Displaying publications 61 - 80 of 83 in total

Abstract:
Sort:
  1. Littlewood DT, Rohde K, Clough KA
    Int J Parasitol, 1997 Nov;27(11):1289-97.
    PMID: 9421713
    Partial nuclear 28S ribosomal RNA and mitochondrial cytochrome c oxidase subunit I (COI) gene sequences (953 and 385 nucleotides, respectively) of one fish monogenean (outgroup) and six polystome monogeneans (four Polystomoides spp. from the oral cavities and urinary bladders of freshwater turtles in Australia and Malaya, two Neopolystoma spp. from the urinary bladder and conjunctival sac of a freshwater turtle in Australia) were used to examine the question of whether congeneric species infecting different sites in the same host species have speciated in that host by adapting to different sites, or whether species infecting a particular site in one host have given rise to species infecting the same site in different hosts. Results show unequivocally that congeneric species infecting the same site, even of host species belonging to different suborders and occurring on different continents, are more closely related than congeneric species infecting different sites of the same host species. This is interpreted as meaning that speciation has not occurred in one host. Morphological evolution of polystomes has been very slow: few differences between species and even genera have evolved over a period of at least 150 Myr, and this is matched by low substitution rates of nucleotides, and the ambiguous position of species of different genera, depending on whether COI or 28S rDNA sequences are used.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  2. Ismail NA, Dom NC, Ismail R, Ahmad AH, Zaki A, Camalxaman SN
    J Am Mosq Control Assoc, 2015 Dec;31(4):305-12.
    PMID: 26675451 DOI: 10.2987/moco-31-04-305-312.1
    A study was conducted to establish polymorphic variation of the mitochondrial DNA encoding the cytochrome oxidase subunit 1 (CO1) gene in Aedes albopictus isolated from 2 hot spot dengue-infested areas in the Subang Jaya District, Malaysia. A phylogenetic analysis was performed with the use of sequences obtained from USJ6 and Taman Subang Mas (TSM). Comparison of the local CO1 sequences with a laboratory strain (USM), alongside reference strains derived from the GenBank database revealed low genetic variation in terms of nucleotide differences and haplotype diversity. Four methods were used to construct a phylogenetic tree and illustrate the genetic relationship of the 37 Ae. albopictus populations based on the CO1 sequences, namely neighbor-joining (NJ), maximum parsimony (MP), maximum likelihood (ML), and Bayesian method, which revealed a distinct relationship between isolates from USJ6 and TSM. Our findings provide new information regarding the genetic diversity among morphologically similar Ae. albopictus, which has not been reported to date.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  3. Anderson DL, Trueman JW
    Exp Appl Acarol, 2000 Mar;24(3):165-89.
    PMID: 11108385
    Varroa jacobsoni was first described as a natural ectoparasitic mite of the Eastern honeybee (Apis cerana) throughout Asia. It later switched host to the Western honeybee (A. mellifera) and has now become a serious pest of that bee worldwide. The studies reported here on genotypic, phenotypic and reproductive variation among V. jacobsoni infesting A. cerana throughout Asia demonstrate that V. jacobsoni is a complex of at least two different species. In a new classification V. jacobsoni is here redefined as encompassing nine haplotypes (mites with distinct mtDNA CO-I gene sequences) that infest A. cerana in the Malaysia Indonesia region. Included is a Java haplotype, specimens of which were used to first describe V. jacobsoni at the beginning of this century. A new name, V. destructor n. sp., is given to six haplotypes that infest A. cerana on mainland Asia. Adult females of V. destructor are significantly larger and less spherical in shape than females of V. jacobsoni and they are also reproductively isolated from females of V. jacobsoni. The taxonomic positions of a further three unique haplotypes that infest A. cerana in the Philippines is uncertain and requires further study. Other studies reported here also show that only two of the 18 different haplotypes concealed within the complex of mites infesting A. cerana have become pests of A. mellifera worldwide. Both belong to V. destructor, and they are not V. jacobsoni. The most common is a Korea haplotype, so-called because it was also found parasitizing A. cerana in South Korea. It was identified on A. mellifera in Europe, the Middle East, Africa, Asia, and the Americas. Less common is a Japan/Thailand haplotype, so-called because it was also found parasitizing A. cerana in Japan and Thailand. It was identified on A. mellifera in Japan, Thailand and the Americas. Our results imply that the findings of past research on V. jacobsoni are applicable mostly to V. destructor. Our results will also influence quarantine protocols for bee mites, and may present new strategies for mite control.
