Displaying publications 61 - 80 of 251 in total

Abstract:
Sort:
  1. Serit MA, Yap HH
    PMID: 6151744
    Comparative laboratory bioassays of Tolypocladium cylindrosporum, California strain (Kal) was conducted against third instar larvae of four species of mosquito, viz. Aedes aegypti, Anopheles balabacensis, Culex quinquefasciatus and Mansonia uniformis in Malaysia. Of the four mosquito species tested, Ma. uniformis was found to be the most susceptible, followed by Cx. quinquefasciatus, An. balabacensis and Ae. aegypti, in a decreasing order. The LC50 values for Ma. uniformis, Cx. quinquefasciatus, An. balabacensis and Ae. aegypti after four days of exposure were 1.18 X 10(4), 2.02 X 10(5), 4.76 X 10(5) and 1.84 X 10(7) spores per ml test media, respectively. The high sensitivity of Ma. uniformis and its longer life cycle seems to indicate that T. cylindrosporum Kal has good potential as a biocontrol agent for this species of mosquito. But, for Ae. aegypti, this fungus appears to be less effective.
    Matched MeSH terms: Anopheles/microbiology
  2. Self L
    Am J Trop Med Hyg, 2016 07 06;95(1):10-4.
    PMID: 26880771 DOI: 10.4269/ajtmh.15-0817
    Insecticide-treated mosquito nets were first put to practical use in the Western Pacific Region. Less than a decade after conducting workshops and other promotional activities, millions of people were protected by 1989. This occurred before the availability of commercially produced pretreated nets and before global funding for mass net distribution. This paper describes the sequence of steps leading to regional control success. The beginning stages in 1979 recognized that treating torn mosquito nets was a viable control option. Basic net treatment procedures were established by 1983 and workshops were held the next 2 years in China, Cambodia, Laos, Malaysia, Papua New Guinea, Philippines, Solomon Islands, Vanuatu, and Vietnam. Malaria staff became convinced of net benefits and were motivated to impart their knowledge to others. Village inhabitants soaked the nets in washbasins containing permethrin or deltamethrin solution, then dried them horizontally on mats. By the 1990s, the population protected by nets had appreciably increased, and regional malaria cases confirmed by microscopy were markedly reduced. This coincided with commercial interest to mass-produce pretreated mosquito nets for worldwide use.
    Matched MeSH terms: Anopheles
  3. Seleena P, Lee HL, Lecadet MM
    J Am Mosq Control Assoc, 1997 Dec;13(4):395-7.
    PMID: 9474569
    A novel Clostridium bifermentans strain toxic to mosquito larvae on ingestion was isolated from a soil sample collected from secondary forest floor. This strain was designated as serovar paraiba (C. b. paraiba) according to its specific H antigen. Clostridium bifermentans paraiba is most toxic to Anopheles maculatus Theobald larvae (LC50 = 0.038 mg/liter), whereas toxicity to Aedes aegypti (Linn.) (LC50 = 0.74 mg/liter) and Culex quinquefasciatus Say (LC50 = 0.11 mg/liter) larvae was 20 and 3 times lower, respectively. The toxicity to An. maculatus larvae is as high as that of Bacillus thuringiensis serovar israelensis. C. b. paraiba was also found to exhibit significant per os insecticidal activity toward adult Musca domestica (Linn.).
    Matched MeSH terms: Anopheles*
  4. Seleena P, Lee HL, Lecadet MM
    J Am Mosq Control Assoc, 1995 Dec;11(4):471-3.
    PMID: 8825511
    A novel Bacillus thuringiensis strain highly toxic to mosquitoes was isolated from soil samples in Malaysia. This strain was shown to display a new subfraction of the H-28 flagellar antigen determining a new serovar H28a28c, which was designated serovar jegathesan. Bioassays indicated that Culex quinquefasciatus larvae are the most susceptible to this new isolate, whereas toxicity to Anopheles maculatus and Aedes aegypti larvae was 10 times lower. The potency of this new serotype is also comparable to most of the Malaysian B. thuringiensis H-14 isolates.
