorder patients.

    AUTHORS' CONCLUSIONS: We found very low-quality evidence that was insufficient to conclude on the role of zinc supplements to improve taste acuity reported by patients and very low-quality evidence that zinc supplements improve taste acuity in patients with zinc deficiency/idiopathic taste disorders. We did not find any evidence to conclude the role of zinc supplements for improving taste discrimination, or any evidence addressing health-related quality of life due to taste disorders.We found very low-quality evidence that is not sufficient to conclude on the role of acupuncture for improving taste discrimination in cases of idiopathic dysgeusia (distortion of taste) and hypogeusia (reduced ability to taste). We were unable to draw any conclusions regarding the superiority of zinc supplements or acupuncture as none of the trials compared these interventions.

  14. Kumbargere Nagraj S, Prashanti E, Aggarwal H, Lingappa A, Muthu MS, Kiran Kumar Krishanappa S, et al.
    Cochrane Database Syst Rev, 2018 Mar 04;3(3):CD011930.
    PMID: 29502332 DOI: 10.1002/14651858.CD011930.pub3
    BACKGROUND: Post-extraction bleeding (PEB) is a recognised, frequently encountered complication in dental practice, which is defined as bleeding that continues beyond 8 to 12 hours after dental extraction. The incidence of post-extraction bleeding varies from 0% to 26%. If post-extraction bleeding is not managed, complications can range from soft tissue haematomas to severe blood loss. Local causes of bleeding include soft tissue and bone bleeding. Systemic causes include platelet problems, coagulation disorders or excessive fibrinolysis, and inherited or acquired problems (medication induced). There is a wide array of techniques suggested for the treatment of post-extraction bleeding, which include interventions aimed at both local and systemic causes. This is an update of a review published in June 2016.

    OBJECTIVES: To assess the effects of interventions for treating different types of post-extraction bleeding.

    SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 24 January 2018), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, 2017, Issue 12), MEDLINE Ovid (1946 to 24 January 2018), Embase Ovid (1 May 2015 to 24 January 2018) and CINAHL EBSCO (1937 to 24 January 2018). The US National Institutes of Health Trials Registry (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. We searched the reference lists of relevant systematic reviews.

    SELECTION CRITERIA: We considered randomised controlled trials (RCTs) that evaluated any intervention for treating PEB, with male or female participants of any age, regardless of type of teeth (anterior or posterior, mandibular or maxillary). Trials could compare one type of intervention with another, with placebo, or with no treatment.

    DATA COLLECTION AND ANALYSIS: Three pairs of review authors independently screened search records. We obtained full papers for potentially relevant trials. If data had been extracted, we would have followed the methods described in the Cochrane Handbook for Systematic Reviews of Interventions for the statistical analysis.

    MAIN RESULTS: We did not find any randomised controlled trial suitable for inclusion in this review.

    AUTHORS' CONCLUSIONS: We were unable to identify any reports of randomised controlled trials that evaluated the effects of different interventions for the treatment of post-extraction bleeding. In view of the lack of reliable evidence on this topic, clinicians must use their clinical experience to determine the most appropriate means of treating this condition, depending on patient-related factors. There is a need for well designed and appropriately conducted clinical trials on this topic, which conform to the CONSORT statement (www.consort-statement.org/).

  15. Kumbargere Nagraj S, Eachempati P, Uma E, Singh VP, Ismail NM, Varghese E
    Cochrane Database Syst Rev, 2019 Dec 11;12(12):CD012213.
    PMID: 31825092 DOI: 10.1002/14651858.CD012213.pub2
    BACKGROUND: Halitosis or bad breath is a symptom in which a noticeably unpleasant breath odour is present due to an underlying oral or systemic disease. 50% to 60% of the world population has experienced this problem which can lead to social stigma and loss of self-confidence. Multiple interventions have been tried to control halitosis ranging from mouthwashes and toothpastes to lasers. This new Cochrane Review incorporates Cochrane Reviews previously published on tongue scraping and mouthrinses for halitosis.

    OBJECTIVES: The objectives of this review were to assess the effects of various interventions used to control halitosis due to oral diseases only. We excluded studies including patients with halitosis secondary to systemic disease and halitosis-masking interventions.

    SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 8 April 2019), the Cochrane Central Register of Controlled Trials (CENTRAL; 2019, Issue 3) in the Cochrane Library (searched 8 April 2019), MEDLINE Ovid (1946 to 8 April 2019), and Embase Ovid (1980 to 8 April 2019). We also searched LILACS BIREME (1982 to 19 April 2019), the National Database of Indian Medical Journals (1985 to 19 April 2019), OpenGrey (1992 to 19 April 2019), and CINAHL EBSCO (1937 to 19 April 2019). The US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov (8 April 2019), the World Health Organization International Clinical Trials Registry Platform (8 April 2019), the ISRCTN Registry (19 April 2019), the Clinical Trials Registry - India (19 April 2019), were searched for ongoing trials. We also searched the cross-references of included studies and systematic reviews published on the topic. No restrictions were placed on the language or date of publication when searching the electronic databases.

    SELECTION CRITERIA: We included randomised controlled trials (RCTs) which involved adults over the age of 16, and any intervention for managing halitosis compared to another or placebo, or no intervention. The active interventions or controls were administered over a minimum of one week and with no upper time limit. We excluded quasi-randomised trials, trials comparing the results for less than one week follow-up, and studies including advanced periodontitis.

    DATA COLLECTION AND ANALYSIS: Two pairs of review authors independently selected trials, extracted data, and assessed risk of bias. We estimated mean differences (MDs) for continuous data, with 95% confidence intervals (CIs). We assessed the certainty of the evidence using the GRADE approach.

    MAIN RESULTS: We included 44 trials in the review with 1809 participants comparing an intervention with a placebo or a control. The age of participants ranged from 17 to 77 years. Most of the trials reported on short-term follow-up (ranging from one week to four weeks). Only one trial reported long-term follow-up (three months). Three studies were at low overall risk of bias, 16 at high overall risk of bias, and the remaining 25 at unclear overall risk of bias. We compared different types of interventions which were categorised as mechanical debridement, chewing gums, systemic deodorising agents, topical agents, toothpastes, mouthrinse/mouthwash, tablets, and combination methods. Mechanical debridement: for mechanical tongue cleaning versus no tongue cleaning, the evidence was very uncertain for the outcome dentist-reported organoleptic test (OLT) scores (MD -0.20, 95% CI -0.34 to -0.07; 2 trials, 46 participants; very low-certainty evidence). No data were reported for patient-reported OLT score or adverse events. Chewing gums: for 0.6% eucalyptus chewing gum versus placebo chewing gum, the evidence was very uncertain for the outcome dentist-reported OLT scores (MD -0.10, 95% CI -0.31 to 0.11; 1 trial, 65 participants; very low-certainty evidence). No data were reported for patient-reported OLT score or adverse events. Systemic deodorising agents: for 1000 mg champignon versus placebo, the evidence was very uncertain for the outcome patient-reported visual analogue scale (VAS) scores (MD -1.07, 95% CI -14.51 to 12.37; 1 trial, 40 participants; very low-certainty evidence). No data were reported for dentist-reported OLT score or adverse events. Topical agents: for hinokitiol gel versus placebo gel, the evidence was very uncertain for the outcome dentist-reported OLT scores (MD -0.27, 95% CI -1.26 to 0.72; 1 trial, 18 participants; very low-certainty evidence). No data were reported for patient-reported OLT score or adverse events. Toothpastes: for 0.3% triclosan toothpaste versus control toothpaste, the evidence was very uncertain for the outcome dentist-reported OLT scores (MD -3.48, 95% CI -3.77 to -3.19; 1 trial, 81 participants; very low-certainty evidence). No data were reported for patient-reported OLT score or adverse events. Mouthrinse/mouthwash: for mouthwash containing chlorhexidine and zinc acetate versus placebo mouthwash, the evidence was very uncertain for the outcome dentist-reported OLT scores (MD -0.20, 95% CI -0.58 to 0.18; 1 trial, 44 participants; very low-certainty evidence). No data were reported for patient-reported OLT score or adverse events. Tablets: no data were reported on key outcomes for this comparison. Combination methods: for brushing plus cetylpyridium mouthwash versus brushing, the evidence was uncertain for the outcome dentist-reported OLT scores (MD -0.48, 95% CI -0.72 to -0.24; 1 trial, 70 participants; low-certainty evidence). No data were reported for patient-reported OLT score or adverse events.

    AUTHORS' CONCLUSIONS: We found low- to very low-certainty evidence to support the effectiveness of interventions for managing halitosis compared to placebo or control for the OLT and patient-reported outcomes tested. We were unable to draw any conclusions regarding the superiority of any intervention or concentration. Well-planned RCTs need to be conducted by standardising the interventions and concentrations.