    Matched MeSH terms: Electron Transport Complex IV/genetics*
  4. Kavitha R, Tan TC, Lee HL, Nazni WA, Sofian-Azirun M
    Trop Biomed, 2013 Mar;30(1):119-24.
    PMID: 23665717 MyJurnal
    Estimation of post-mortem interval (PMI) is crucial for time of death determination. The advent of DNA-based identification techniques forensic entomology saw the beginning of a proliferation of molecular studies into forensically important Calliphoridae (Diptera). The use of DNA to characterise morphologically indistinguishable immature calliphorids was recognised as a valuable molecular tool with enormous practical utility. The local entomofauna in most cases is important for the examination of entomological evidences. The survey of the local entomofauna has become a fundamental first step in forensic entomological studies, because different geographical distributions, seasonal and environmental factors may influence the decomposition process and the occurrence of different insect species on corpses. In this study, calliphorids were collected from 13 human corpses recovered from indoors, outdoors and aquatic conditions during the post-mortem examination by pathologists from the government hospitals in Malaysia. Only two species, Chrysomya megacephala and Chrysomya rufifacies were recovered from human corpses. DNA sequencing was performed to study the mitochondrial encoded COI gene and to evaluate the suitability of the 1300 base pairs of COI fragments for identification of blow fly species collected from real crime scene. The COI gene from blow fly specimens were sequenced and deposited in GenBank to expand local databases. The sequenced COI gene was useful in identifying calliphorids retrieved from human corpses.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  5. Fong MY, Lau YL, Chin LC, Al-Mekhlafi AM
    Trop Biomed, 2011 Aug;28(2):457-63.
    PMID: 22041769
    The cytochrome oxidase subunit I (COXI) gene sequences of three recent (2007-2008) clinical Plasmodium knowlesi isolates from Klang Valley, peninsular Malaysia, were determined and compared with those of older (1960's) peninsular Malaysia, recent isolates from Sarawak (on Borneo Island), and an isolate from Thailand. Multiple alignment of the sequences showed that the three clinical isolates were more similar to the older peninsular Malaysia isolates than to those from Sarawak and Thailand. Phylogenetic tree based on the COXI sequences revealed three distinct clusters of P. knowlesi. The first cluster consisted of isolates from peninsular Malaysia, the second consisted of Sarawak isolates and the third composed of the Thailand isolate. The findings of this study highlight the usefulness of mitochondrial COXI gene as a suitable marker for phylogeographic studies of P. knowlesi.
    Matched MeSH terms: Electron Transport Complex IV/genetics*
  6. Wilson JJ, Brandon-Mong GJ, Gan HM, Sing KW
    PMID: 29591722 DOI: 10.1080/24701394.2018.1455189
    Consensus on the optimal high-throughput sequencing (HTS) approach to examine biodiversity in mixed terrestrial arthropod samples has not been reached. Metatranscriptomics could increase the proportion of taxonomically informative mitochondrial reads in HTS outputs but has not been investigated for terrestrial arthropod samples. We compared the efficiency of 16S rRNA metabarcoding, metagenomics and metatranscriptomics for detecting species in a mixed terrestrial arthropod sample (pooled DNA/RNA from 38 taxa). 16S rRNA metabarcoding and nuclear rRNA-depleted metatranscriptomics had the highest detection rate with 97% of input species detected. Based on cytochrome c oxidase I, metagenomics had the highest detection rate with 82% of input species detected, but metatranscriptomics produced a larger proportion of reads matching (Sanger) reference sequences. Metatranscriptomics with nuclear rRNA depletion may offer advantages over metabarcoding through reducing the number of spurious operational taxonomic units while retaining high detection rates, and offers natural enrichment of mitochondrial sequences which may enable increased species detection rates compared with metagenomics.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  7. Eamsobhana P, Song SL, Yong HS, Prasartvit A, Boonyong S, Tungtrongchitr A
    Acta Trop, 2017 Jul;171:141-145.
