Displaying publications 61 - 80 of 224 in total

Abstract:
Sort:
  1. Ayipo YO, Ahmad I, Najib YS, Sheu SK, Patel H, Mordi MN
    J Biomol Struct Dyn, 2023 Mar;41(5):1959-1977.
    PMID: 35037841 DOI: 10.1080/07391102.2022.2026818
    The nsp3 macrodomain and nsp12 (RdRp) enzymes are strongly implicated in the virulent regulation of the host immune response and viral replication of SARS-CoV-2, making them plausible therapeutic targets for mitigating infectivity. Remdesivir remains the only FDA-approved small-molecule inhibitor of the nsp12 in clinical conditions while none has been approved yet for the nsp3 macrodomain. In this study, 69,067 natural compounds from the IBScreen database were screened for efficacious potentials with mechanistic multitarget-directed inhibitory pharmacology against the dual targets using in silico approaches. Standard and extra precision (SP and XP) Maestro glide docking analyses were employed to evaluate their inhibitory interactions against the enzymes. Four compounds, STOCK1N-45901, 03804, 83408, 08377 consistently showed high XP scores against the respective targets and interacted strongly with pharmacologically essential amino acid and RNA residues, in better terms than the standard, co-crystallized inhibitors, GS-441524 and remdesivir. Further assessments through the predictions of ADMET and mutagenicity distinguished STOCK1N-45901, a natural derivative of o-hydroxybenzoate as the most promising candidate. The ligand maintained a good conformational and thermodynamic stability in complex with the enzymes throughout the trajectories of 100 ns molecular dynamics, indicated by RMSD, RMSF and radius of gyration plots. Its binding free energy, MM-GBSA was recorded as -54.24 and -31.77 kcal/mol against the respective enzyme, while its structure-activity relationships confer high probabilities as active antiviral, anti-inflammatory, antiinfection, antitussive and peroxidase inhibitor. The IBScreen database natural product, STOCK1N-45901 (2,3,4,5,6-pentahydroxyhexyl o-hydroxybenzoate) is thus recommended as a potent inhibitor of dual nsp3 and nsp12 of SARS-CoV-2 for further study. Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Molecular Dynamics Simulation
  2. Rajagopal K, Kalusalingam A, Bharathidasan AR, Sivaprakash A, Shanmugam K, Sundaramoorthy M, et al.
    Molecules, 2023 May 18;28(10).
    PMID: 37241915 DOI: 10.3390/molecules28104175
    Cancer is a condition marked by abnormal cell proliferation that has the potential to invade or indicate other health issues. Human beings are affected by more than 100 different types of cancer. Some cancer promotes rapid cell proliferation, whereas others cause cells to divide and develop more slowly. Some cancers, such as leukemia, produce visible tumors, while others, such as breast cancer, do not. In this work, in silico investigations were carried out to investigate the binding mechanisms of four major analogs, which are marine sesquiterpene, sesquiterpene lactone, heteroaromatic chalcones, and benzothiophene against the target estrogen receptor-α for targeting breast cancer using Schrödinger suite 2021-4. The Glide module handled the molecular docking experiments, the QikProp module handled the ADMET screening, and the Prime MM-GB/SA module determined the binding energy of the ligands. The benzothiophene analog BT_ER_15f (G-score -15.922 Kcal/mol) showed the best binding activity against the target protein estrogen receptor-α when compared with the standard drug tamoxifen which has a docking score of -13.560 Kcal/mol. TRP383 (tryptophan) has the highest interaction time with the ligand, and hence it could act for a long time. Based on in silico investigations, the benzothiophene analog BT_ER_15f significantly binds with the active site of the target protein estrogen receptor-α. Similar to the outcomes of molecular docking, the target and ligand complex interaction motif established a high affinity of lead candidates in a dynamic system. This study shows that estrogen receptor-α targets inhibitors with better potential and low toxicity when compared to the existing market drugs, which can be made from a benzothiophene derivative. It may result in considerable activity and be applied to more research on breast cancer.
    Matched MeSH terms: Molecular Dynamics Simulation
  3. Mohamed EAR, Abdel-Rahman IM, Zaki MEA, Al-Khdhairawi A, Abdelhamid MM, Alqaisi AM, et al.
    J Mol Model, 2023 Feb 20;29(3):70.