  16. Kumbargere Nagraj S, Eachempati P, Paisi M, Nasser M, Sivaramakrishnan G, Francis T, et al.
    Cochrane Database Syst Rev, 2022 Aug 22;8(8):CD013826.
    PMID: 35994295 DOI: 10.1002/14651858.CD013826.pub2
    BACKGROUND: Aerosols and spatter are generated in a dental clinic during aerosol-generating procedures (AGPs) that use high-speed hand pieces. Dental healthcare providers can be at increased risk of transmission of diseases such as tuberculosis, measles and severe acute respiratory syndrome (SARS) through droplets on mucosae, inhalation of aerosols or through fomites on mucosae, which harbour micro-organisms. There are ways to mitigate and contain spatter and aerosols that may, in turn, reduce any risk of disease transmission. In addition to personal protective equipment (PPE) and aerosol-reducing devices such as high-volume suction, it has been hypothesised that the use of mouth rinse by patients before dental procedures could reduce the microbial load of aerosols that are generated during dental AGPs.

    OBJECTIVES: To assess the effects of preprocedural mouth rinses used in dental clinics to minimise incidence of infection in dental healthcare providers and reduce or neutralise contamination in aerosols.

    SEARCH METHODS: We used standard, extensive Cochrane search methods. The latest search date was 4 February 2022.

    SELECTION CRITERIA: We included randomised controlled trials and excluded laboratory-based studies. Study participants were dental patients undergoing AGPs. Studies compared any preprocedural mouth rinse used to reduce contaminated aerosols versus placebo, no mouth rinse or another mouth rinse. Our primary outcome was incidence of infection of dental healthcare providers and secondary outcomes were reduction in the level of contamination of the dental operatory environment, cost, change in mouth microbiota, adverse events, and acceptability and feasibility of the intervention.

    DATA COLLECTION AND ANALYSIS: Two review authors screened search results, extracted data from included studies, assessed the risk of bias in the studies and judged the certainty of the available evidence. We used mean differences (MDs) and 95% confidence intervals (CIs) as the effect estimate for continuous outcomes, and random-effects meta-analysis to combine data  MAIN RESULTS:  We included 17 studies with 830 participants aged 18 to 70 years. We judged three trials at high risk of bias, two at low risk and 12 at unclear risk of bias.  None of the studies measured our primary outcome of the incidence of infection in dental healthcare providers.  The primary outcome in the studies was reduction in the level of bacterial contamination measured in colony-forming units (CFUs) at distances of less than 2 m (intended to capture larger droplets) and 2 m or more (to capture droplet nuclei from aerosols arising from the participant's oral cavity). It is unclear what size of CFU reduction represents a clinically significant amount. There is low- to very low-certainty evidence that chlorhexidine (CHX) may reduce bacterial contamination, as measured by CFUs, compared with no rinsing or rinsing with water. There were similar results when comparing cetylpyridinium chloride (CPC) with no rinsing and when comparing CPC, essential oils/herbal mouthwashes or boric acid with water. There is very low-certainty evidence that tempered mouth rinses may provide a greater reduction in CFUs than cold mouth rinses. There is low-certainty evidence that CHX may reduce CFUs more than essential oils/herbal mouthwashes. The evidence for other head-to-head comparisons was limited and inconsistent.  The studies did not provide any information on costs, change in micro-organisms in the patient's mouth or adverse events such as temporary discolouration, altered taste, allergic reaction or hypersensitivity. The studies did not assess acceptability of the intervention to patients or feasibility of implementation for dentists.  AUTHORS' CONCLUSIONS: None of the included studies measured the incidence of infection among dental healthcare providers. The studies measured only reduction in level of bacterial contamination in aerosols. None of the studies evaluated viral or fungal contamination. We have only low to very low certainty for all findings. We are unable to draw conclusions regarding whether there is a role for preprocedural mouth rinses in reducing infection risk or the possible superiority of one preprocedural rinse over another. Studies are needed that measure the effect of rinses on infectious disease risk among dental healthcare providers and on contaminated aerosols at larger distances with standardised outcome measurement.