    PMID: 28347653 DOI: 10.1016/j.actatropica.2017.03.020
    The rat lungworm Angiostrongylus cantonensis is a food-borne zoonotic parasite of public health importance worldwide. It is the primary etiologic agent of eosinophilic meningitis and eosinophilic meningoencephalitis in humans in many countries. It is highly endemic in Thailand especially in the northeast region. In this study, A. cantonensis adult worms recovered from the lungs of wild rats in different geographical regions/provinces in Thailand were used to determine their haplotype by means of the mitochondrial partial cytochrome c oxidase subunit I (COI) gene sequence. The results revealed three additional COI haplotypes of A. cantonensis. The geographical isolates of A. cantonensis from Thailand and other countries formed a monophyletic clade distinct from the closely related A. malaysiensis. In the present study, distinct haplotypes were identified in seven regions of Thailand - AC10 in Phitsanulok (northern region), AC11 in Nakhon Phanom (northeastern region), AC15 in Trat (eastern region), AC16 in Chantaburi (eastern region), AC4 in Samut Prakan (central region), AC14 in Kanchanaburi (western region), and AC13 in Ranong (southern region). Phylogenetic analysis revealed that these haplotypes formed distinct lineages. In general, the COI sequences did not differentiate the worldwide geographical isolates of A. cantonensis. This study has further confirmed the presence of COI haplotype diversity in various geographical isolates of A. cantonensis. The COI gene sequence will be a suitable marker for studying population structure, phylogeography and genetic diversity of the rat lungworm.
    Matched MeSH terms: Electron Transport Complex IV/genetics*
  8. Yeap BK, Othman AS, Lee VS, Lee CY
    J Econ Entomol, 2007 Apr;100(2):467-74.
    PMID: 17461072
    The phylogenetic relationship of Coptotermes gestroi (Wasmann) and Coptotermes vastator Light (Isoptera: Rhinotermitidae) was determined using DNA sequence comparisons of mitochondrial genes. Partial sequences of the ribosomal RNA small subunit 12S, ribosomal RNA large subunit 16S, and mitochondrial COII were obtained from nine populations of C. gestroi from South East Asia (Malaysia, Singapore, Thailand, and Indonesia) and four populations of C. vastator from the Philippines and Hawaii. In addition, four populations of Coptotermes formosanus Shiraki and Globitermes sulphureus (Haviland) were used as the outgroups. Consensus sequences were obtained and aligned. C. vastator and C. gestroi are synonymous, based on high sequence homology across the 12S, 16S, and COII genes. The interspecific pairwise sequence divergence, based on Kimura 2-parameter model between C. gestroi and C. vastator, varied only up to 0.80%. Morphometric measurements of 16 characteristics revealed numerous overlaps between the examined individuals of both species. Based on the molecular phylogenetics and morphometric data, it is proposed that C. vastator is a junior synonym of C. gestroi.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  9. Mohd Yusoff NIS, Mat Jaafar TNA, Vilasri V, Mohd Nor SA, Seah YG, Habib A, et al.
    Sci Rep, 2021 Jun 25;11(1):13357.
    PMID: 34172804 DOI: 10.1038/s41598-021-92905-6
    Benthic species, though ecologically important, are vulnerable to genetic loss and population size reduction due to impacts from fishing trawls. An assessment of genetic diversity and population structure is therefore needed to assist in a resource management program. To address this issue, the two-spined yellowtail stargazer (Uranoscopus cognatus) was collected within selected locations in the Indo-West Pacific (IWP). The partial mitochondrial DNA cytochrome c oxidase subunit 1 and the nuclear DNA recombination activating gene 1 were sequenced. Genetic diversity analyses revealed that the populations were moderately to highly diversified (haplotype diversity, H = 0.490-0.900, nucleotide diversity, π = 0.0010-0.0034) except sampling station (ST) 1 and 14. The low diversity level, however was apparent only in the matrilineal marker (H = 0.118-0.216; π = 0.0004-0.0008), possibly due to stochastic factors or anthropogenic stressors. Population structure analyses revealed a retention of ancestral polymorphism that was likely due to incomplete lineage sorting in U. cognatus, and prolonged vicariance by the Indo-Pacific Barrier has partitioned them into separate stock units. Population segregation was also shown by the phenotypic divergence in allopatric populations, regarding the premaxillary protrusion, which is possibly associated with the mechanism for upper jaw movement in biomechanical feeding approaches. The moderate genetic diversity estimated for each region, in addition to past population expansion events, indicated that U. cognatus within the IWP was still healthy and abundant (except in ST1 and 14), and two stock units were identified to be subjected to a specific resource management program.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  10. Ambrose L, Cooper RD, Russell TL, Burkot TR, Lobo NF, Collins FH, et al.