    PMID: 36808314 DOI: 10.1007/s00894-023-05457-z
    BACKGROUND: In November 2021, variant B.1.1.529 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified by the World Health Organization (WHO) and designated Omicron. Omicron is characterized by a high number of mutations, thirty-two in total, making it more transmissible than the original virus. More than half of those mutations were found in the receptor-binding domain (RBD) that directly interacts with human angiotensin-converting enzyme 2 (ACE2). This study aimed to discover potent drugs against Omicron, which were previously repurposed for coronavirus disease 2019 (COVID-19). All repurposed anti-COVID-19 drugs were compiled from previous studies and tested against the RBD of SARS-CoV-2 Omicron.

    METHODS: As a preliminary step, a molecular docking study was performed to investigate the potency of seventy-one compounds from four classes of inhibitors. The molecular characteristics of the best-performing five compounds were predicted by estimating the drug-likeness and drug score. Molecular dynamics simulations (MD) over 100 ns were performed to inspect the relative stability of the best compound within the Omicron receptor-binding site.

    RESULTS: The current findings point out the crucial roles of Q493R, G496S, Q498R, N501Y, and Y505H in the RBD region of SARS-CoV-2 Omicron. Raltegravir, hesperidin, pyronaridine, and difloxacin achieved the highest drug scores compared with the other compounds in the four classes, with values of 81%, 57%, 18%, and 71%, respectively. The calculated results showed that raltegravir and hesperidin had high binding affinities and stabilities to Omicron with ΔGbinding of - 75.7304 ± 0.98324 and - 42.693536 ± 0.979056 kJ/mol, respectively. Further clinical studies should be performed for the two best compounds from this study.

    Matched MeSH terms: Molecular Dynamics Simulation
  4. Khan A, Shahab M, Nasir F, Waheed Y, Alshammari A, Mohammad A, et al.
    SAR QSAR Environ Res, 2023;34(9):689-708.
    PMID: 37675795 DOI: 10.1080/1062936X.2023.2250723
    In the current study, we used molecular screening and simulation approaches to target I7L protease from monkeypox virus (mpox) from the Traditional Chinese Medicines (TCM) database. Using molecular screening, only four hits TCM27763, TCM33057, TCM34450 and TCM31564 demonstrated better pharmacological potential than TTP6171 (control). Binding of these molecules targeted Trp168, Asn171, Arg196, Cys237, Ser240, Trp242, Glu325, Ser326, and Cys328 residues and may affect the function of I7L protease in in vitro assay. Moreover, molecular simulation revealed stable dynamics, tighter structural packing and less flexible behaviour for all the complexes. We further reported that the average hydrogen bonds in TCM27763, TCM33057, TCM34450 and TCM31564I7L complexes remained higher than the control drug. Finally, the BF energy results revealed -62.60 ± 0.65 for the controlI7L complex, for the TCM27763I7L complex -71.92 ± 0.70 kcal/mol, for the TCM33057I7L complex the BF energy was -70.94 ± 0.70 kcal/mol, for the TCM34450I7L the BF energy was -69.94 ± 0.85 kcal/mol while for the TCM31564I7L complex the BF energy was calculated to be -69.16 ± 0.80 kcal/mol. Although, we used stateoftheart computational methods, these are theoretical insights that need further experimental validation.
    Matched MeSH terms: Molecular Dynamics Simulation
  5. Gunasinghe J, Hwang SS, Yam WK, Rahman T, Wezen XC
    J Biomol Struct Dyn, 2023;41(12):5583-5596.