  17. Kumbargere Nagraj S, Eachempati P, Paisi M, Nasser M, Sivaramakrishnan G, Verbeek JH
    Cochrane Database Syst Rev, 2020 Oct 12;10(10):CD013686.
    PMID: 33047816 DOI: 10.1002/14651858.CD013686.pub2
    BACKGROUND: Many dental procedures produce aerosols (droplets, droplet nuclei and splatter) that harbour various pathogenic micro-organisms and may pose a risk for the spread of infections between dentist and patient. The COVID-19 pandemic has led to greater concern about this risk.

    OBJECTIVES: To assess the effectiveness of methods used during dental treatment procedures to minimize aerosol production and reduce or neutralize contamination in aerosols.

    SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases on 17 September 2020: Cochrane Oral Health's Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (in the Cochrane Library, 2020, Issue 8), MEDLINE Ovid (from 1946); Embase Ovid (from 1980); the WHO COVID-19 Global literature on coronavirus disease; the US National Institutes of Health Trials Registry (ClinicalTrials.gov); and the Cochrane COVID-19 Study Register. We placed no restrictions on the language or date of publication.

    SELECTION CRITERIA: We included randomized controlled trials (RCTs) and controlled clinical trials (CCTs) on aerosol-generating procedures (AGPs) performed by dental healthcare providers that evaluated methods to reduce contaminated aerosols in dental clinics (excluding preprocedural mouthrinses). The primary outcomes were incidence of infection in dental staff or patients, and reduction in volume and level of contaminated aerosols in the operative environment. The secondary outcomes were cost, accessibility and feasibility.

    DATA COLLECTION AND ANALYSIS: Two review authors screened search results, extracted data from the included studies, assessed the risk of bias in the studies, and judged the certainty of the available evidence. We used mean differences (MDs) and 95% confidence intervals (CIs) as the effect estimate for continuous outcomes, and random-effects meta-analysis to combine data. We assessed heterogeneity.

    MAIN RESULTS: We included 16 studies with 425 participants aged 5 to 69 years. Eight studies had high risk of bias; eight had unclear risk of bias. No studies measured infection. All studies measured bacterial contamination using the surrogate outcome of colony-forming units (CFU). Two studies measured contamination per volume of air sampled at different distances from the patient's mouth, and 14 studies sampled particles on agar plates at specific distances from the patient's mouth. The results presented below should be interpreted with caution as the evidence is very low certainty due to heterogeneity, risk of bias, small sample sizes and wide confidence intervals. Moreover, we do not know the 'minimal clinically important difference' in CFU. High-volume evacuator Use of a high-volume evacuator (HVE) may reduce bacterial contamination in aerosols less than one foot (~ 30 cm) from a patient's mouth (MD -47.41, 95% CI -92.76 to -2.06; 3 RCTs, 122 participants (two studies had split-mouth design); very high heterogeneity I² = 95%), but not at longer distances (MD -1.00, -2.56 to 0.56; 1 RCT, 80 participants). One split-mouth RCT (six participants) found that HVE may not be more effective than conventional dental suction (saliva ejector or low-volume evacuator) at 40 cm (MD CFU -2.30, 95% CI -5.32 to 0.72) or 150 cm (MD -2.20, 95% CI -14.01 to 9.61). Dental isolation combination system One RCT (50 participants) found that there may be no difference in CFU between a combination system (Isolite) and a saliva ejector (low-volume evacuator) during AGPs (MD -0.31, 95% CI -0.82 to 0.20) or after AGPs (MD -0.35, -0.99 to 0.29). However, an 'n of 1' design study showed that the combination system may reduce CFU compared with rubber dam plus HVE (MD -125.20, 95% CI -174.02 to -76.38) or HVE (MD -109.30, 95% CI -153.01 to -65.59). Rubber dam One split-mouth RCT (10 participants) receiving dental treatment, found that there may be a reduction in CFU with rubber dam at one-metre (MD -16.20, 95% CI -19.36 to -13.04) and two-metre distance (MD -11.70, 95% CI -15.82 to -7.58). One RCT of 47 dental students found use of rubber dam may make no difference in CFU at the forehead (MD 0.98, 95% CI -0.73 to 2.70) and occipital region of the operator (MD 0.77, 95% CI -0.46 to 2.00). One split-mouth RCT (21 participants) found that rubber dam plus HVE may reduce CFU more than cotton roll plus HVE on the patient's chest (MD -251.00, 95% CI -267.95 to -234.05) and dental unit light (MD -12.70, 95% CI -12.85 to -12.55). Air cleaning systems One split-mouth CCT (two participants) used a local stand-alone air cleaning system (ACS), which may reduce aerosol contamination during cavity preparation (MD -66.70 CFU, 95% CI -120.15 to -13.25 per cubic metre) or ultrasonic scaling (MD -32.40, 95% CI - 51.55 to -13.25). Another CCT (50 participants) found that laminar flow in the dental clinic combined with a HEPA filter may reduce contamination approximately 76 cm from the floor (MD -483.56 CFU, 95% CI -550.02 to -417.10 per cubic feet per minute per patient) and 20 cm to 30 cm from the patient's mouth (MD -319.14 CFU, 95% CI - 385.60 to -252.68). Disinfectants ‒ antimicrobial coolants Two RCTs evaluated use of antimicrobial coolants during ultrasonic scaling. Compared with distilled water, coolant containing chlorhexidine (CHX), cinnamon extract coolant or povidone iodine may reduce CFU: CHX (MD -124.00, 95% CI -135.78 to -112.22; 20 participants), povidone iodine (MD -656.45, 95% CI -672.74 to -640.16; 40 participants), cinnamon (MD -644.55, 95% CI -668.70 to -620.40; 40 participants). CHX coolant may reduce CFU more than povidone iodine (MD -59.30, 95% CI -64.16 to -54.44; 20 participants), but not more than cinnamon extract (MD -11.90, 95% CI -35.88 to 12.08; 40 participants).