    Matched MeSH terms: Anopheles*
  5. Sato S, Tojo B, Hoshi T, Minsong LIF, Kugan OK, Giloi N, et al.
    PMID: 31426380 DOI: 10.3390/ijerph16162954
    Plasmodium knowlesi (Pk) is a malaria parasite that naturally infects macaque monkeys in Southeast Asia. Pk malaria, the zoonosis transmitted from the infected monkeys to the humans by Anopheles mosquito vectors, is now a serious health problem in Malaysian Borneo. To create a strategic plan to control Pk malaria, it is important to estimate the occurrence of the disease correctly. The rise of Pk malaria has been explained as being due to ecological changes, especially deforestation. In this research, we analysed the time-series satellite images of MODIS (MODerate-resolution Imaging Spectroradiometer) of the Kudat Peninsula in Sabah and created the "Pk risk map" on which the Land-Use and Land-Cover (LULC) information was visualised. The case number of Pk malaria of a village appeared to have a correlation with the quantity of two specific LULC classes, the mosaic landscape of oil palm groves and the nearby land-use patches of dense forest, surrounding the village. Applying a Poisson multivariate regression with a generalised linear mixture model (GLMM), the occurrence of Pk malaria cases was estimated from the population and the quantified LULC distribution on the map. The obtained estimations explained the real case numbers well, when the contribution of another risk factor, possibly the occupation of the villagers, is considered. This implies that the occurrence of the Pk malaria cases of a village can be predictable from the population of the village and the LULC distribution shown around it on the map. The Pk risk map will help to assess the Pk malaria risk distributions quantitatively and to discover the hidden key factors behind the spread of this zoonosis.
    Matched MeSH terms: Anopheles
  6. Sandosham AA
    Med J Malaysia, 1984 Mar;39(1):5-20.
    PMID: 6334800
    Matched MeSH terms: Anopheles
  7. Sandosham AA, Fredericks HJ, Ponnampalam JT, Seow CL, Ismail O, Othman AM, et al.
    J Trop Med Hyg, 1975 Mar;78(3):54-8.
    PMID: 1095776
    Chloroquine resistance is a well established entity in South East Asia, and presents a problem of increasing importance. Strains of P. falciparum resistant to chloroquine have also been found to be resistant to amodiaquine and a combination of pyrimethamine and sulphadoxine. Knowledge of the drug sensitivity of the strains of malaria parasite in a given locality is important so that the right choice of drugs can be made in treatment of the disease. The treatment of chloroquine resistant malaria in West Malaysia is a subject of another paper but suffice it to say that increased doses of chloroquine have still been found to be effective in treating many cases of falciparum malaria from areas of chloroquine resistance.
    Matched MeSH terms: Anopheles
  8. Sallum MA, Peyton EL, Wilkerson RC
    Med Vet Entomol, 2005 Jun;19(2):158-99.
    PMID: 15958025
    Among Oriental anopheline mosquitoes (Diptera: Culicidae), several major vectors of forest malaria belong to the group of Anopheles (Cellia) leucosphyrus Dönitz. We have morphologically examined representative material (> 8000 specimens from seven countries) for taxonomic revision of the Leucosphyrus Group. Six new species are here described from adult, pupal and larval stages (with illustrations of immature stages) and formally named as follows: An. latens n. sp. (= An. leucosphyrus species A of Baimai et al., 1988b), An. cracens n. sp., An. scanloni n. sp., An. baimaii n. sp. (formerly An. dirus species B, C, D, respectively), An. mirans n. sp. and An. recens n. sp. Additionally, An. elegans (James) is redescribed and placed in the complex of An. dirus Peyton & Harrison (comprising An. baimaii, An. cracens, An. dirus, An. elegans, An. nemophilous Peyton and Ramalingam, An. scanloni and An. takasagoensis Morishita) of the Leucosphyrus Subgroup, together with An. baisasi Colless and the An. leucosphyrus complex (comprising An. balabacensis Baisas, An. introlatus Baisas, An. latens and An. leucosphyrus). Hence, the former Elegans Subgroup is renamed the Hackeri Subgroup (comprising An. hackeri Edwards, An. pujutensis Colless, An. recens and An. sulawesi Waktoedi). Distribution data and bionomics of the newly defined species are given, based on new material and published records, with discussion of morphological characters for species distinction and implications for ecology and vector roles of such species. Now these and other members of the Leucosphyrus Group are identifiable, it should be possible to clarify the medical importance and distribution of each species. Those already regarded as vectors of human malaria are: An. baimaii[Bangladesh, China (Yunnan), India (Andamans, Assam, Meghalaya, West Bengal), Myanmar, Thailand]; An. latens[Borneo (where it also transmits Bancroftian filariasis), peninsular Malaysia, Thailand]; probably An. cracens (Sumatra, peninsular Malaysia, Thailand); presumably An. scanloni (Thailand); perhaps An. elegans (the Western Ghat form of An. dirus, restricted to peninsular India); but apparently not An. recens (Sumatra) nor An. mirans[Sri Lanka and south-west India (Karnataka, Kerala, Tamil Nadu)], which is a natural vector of simian malarias. Together with typical An. balabacensis, An. dirus and An. leucosphyrus, therefore, the Leucosphyrus Group includes about seven important vectors of forest malaria, plus at least a dozen species of no known medical importance, with differential specific distributions collectively spanning > 5000 km from India to the Philippines.