    Int J Parasitol, 2014 Mar;44(3-4):225-33.
    PMID: 24440418 DOI: 10.1016/j.ijpara.2013.12.001
    Anopheles farauti is the primary malaria vector throughout the coastal regions of the Southwest Pacific. A shift in peak biting time from late to early in the night occurred following widespread indoor residue spraying of dichlorodiphenyltrichloro-ethane (DDT) and has persisted in some island populations despite the intervention ending decades ago. We used mitochondrial cytochrome oxidase I (COI) sequence data and 12 newly developed microsatellite markers to assess the population genetic structure of this malaria vector in the Solomon Archipelago. With geographically distinct differences in peak A. farauti night biting time observed in the Solomon Archipelago, we tested the hypothesis that strong barriers to gene flow exist in this region. Significant and often large fixation index (FST) values were found between different island populations for the mitochondrial and nuclear markers, suggesting highly restricted gene flow between islands. Some discordance in the location and strength of genetic breaks was observed between the mitochondrial and microsatellite markers. Since early night biting A. farauti individuals occur naturally in all populations, the strong gene flow barriers that we have identified in the Solomon Archipelago lend weight to the hypothesis that the shifts in peak biting time from late to early night have appeared independently in these disconnected island populations. For this reason, we suggest that insecticide impregnated bed nets and indoor residue spraying are unlikely to be effective as control tools against A. farauti occurring elsewhere, and if used, will probably result in peak biting time behavioural shifts similar to that observed in the Solomon Islands.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  11. Takaoka H, Low VL, Sofian-Azirun M, Otsuka Y, Ya'cob Z, Chen CD, et al.
    Parasit Vectors, 2016;9:136.
    PMID: 26961508 DOI: 10.1186/s13071-016-1393-9
    A species of Simulium in the Simulium melanopus species-group of the subgenus Simulium (formerly misidentified as S. laterale Edwards from Sabah and Sarawak, Malaysia) is suspected to have dimorphic male scutal color patterns linked with different numbers of upper-eye facets. This study aimed to confirm whether or not these two forms of adult males represent a single species.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  12. Low VL, Lim PE, Chen CD, Lim YA, Tan TK, Norma-Rashid Y, et al.
    Med Vet Entomol, 2014 Jun;28(2):157-68.
    PMID: 23848279 DOI: 10.1111/mve.12022
    The present study explored the intraspecific genetic diversity, dispersal patterns and phylogeographic relationships of Culex quinquefasciatus Say (Diptera: Culicidae) in Malaysia using reference data available in GenBank in order to reveal this species' phylogenetic relationships. A statistical parsimony network of 70 taxa aligned as 624 characters of the cytochrome c oxidase subunit I (COI) gene and 685 characters of the cytochrome c oxidase subunit II (COII) gene revealed three haplotypes (A1-A3) and four haplotypes (B1-B4), respectively. The concatenated sequences of both COI and COII genes with a total of 1309 characters revealed seven haplotypes (AB1-AB7). Analysis using tcs indicated that haplotype AB1 was the common ancestor and the most widespread haplotype in Malaysia. The genetic distance based on concatenated sequences of both COI and COII genes ranged from 0.00076 to 0.00229. Sequence alignment of Cx. quinquefasciatus from Malaysia and other countries revealed four haplotypes (AA1-AA4) by the COI gene and nine haplotypes (BB1-BB9) by the COII gene. Phylogenetic analyses demonstrated that Malaysian Cx. quinquefasciatus share the same genetic lineage as East African and Asian Cx. quinquefasciatus. This study has inferred the genetic lineages, dispersal patterns and hypothetical ancestral genotypes of Cx. quinquefasciatus.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  13. Yusof R, Ahmed MA, Jelip J, Ngian HU, Mustakim S, Hussin HM, et al.