    AUTHORS' CONCLUSIONS: We found no studies that evaluated disease transmission via aerosols in a dental setting; and no evidence about viral contamination in aerosols. All of the included studies measured bacterial contamination using colony-forming units. There appeared to be some benefit from the interventions evaluated but the available evidence is very low certainty so we are unable to draw reliable conclusions. We did not find any studies on methods such as ventilation, ionization, ozonisation, UV light and fogging. Studies are needed that measure contamination in aerosols, size distribution of aerosols and infection transmission risk for respiratory diseases such as COVID-19 in dental patients and staff.

  18. Korula P, Alexander H, John JS, Kirubakaran R, Singh B, Tharyan P, et al.
    Cochrane Database Syst Rev, 2024 Feb 05;2(2):CD015219.
    PMID: 38314855 DOI: 10.1002/14651858.CD015219.pub2
    BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to challenge the health workforce and societies worldwide. Favipiravir was suggested by some experts to be effective and safe to use in COVID-19. Although this drug has been evaluated in randomized controlled trials (RCTs), it is still unclear if it has a definite role in the treatment of COVID-19.

    OBJECTIVES: To assess the effects of favipiravir compared to no treatment, supportive treatment, or other experimental antiviral treatment in people with acute COVID-19.

    SEARCH METHODS: We searched the Cochrane COVID-19 Study Register, MEDLINE, Embase, the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease, and three other databases, up to 18 July 2023.

    SELECTION CRITERIA: We searched for RCTs evaluating the efficacy of favipiravir in treating people with COVID-19.

    DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures for data collection and analysis. We used the GRADE approach to assess the certainty of evidence for each outcome.

    MAIN RESULTS: We included 25 trials that randomized 5750 adults (most under 60 years of age). The trials were conducted in Bahrain, Brazil, China, India, Iran, Kuwait, Malaysia, Mexico, Russia, Saudi Arabia, Thailand, the UK, and the USA. Most participants were hospitalized with mild to moderate disease (89%). Twenty-two of the 25 trials investigated the role of favipiravir compared to placebo or standard of care, whilst lopinavir/ritonavir was the comparator in two trials, and umifenovir in one trial. Most trials (24 of 25) initiated favipiravir at 1600 mg or 1800 mg twice daily for the first day, followed by 600 mg to 800 mg twice a day. The duration of treatment varied from five to 14 days. We do not know whether favipiravir reduces all-cause mortality at 28 to 30 days, or in-hospital (risk ratio (RR) 0.84, 95% confidence interval (CI) 0.49 to 1.46; 11 trials, 3459 participants; very low-certainty evidence). We do not know if favipiravir reduces the progression to invasive mechanical ventilation (RR 0.86, 95% CI 0.68 to 1.09; 8 trials, 1383 participants; very low-certainty evidence). Favipiravir may make little to no difference in the need for admission to hospital (if ambulatory) (RR 1.04, 95% CI 0.44 to 2.46; 4 trials, 670 participants; low-certainty evidence). We do not know if favipiravir reduces the time to clinical improvement (defined as time to a 2-point reduction in patients' admission status on the WHO's ordinal scale) (hazard ratio (HR) 1.13, 95% CI 0.69 to 1.83; 4 trials, 721 participants; very low-certainty evidence). Favipiravir may make little to no difference to the progression to oxygen therapy (RR 1.20, 95% CI 0.83 to 1.75; 2 trials, 543 participants; low-certainty evidence). Favipiravir may lead to an overall increased incidence of adverse events (RR 1.27, 95% CI 1.05 to 1.54; 18 trials, 4699 participants; low-certainty evidence), but may result in little to no difference inserious adverse eventsattributable to the drug (RR 1.04, 95% CI 0.76 to 1.42; 12 trials, 3317 participants; low-certainty evidence).