    PMID: 35751129 DOI: 10.1080/07391102.2022.2091659
    High-risk (HR) Human papillomavirus (e.g. HPV16 and HPV18) causes approximately two-thirds of all cervical cancers in women. Although the first and second-generation vaccines confer some protection against individuals, there are no approved drugs to treat HR-HPV infections to-date. The HPV E1 protein is an attractive drug target because the protein is highly conserved across all HPV types and is crucial for the regulation of viral DNA replication. Hence, we used the Random Forest algorithm to construct a Quantitative-Structure Activity Relationship (QSAR) model to predict the potential inhibitors against the HPV E1 protein. Our QSAR classification model achieved an accuracy of 87.5%, area under the receiver operating characteristic curve of 1.00, and F-measure of 0.87 when evaluated using an external test set. We conducted a drug repurposing campaign by deploying the model to screen the Drugbank database. The top three compounds, namely Cinalukast, Lobeglitazone, and Efatutazone were analyzed for their cell membrane permeability, toxicity, and carcinogenicity. Finally, these three compounds were subjected to molecular docking and 200 ns-long Molecular Dynamics (MD) simulations. The predicted binding free energies for the candidates were calculated using the MM-GBSA method. The binding free energies for Cinalukast, Lobeglitazone, and Efatutazone were -37.84 kcal/mol, -25.30 kcal/mol, and -29.89 kcal/mol respectively. Therefore, we propose their chemical scaffolds for future rational design of E1 inhibitors.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Molecular Dynamics Simulation
  6. Han C, Zheng Y, Huang S, Xu L, Zhou C, Sun Y, et al.
    Int J Biol Macromol, 2024 Apr;263(Pt 1):130300.
    PMID: 38395276 DOI: 10.1016/j.ijbiomac.2024.130300
    This work employed the model protein β-lactoglobulin (BLG) to investigate the contribution of microstructural changes to regulating the interaction patterns between protein and flavor compounds through employing computer simulation and multi-spectroscopic techniques. The formation of molten globule (MG) state-like protein during the conformational evolution of BLG, in response to ultrasonic (UC) and heat (HT) treatments, was revealed through multi-spectroscopic characterization. Differential MG structures were distinguished by variations in surface hydrophobicity and the microenvironment of tryptophan residues. Fluorescence quenching measurements indicated that the formation of MG enhanced the binding affinity of heptanal to protein. LC-MS/MS and NMR revealed the covalent bonding between heptanal and BLG formed by Michael addition and Schiff-base reactions, and MG-like BLG exhibited fewer chemical shift residues. Molecular docking and molecular dynamics simulation confirmed the synergistic involvement of hydrophobic interactions and hydrogen bonds in shaping BLG-heptanal complexes thus promoting the stability of BLG structures. These findings indicated that the production of BLG-heptanal complexes was driven synergistically by non-covalent and covalent bonds, and their interaction processes were influenced by processes-induced formation of MG potentially tuning the release and retention behaviors of flavor compounds.
    Matched MeSH terms: Molecular Dynamics Simulation
  7. Jawarkar RD, Zaki MEA, Al-Hussain SA, Al-Mutairi AA, Samad A, Mukerjee N, et al.
    J Biomol Struct Dyn, 2024 Mar;42(5):2550-2569.
    PMID: 37144753 DOI: 10.1080/07391102.2023.2205948
    Due to the high rates of drug development failure and the massive expenses associated with drug discovery, repurposing existing drugs has become more popular. As a result, we have used QSAR modelling on a large and varied dataset of 657 compounds in an effort to discover both explicit and subtle structural features requisite for ACE2 inhibitory activity, with the goal of identifying novel hit molecules. The QSAR modelling yielded a statistically robust QSAR model with high predictivity (R2tr=0.84, R2ex=0.79), previously undisclosed features, and novel mechanistic interpretations. The developed QSAR model predicted the ACE2 inhibitory activity (PIC50) of 1615 ZINC FDA compounds. This led to the detection of a PIC50 of 8.604 M for the hit molecule (ZINC000027990463). The hit molecule's docking score is -9.67 kcal/mol (RMSD 1.4). The hit molecule revealed 25 interactions with the residue ASP40, which defines the N and C termini of the ectodomain of ACE2. The HIT molecule conducted more than thirty contacts with water molecules and exhibited polar interaction with the ARG522 residue coupled with the second chloride ion, which is 10.4 nm away from the zinc ion. Both molecular docking and QSAR produced comparable findings. Moreover, MD simulation and MMGBSA studies verified docking analysis. The MD simulation showed that the hit molecule-ACE2 receptor complex is stable for 400 ns, suggesting that repurposed hit molecule 3 is a viable ACE2 inhibitor.