    Emerg Infect Dis, 2016 Aug;22(8):1371-80.
    PMID: 27433965 DOI: 10.3201/eid2208.151885
    Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  14. Hornok S, Kontschán J, Keve G, Takács N, Van Nguyen D, Ho KNP, et al.
    Parasit Vectors, 2025 Jan 23;18(1):21.
    PMID: 39849649 DOI: 10.1186/s13071-024-06641-7
    BACKGROUND: Vietnam and its region are regarded as an ixodid tick biodiversity hotspot for at least two genera: Haemaphysalis and Dermacentor. To contribute to our knowledge on the tick fauna of this country, ticks from these two genera as well as an Ixodes species were analyzed morphologically and their molecular-phylogenetic relationships were examined in taxonomic and geographical contexts.

    METHODS: For this study, seven Haemaphysalis sp. ticks were removed from dogs and collected from the vegetation. These showed morphological differences from congeneric species known to occur in Vietnam. In addition, three Ixodes sp. ticks were collected from pygmy slow lorises (Xanthonycticebus pygmaeus), and a Dermacentor female had been previously collected from the vegetation. After DNA extraction, these were molecularly or phylogenetically analyzed based on the cytochrome c oxidase subunit I (cox1) and 16S rRNA genes.

    RESULTS: The three species were morphologically identified as (i) Ixodes granulatus, which had nearly or exactly 100% sequence identities to conspecific ticks reported from large (approximately 2000 km) geographical distances but was more different (having lower, only 94.2% cox1 and 96.7% 16S rRNA sequence identity) from samples collected within 1000 km of Vietnam in Southern China and Malaysia, respectively; (ii) Haemaphysalis bispinosa, which showed 100% sequence identity to samples reported within both narrow and broad geographical ranges; and (iii) a new species, Dermacentor pseudotamokensis Hornok sp. nov., described here morphologically and shown to be phylogenetically a sister species to Dermacentor tamokensis.

    CONCLUSIONS: Haemaphysalis bispinosa shows genetic homogeneity in the whole of South and Southeast Asia, probably owing to its frequent association with domestic ruminants and dogs (i.e. frequently transported hosts). However, I. granulatus, the Asian rodent tick, has a mixed geographical pattern of haplotypes, probably because it may associate with either synanthropic or wild-living rodents as primary hosts. This tick species is recorded here, for the first time to our knowledge, as parasitizing lorises in Vietnam and its region. Based on phylogenetic analyses, D. pseudotamokensis Hornok sp. nov., recognized and described here for the first time, was almost certainly misidentified previously as Dermacentor steini, drawing attention to the need to barcode all Dermacentor spp. in Southern Asia.

    Matched MeSH terms: Electron Transport Complex IV/genetics
  15. Wang M, Yan S, Brown CL, Shaharom-Harrison F, Shi SF, Yang TB
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):3865-3875.
    PMID: 25319302
    To examine the phylogeographical pattern of Tetrancistrum nebulosi (Monogenea, Dactylogyridae) in the South China Sea, fragments of mitochondrial cytochrome c oxidase subunit I and NADH dehydrogenase subunit 2 genes were obtained for 220 individuals collected from 8 localities along the southeast coast of China and 1 locality in Terengganu, Malaysia. Based on these two genes, two and three distinct clades with geographic signals were revealed on the phylogenetic trees respectively. The divergence between these clades was estimated to occur in the late Pleistocene. Analysis of molecular variance and pairwise FSTsuggested a high rate of gene flow among individuals sampled from the Chinese coast, but with obvious genetic differentiation from the Malaysian population. Mismatch distribution and neutrality tests indicated that the T. nebulosi population experienced expansion in Pleistocene low sea level periods. Vicariance was considered to account for the genetic divergence between Chinese and Malaysian populations, while sea level fluctuations and mainland-island connections during glacial cycles were associated with the slight genetic divergence between the populations along the mainland coast of China and those off Sanya. On the contrary, oceanographic circulations and host migration could lead to genetic homogeneity of populations distributed along the mainland coast of China.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  16. Hussain T, Periasamy K, Nadeem A, Babar ME, Pichler R, Diallo A
    Vet Parasitol, 2014 Dec 15;206(3-4):188-99.