    Matched MeSH terms: Anopheles/anatomy & histology; Anopheles/classification*
  9. Sabbatani S, Fiorino S, Manfredi R
    Infez Med, 2012 Mar;20(1):5-11.
    PMID: 22475654
    Epidemic foci of Plasmodium knowlesi malaria have been identified during the past ten years in Malaysia, in particular in the States of Sarawak and Sabah (Malaysia Borneo), and in the Pahang region (peninsular Malaysia). Based on a review of the available recent international literature, the authors underline the importance of molecular biology examinations, polymerase chain reactions (PCR), performed with primers specific for P. knowlesi, since the current microscopic examination (haemoscope) may fail to distinguish P. knowlesi from Plasmodium malariae, due to the very similar appearance of the two parasites. P. knowlesi has been described as the causal agent of life-threatening and lethal forms of malaria: its clinical picture is more severe when compared with that of P. malariae, since the disease is characterized by greater parasitaemia, as opposed to that documented in the course of P. malariae disease. The most effective carrier is Anopheles leucosphyrus: this mosquito is attracted by both humans and monkeys. Among primates, the natural hosts of P. knowlesi are Macaca fascicularis and Macaca nemestina, while Saimiri scirea and Macaca mulatta, which cannot become infected in nature, may be useful in experimental models. When underlining the potentially severe evolution, we note the key role played by prompt disease recognition, which is expected to be more straightforward in patients monitored in endemic countries at high risk, but should be carefully implemented for subjects being admitted to hospital in Western countries suffering from the typical signs and symptoms of malaria, after travelling in South-East Asia where they were engaged in excursions in the tropical forest (trekking, and similar outdoor activities). In these cases, the diagnosis should be prompt, and suitable treatment should follow. According to data in the literature, in non-severe cases chloroquine proves very effective against P. knowlesi, achieving the disappearance of signs and symptoms in 96% of cases after only 24 hours after treatment start. In the light of the emerging epidemiological data, P. knowlesi should be added to Plasmodium vivax, Plasmodium ovale, P. malariae, and Plasmodium falciparum, as the fifth aetiological agent of malaria. During the next few years, it will become mandatory to plan an appropriate surveillance program of the epidemiological evolution, paying also great attention to the clinical features of patients affected by P. knowlesi malaria, which are expected to worsen according to the time elapsed; some studies seem to point out greater severity according to increased parasitaemia, paralleling the increased interhuman infectious passages of the plasmodium.
    Matched MeSH terms: Anopheles
  10. Sabbatani S, Fiorino S, Manfredi R
    Braz J Infect Dis, 2010 May-Jun;14(3):299-309.
    PMID: 20835518
    After examining the most recent scientific evidences, which assessed the role of some malaria plasmodia that have monkeys as natural reservoirs, the authors focus their attention on Plasmodium knowlesi. The infective foci attributable to this last Plasmodium species have been identified during the last decade in Malaysia, in particular in the states of Sarawak and Sabah (Malaysian Borneo), and in the Pahang region (peninsular Malaysia). The significant relevance of molecular biology assays (polymerase chain reaction, or PCR, performed with specific primers for P. knowlesi), is underlined, since the traditional microscopic examination does not offer distinguishing features, especially when the differential diagnosis with Plasmodium malariae is of concern. Furthermore, Plasmodium knowlesi disease may be responsible of fatal cases, since its clinical presentation and course is more severe compared with those caused by P. malariae, paralleling a more elevated parasitemia. The most effective mosquito vector is represented by Anopheles latens; this mosquito is a parasite of both humans and monkeys. Among primates, the natural hosts are Macaca fascicularis, M. nemestina, M. inus, and Saimiri scirea. When remarking the possible severe evolution of P. knowlesi malaria, we underline the importance of an early recognition and a timely management, especially in patients who have their first onset in Western Hospitals, after journeys in Southeast Asian countries, and eventually participated in trekking excursions in the tropical forest. When malaria-like signs and symptoms are present, a timely diagnosis and treatment become crucial. In the light of its emerging epidemiological features, P. knowlesi may be added to the reknown human malaria parasites, whith includes P. vivax, P. ovale, P. malariae, and P. falciparum, as the fifth potential ethiologic agent of human malaria. Over the next few years, it will be mandatory to support an adequate surveillance and epidemiological network. In parallel with epidemiological and health care policy studies, also an accurate appraisal of the clinical features of P. knowlesi-affected patients will be strongly needed, since some preliminary experiences seem to show an increased disease severity, associated with increased parasitemia, in parallel with the progressive increase of inter-human infectious passages of this emerging Plasmodium.