    AUTHORS' CONCLUSIONS: The low- to very low-certainty evidence means that we do not know whether favipiravir is efficacious in people with COVID-19 illness, irrespective of severity or admission status. Treatment with favipiravir may result in an overall increase in the incidence of adverse events but may not result in serious adverse events.

  19. Kokavec J, Wu Z, Sherwin JC, Ang AJ, Ang GS
    Cochrane Database Syst Rev, 2017 Jun 01;6:CD011676.
    PMID: 28570745 DOI: 10.1002/14651858.CD011676.pub2
    BACKGROUND: The vitreous is the clear jelly of the eye and contains fine strands of proteins. Throughout life the composition of this vitreous changes, which causes the protein strands in it to bundle together and scatter light before it reaches the retina. Individuals perceive the shadows cast by these protein bundles as 'floaters'. Some people are so bothered by floaters that treatment is required to control their symptoms. Two major interventions for floaters include Nd:YAG laser vitreolysis and vitrectomy. Nd:YAG laser vitreolysis involves using laser energy to fragment the vitreous opacities via a non-invasive approach. Vitrectomy involves the surgical replacement of the patient's vitreous (including the symptomatic vitreous floaters) with an inert and translucent balanced salt solution, through small openings in the pars plana.

    OBJECTIVES: To compare the effectiveness and safety of Nd:YAG laser vitreolysis to pars plana vitrectomy for symptomatic vitreous floaters.

    SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Trials Register) (2016, Issue 12), MEDLINE Ovid (1946 to 17 January 2017), Embase Ovid (1947 to 17 January 2017), LILACS (Latin American and Caribbean Health Sciences Literature Database) (1982 to 17 January 2017), the ISRCTN registry (www.isrctn.com/editAdvancedSearch); searched 17 January 2017, ClinicalTrials.gov (www.clinicaltrials.gov); searched 17 January 2017 and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en); searched 17 January 2017. We did not use any date or language restrictions in the electronic searches for trials. We also searched conference proceedings to identify additional studies.

    SELECTION CRITERIA: We included only randomised controlled trials (RCTs) that compared Nd:YAG laser vitreolysis to pars plana vitrectomy for treatment of symptomatic floaters.

    DATA COLLECTION AND ANALYSIS: We planned to use methods recommended by Cochrane. The primary outcome we planned to measure was change in vision-related quality of life from baseline to 12 months, as determined by a vision-related quality of life questionnaire. The secondary outcomes we planned to measure were best corrected logMAR or Snellen visual acuity at 12 months for the treated eye(s) and costs. Adverse outcomes we planned to record were the occurrence of sight-threatening complications by 12 months (asymptomatic retinal tears, symptomatic retinal tears, retinal detachment, cataract formation, and endophthalmitis).

    MAIN RESULTS: No studies met the inclusion criteria of this review.

    AUTHORS' CONCLUSIONS: There are currently no RCTs that compare Nd:YAG laser vitreolysis with pars plana vitrectomy for the treatment of symptomatic floaters. Properly designed RCTs are needed to evaluate the treatment outcomes from the interventions described. We recommend future studies randomise participants to either a Nd:YAG laser vitreolysis group or a vitrectomy group, with participants in each group assigned to either receive treatment or a sham intervention. Future studies should follow participants at six months and 12 months after the intervention. Also they should use best corrected visual acuity (BCVA) using an Early Treatment of Diabetic Retinopathy Study (ETDRS) chart read at 4 metres, vision-related quality of life (VRQOL), and adverse outcomes as the outcome measures of the trial.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links