    PMID: 25468018
    Haemonchus species are major gastro-intestinal parasites affecting ruminants across the world. The present study aimed to assess the sympatric species distribution, genetic diversity, population structure and frequency of β-tubulin isotype 1 alleles associated with benzimidazole resistance. Internal transcribed spacer 2 (ITS2) sequences revealed three sympatric species of Haemonchus, H. contortus, H. placei and H. longistipes with 12 distinct genotypes circulating among ruminant hosts in Pakistan. High genetic variability was observed in Pakistani Haemonchus isolates at nicotine amide dehydrogenase subunit 4 (ND4) and cytochrome oxidase subunit 1 (COI) gene loci. Intra-population diversity parameters were higher in H. contortus isolates than H. placei. Phylogenetic analysis of ND4 and COI sequences did not reveal clustering of haplotypes originating from a particular host indicating high rate of gene flow among Haemonchus parasites infecting sheep, goat and cattle in Pakistan. ND4 and COI haplotypes from Pakistan were compared to sequences of Haemonchus isolates from 11 countries to elucidate the population structure. Multidimensional scaling (MDS) plot of pairwise FST derived from 531 ND4 haplotypes revealed clustering together of H. contortus from Pakistan, China, Malaysia and Italy while the isolates from Yemen and United States were found to be genetically distinct. With respect to H. placei, isolates from Pakistan were found to be genetically differentiated from isolates of other countries. The tests for selective neutrality revealed negative D statistics and did not reveal significant deviations in Pakistani Haemonchus populations while significant deviation (P < 0.05) was observed in Brazilian and Chinese H. contortus populations. Median Joining (MJ) network of ND4 haplotypes revealed Yemenese H. contortus being closer to H. placei cluster. β-tubulin isotype 1 genotyping revealed 7.86% frequency of Y allele associated with benzimidazole resistance at F200Y locus in Pakistani Haemonchus isolates.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  17. Ngui R, Mahdy MA, Chua KH, Traub R, Lim YA
    Acta Trop, 2013 Oct;128(1):154-7.
    PMID: 23774318 DOI: 10.1016/j.actatropica.2013.06.003
    Ancylostoma ceylanicum is the only zoonotic hookworm species that is able to produce patent infections in humans with the majority of cases reported in South East Asia. Over the past few years, there have been an increasing number of studies investigating the prevalence of this parasitic zoonosis using molecular diagnostic tools and a single genetic locus as marker for species identification. As there can be limitations in using a single genetic locus for epidemiological studies and genetic discrimination, the complementary use of a more variable locus will provide additional evidence to support the zoonotic exchange of hookworm species between humans and animals. In the present study, the cytochrome c oxidase subunit 1 (cox 1) sequence of A. ceylanicum from positive human and animal fecal samples were determined and compared with published reference sequences. Phylogenetic analysis demonstrated that isolates of A. ceylanicum were divided into two clusters, one consisting 3 human isolates and the other comprising 19 isolates of human and animal origin from different geographical locations within Malaysia. The two groups of A. ceylanicum could be distinguished from one another through five fixed nucleotide differences at locations 891, 966, 1008, 1077 and 1083. The detection of genetically distinct groups and considerable level of genetic variation within the cox 1 sequence of A. ceylanicum might suggest potential haplotype-linked differences in zoonotic, epidemiological and pathobiological characteristics, a hypothesis that still needs further investigation.
    Matched MeSH terms: Electron Transport Complex IV/genetics*
  18. Kavitha R, Nazni WA, Tan TC, Lee HL, Isa MN, Azirun MS
    Malays J Pathol, 2012 Dec;34(2):127-32.