    Matched MeSH terms: Anopheles/parasitology*
  11. SANDOSHAM AA, WHARTON RH, EYLES DE, WARREN M, CHEONG WH
    Med J Malaysia, 1963 Sep;18:46-51.
    PMID: 14064298
    Matched MeSH terms: Anopheles*
  12. SANDOSHAM AA
    Med J Malaysia, 1964 Mar;18:137-50.
    PMID: 14157180
    Matched MeSH terms: Anopheles*
  13. SANDOSHAM AA
    Med J Malaya, 1962 Dec;17:101-14.
    PMID: 13976262
    Matched MeSH terms: Anopheles*
  14. Rongnopaurt P, Rodpradit P, Kongsawadworakul P, Sithiprasasna R, Linthicum KJ
    J Am Mosq Control Assoc, 2006 Jun;22(2):192-7.
    PMID: 17014059
    Anopheles (Cellia) maculatus Theobald is a major malaria vector in southern Thailand and peninsular Malaysia, and previous population genetic studies suggested that mountain ranges act as barriers to gene flow. In this study, we examine the genetic variance among 12 collections of natural populations in southern Thailand by analyzing 7 microsatellite loci. Based on analysis of molecular variance (AMOVA), three geographic populations of An. maculatus are suggested. The southern population exists in western Thailand north of 12 degrees north latitude. Mosquitoes to the south fall into two genetic populations: 1) the middle southern collections located on the west side of the Phuket mountain range between 8 degrees and 10 degrees north latitude, and 2) the southern collections located on the east of the Phuket mountain range located between approximately 6.5 degrees and 11.5 degrees north latitude. AMOVA revealed significant genetic differentiation between northern and middle southern and southern populations. The middle southern population was moderately differentiated from the southern population. Furthermore, gene flow was restricted between proximal collections located on different sides of the Phuket mountain range. Collections separated by 50 km exhibited restriction of gene flow when separated by geographic barriers, whereas greater gene flow was evident among collections 650 km apart but without geographic barriers.
    Matched MeSH terms: Anopheles/genetics*
  15. Rohani A, Wan Najdah WM, Zamree I, Azahari AH, Mohd Noor I, Rahimi H, et al.
    PMID: 21073056
    In Peninsular Malaysia, a large proportion of malaria cases occur in the central mountainous and forested parts of the country. As part of a study to assess remote sensing data as a tool for vector mapping, we conducted entomological surveys to determine the type of mosquitoes, their characteristics and the abundance of habitats of the vector Anopheles maculatus in malaria endemic areas in Pos Senderot. An. maculatus mosquitoes were collected from 49 breeding sites in Pos Senderot. An. maculatus preferred to breed in water pockets formed on the bank of rivers and waterfalls. The most common larval habitats were shallow pools 5.0-15.0 cm deep with clear water, mud substrate and plants or floatage. The mosquito also preferred open or partially shaded habitats. Breeding habitats were generally located at 100-400 m from the nearest human settlement. Changes in breeding characteristics were also observed. Instead of breeding in slow flowing streams, most larvae bred in small water pockets along the river margin.
    Matched MeSH terms: Anopheles*
  16. Rohani A, Zamree I, Lim LH, Rahini H, David L, Kamilan D
    PMID: 17333767
    The bioefficacy of indoor residual-sprayed deltamethrin wettable granule (WG) formulation at 25 mg a.i./m2 and 20 mg a.i./m2 for the control of malaria was compared with the current dose of 20 mg/m2 deltamethrin wettable powder (WP) in aboriginal settlements in Kuala Lipis, Pahang, Malaysia. The malaria vector has been previously identified as Anopheles maculatus. The assessment period for the 20 mg/m2 dosage was six months, but for the 25 mg/m2 dosage, the period was 9 months. Collections of mosquitoes using the bare-leg techniques were carried out indoors and outdoors from 7:00 PM to 7:00 AM. All mosquitoes were dissected for sporozoites and parity. Larval collections were carried out at various locations to assess the extent and distribution of breeding of vectors. A high incidence of human feeds was detected during May 2005 and a low incidence during January 2005 for all the study areas. Our study showed that deltamethrin WG at 25 mg/m2 suppressed An. maculatus biting activity. More An. maculatus were caught in outdoor landing catches than indoor landing catches for all the study areas. The results indicate that 25 mg/m2 WG is good for controlling malaria for up to 9 months. Where residual spraying is envisaged, the usual two spraying cycles per year with 20 mg/m2 deltamethrin may be replaced with 25 mg/m2 deltamethrin WG every 9 months.
