RESULTS: An investigation on the adherence, invasion and intracellular survival of bacterial strains within the bovine aortic endothelial cell line (BAEC) were carried out. The potential vaccine strain, P. multocida B:2 GDH7, was significantly better (p ≤ 0.05) at adhering to and invading BAEC compared to its parent strain and to P. multocida B:2 JRMT12 and survived intracellularly 7 h post treatment, with a steady decline over time. A dual reporter plasmid, pSRGM, which enabled tracking of bacterial movement from the extracellular environment into the intracellular compartment of the mammalian cells, was subsequently transformed into P. multocida B:2 GDH7. Intracellular trafficking of the vaccine strain, P. multocida B:2 GDH7 was subsequently visualized by tracking the reporter proteins via confocal laser scanning microscopy (CLSM).
CONCLUSIONS: The ability of P. multocida B:2 GDH7 to model bactofection represents a possibility for this vaccine strain to be used as a delivery vehicle for DNA vaccine for future multivalent protection in cattle and buffaloes.
RESULTS: P. acidilactici Kp10 was moderately tolerant to phenol and adhere to mammalian epithelial cells (Vero cells and ileal mucosal epithelium). The bacterium also exhibited antimicrobial activity against several gram-positive and gram-negative food-spoilage and food-borne pathogens such as Listeria monocytgenes ATCC 15313, Salmonella enterica ATCC 13311, Shigella sonnei ATCC 9290, Klebsiella oxytoca ATCC 13182, Enterobacter cloaca ATCC 35030 and Streptococcus pyogenes ATCC 12378. The absence of haemolytic activity and proteinase (trypsin) and the presence of a strong peptidase (leucine-arylamidase) and esterase-lipase (C4 and C8) were observed in this LAB strain. P. acidilactici Kp10 also produced acid, coagulated milk and has demonstrated proteolytic and amylolactic activities.
CONCLUSION: The properties exhibited by P. acidilactici Kp10 suggested its potential application as probiotic and starter culture in the food industry.