    PMID: 23424775 MyJurnal
    Forensic entomology applies knowledge about insects associated with decedent in crime scene investigation. It is possible to calculate a minimum postmortem interval (PMI) by determining the age and species of the oldest blow fly larvae feeding on decedent. This study was conducted in Malaysia to identify maggot specimens collected during crime scene investigations. The usefulness of the molecular and morphological approach in species identifications was evaluated in 10 morphologically identified blow fly larvae sampled from 10 different crime scenes in Malaysia. The molecular identification method involved the sequencing of a total length of 2.2 kilo base pairs encompassing the 'barcode' fragments of the mitochondrial cytochrome oxidase I (COI), cytochrome oxidase II (COII) and t-RNA leucine genes. Phylogenetic analyses confirmed the presence of Chrysomya megacephala, Chrysomya rufifacies and Chrysomya nigripes. In addition, one unidentified blow fly species was found based on phylogenetic tree analysis.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  19. Ang JXD, Kadir KA, Mohamad DSA, Matusop A, Divis PCS, Yaman K, et al.
    Parasit Vectors, 2020 Sep 15;13(1):472.
    PMID: 32933567 DOI: 10.1186/s13071-020-04345-2
    BACKGROUND: Plasmodium knowlesi is a significant cause of human malaria in Sarawak, Malaysian Borneo. Only one study has been previously undertaken in Sarawak to identify vectors of P. knowlesi, where Anopheles latens was incriminated as the vector in Kapit, central Sarawak. A study was therefore undertaken to identify malaria vectors in a different location in Sarawak.

    METHODS: Mosquitoes found landing on humans and resting on leaves over a 5-day period at two sites in the Lawas District of northern Sarawak were collected and identified. DNA samples extracted from salivary glands of Anopheles mosquitoes were subjected to nested PCR malaria-detection assays. The small subunit ribosomal RNA (SSU rRNA) gene of Plasmodium was sequenced, and the internal transcribed spacer 2 (ITS2) and mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of the mosquitoes were sequenced from the Plasmodium-positive samples for phylogenetic analysis.

    RESULTS: Totals of 65 anophelines and 127 culicines were collected. By PCR, 6 An. balabacensis and 5 An. donaldi were found to have single P. knowlesi infections while 3 other An. balabacensis had either single, double or triple infections with P. inui, P. fieldi, P. cynomolgi and P. knowlesi. Phylogenetic analysis of the Plasmodium SSU rRNA gene confirmed 3 An. donaldi and 3 An. balabacensis with single P. knowlesi infections, while 3 other An. balabacensis had two or more Plasmodium species of P. inui, P. knowlesi, P. cynomolgi and some species of Plasmodium that could not be conclusively identified. Phylogenies inferred from the ITS2 and/or cox1 sequences of An. balabacensis and An. donaldi indicate that they are genetically indistinguishable from An. balabacensis and An. donaldi, respectively, found in Sabah, Malaysian Borneo.

    CONCLUSIONS: Previously An. latens was identified as the vector for P. knowlesi in Kapit, central Sarawak, Malaysian Borneo, and now An. balabacensis and An. donaldi have been incriminated as vectors for zoonotic malaria in Lawas, northern Sarawak.

    Matched MeSH terms: Electron Transport Complex IV/genetics
  20. Tan SH, Aris EM, Surin J, Omar B, Kurahashi H, Mohamed Z
    Trop Biomed, 2009 Aug;26(2):173-81.
    PMID: 19901904
    The mitochondiral DNA region encompassing the cytochrome oxidase subunit I (COI) and cytochrome oxidase subunit II (COII) genes of two Malaysian blow fly species, Chrysomya megacephala (Fabricius) and Chrysomya rufifacies (Macquart) were studied. This region, which spans 2303bp and includes the COI, tRNA leucine and partial COII was sequenced from adult fly and larval specimens, and compared. Intraspecific variations were observed at 0.26% for Ch. megacephala and 0.17% for Ch. rufifacies, while sequence divergence between the two species was recorded at a minimum of 141 out of 2303 sites (6.12%). Results obtained in this study are comparable to published data, and thus support the use of DNA sequence to facilitate and complement morphology-based species identification.
    Matched MeSH terms: Electron Transport Complex IV/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links