    Matched MeSH terms: Anopheles/classification; Anopheles/drug effects*; Anopheles/growth & development
  17. Rohani A, Aziz I, Zurainee MN, Rohana SH, Zamree I, Lee HL
    Trop Biomed, 2014 Mar;31(1):159-65.
    PMID: 24862056 MyJurnal
    Chemical insecticides are still considered as important control agents for malaria vector control. However, prolonged use of these chemicals may select mosquito vectors for resistance. In this study, susceptibility status of adult Anopheles maculatus collected from 9 localities in peninsular Malaysia, viz., Jeli, Temerloh, Pos Banun, Senderut, Jeram Kedah, Segamat, Kota Tinggi, Kluang and Pos Lenjang were determined using the standard WHO bioassay method in which the adult mosquitoes were exposed to standard insecticide impregnated papers malathion, permethrin, DDT and deltamethrin--at pre-determined diagnostic dosage. Deltamethrin was most effective insecticide among the four insecticides tested, with the LT50 of 29.53 min, compared to malathion (31.67 min), DDT (47.76 min) and permethrin (48.01 min). The effect of all insecticides on the laboratory strain was greater (with all insecticides demonstrated LT50 < 1 hour) than the field strains (deltamethrin 32.7, malathion 53.0, permethrin 62.0, DDT 67.4 min). An. maculatus exhibited low degree of resistance to all test insecticides, indicating that these chemical insecticides are still effective in the control of malaria vector.
    Matched MeSH terms: Anopheles/drug effects*
  18. Rohani A, Chan ST, Abdullah AG, Tanrang H, Lee HL
    Trop Biomed, 2008 Dec;25(3):232-6.
    PMID: 19287362
    The adult population and species composition of mosquitoes collected in Ranau, Sabah are described. A total of 5956 mosquitoes representing 8 genera and 41 species were collected using human landing catch, indoor and outdoor. Anopheles maculatus was the most common species (15.6%) followed by Culex quinquefasciatus (12.8%), Culex pseudovishnui (12.1%), Anopheles balabacensis (11.1%), Culex vishnui (9.7%), Aedes vexans (9.6%), Culex tritaeniorhyncus (6.6%), Anopheles donaldi (5.6%) and others in very small percentage.
    Matched MeSH terms: Anopheles/classification
  19. Rohani A, Fakhriy HA, Suzilah I, Zurainee MN, Najdah WMAW, Ariffin MM, et al.
    PLoS One, 2020;15(5):e0230860.
    PMID: 32413033 DOI: 10.1371/journal.pone.0230860
    Since 2000, human malaria cases in Malaysia were rapidly reduced with the use of insecticides in Indoor Residual Spray (IRS) and Long-Lasting Insecticide Net (LLIN). Unfortunately, monkey malaria in humans has shown an increase especially in Sabah and Sarawak. The insecticide currently used in IRS is deltamethrin K-Othrine® WG 250 wettable granule, targeting mosquitoes that rest and feed indoor. In Sabah, the primary vector for knowlesi malaria is An. balabacensis a species known to bite outdoor. This study evaluates an alternative method, the Outdoor Residual Spray (ORS) using a novel formulation of deltamethrin K-Othrine® (PolyZone) to examine it suitability to control knowlesi malaria vector in Sabah, compared to the current method. The study was performed at seven villages in Sabah having similar type of houses (wood, bamboo and concrete). Houses were sprayed with deltamethrin K-Othrine® (PolyZone) at two different dosages, 25 mg/m2 and 30 mg/m2 and deltamethrin K-Othrine® WG 250 wettable granule at 25 mg/m2, sprayed indoor and outdoor. Residual activity on different walls was assessed using standard cone bioassay techniques. For larval surveillances, potential breeding sites were surveyed. Larvae were collected and identified, pre and post spraying. Adult survey was done using Human Landing Catch (HLC) performed outdoor and indoor. Detection of malaria parasite in adults was conducted via microscopy and molecular methods. Deltamethrin K-Othrine® (PolyZone) showed higher efficacy when sprayed outdoor. The efficacy was found varied when sprayed on different types of wall surfaces. Deltamethrin K-Othrine® (PolyZone) at 25 mg/m2 was the most effective with regards to ability to high mortality and effective knock down (KD). The vector population was reduced significantly post-spraying and reduction in breeding sites as well. The number of simian malaria infected vector, human and simian malaria transmission were also greatly reduced.
    Matched MeSH terms: Anopheles/drug effects*; Anopheles/parasitology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links