    Matched MeSH terms: Molecular Dynamics Simulation
  8. Zakaria N, Wan Harun WMRS, Mohammad Latif MA, Azaman SNA, Abdul Rahman MB, Faujan NH
    J Mol Graph Model, 2024 Jun;129:108732.
    PMID: 38412813 DOI: 10.1016/j.jmgm.2024.108732
    Recent evidence from in vitro and in vivo studies has shown that anthocyanins and anthocyanidins can reduce and inhibit the amyloid beta (Aβ) species, one of the hallmarks of Alzheimer's disease (AD). However, their inhibition mechanisms on Aβ species at molecular details remain elusive. Therefore, in the present study, molecular modelling methods were employed to investigate their inhibitory mechanisms on Aβ(1-42) peptide. The results highlighted that anthocyanidins effectively inhibited the conformational transitions of helices into beta-sheet (β-sheet) conformation within Aβ(1-42) peptide by two different mechanisms: 1) the obstruction of two terminals from coming into contact due to the binding of anthocyanidins with residues of N- and second hydrophobic core (SHC)-C-terminals, and 2) the prevention of the folding process due to the binding of anthocyanidin with the central polar (Asp23 and Lys28) and native helix (Asp23, Lys28, and Leu34) residues. These new findings on the inhibition of β-sheet formation by targeting both N- and SHC-C-terminals, and the long-established target, D23-K28 salt bridge residues, not with the conventional central hydrophobic core (CHC) as reported in the literature, might aid in designing more potent inhibitors for AD treatment.
    Matched MeSH terms: Molecular Dynamics Simulation
  9. Maulana AF, Maksum IP, Sriwidodo S, Rukayadi Y
    J Mol Model, 2024 Apr 18;30(5):136.
    PMID: 38634946 DOI: 10.1007/s00894-024-05934-z
    CONTEXT: Further understanding of the molecular mechanisms is necessary since it is important for designing new drugs. This study aimed to understand the molecular mechanisms involved in the design of drugs that are inhibitors of the α-glucosidase enzyme. This research aims to gain further understanding of the molecular mechanisms underlying antidiabetic drug design. The molecular docking process yielded 4 compounds with the best affinity energy, including γ-Mangostin, 1,6-dimethyl-ester-3-isomangostin, 1,3,6-trimethyl-ester-α-mangostin, and 3,6,7-trimethyl-ester-γ-mangostin. Free energy calculation with molecular mechanics with generalized born and surface area solvation indicated that the 3,6,7-trimethyl-γ-mangostin had a better free energy value compared to acarbose and simulated maltose together with 3,6,7-trimethyl-γ-mangostin compound. Based on the analysis of electrostatic, van der Waals, and intermolecular hydrogen interactions, 3,6,7-trimethyl-γ-mangostin adopts a noncompetitive inhibition mechanism, whereas acarbose adopts a competitive inhibition mechanism. Consequently, 3,6,7-trimethyl-ester-γ-mangostin, which is a derivative of γ-mangostin, can provide better activity in silico with molecular docking approaches and molecular dynamics simulations.

    METHOD: This research commenced with retrieving protein structures from the RCSB database, generating the formation of ligands using the ChemDraw Professional software, conducting molecular docking with the Autodock Vina software, and performing molecular dynamics simulations using the Amber software, along with the evaluation of RMSD values and intermolecular hydrogen bonds. Free energy, electrostatic interactions, and Van der Waals interaction were calculated using MM/GBSA. Acarbose, used as a positive control, and maltose are simulated together with test compound that has the best free energy. The forcefields used for molecular dynamics simulations are ff19SB, gaff2, and tip3p.

    Matched MeSH terms: Molecular Dynamics Simulation
  10. Leong SW, Lim TS, Tye GJ, Ismail A, Aziah I, Choong YS
    J Biol Phys, 2014 Sep;40(4):387-400.
    PMID: 25011632 DOI: 10.1007/s10867-014-9357-9
    In this work we assessed the suitability of two different lipid membranes for the simulation of a TolC protein from Salmonella enterica serovar Typhi. The TolC protein family is found in many pathogenic Gram-negative bacteria including Vibrio cholera and Pseudomonas aeruginosa and acts as an outer membrane channel for expulsion of drug and toxin from the cell. In S. typhi, the causative agent for typhoid fever, the TolC outer membrane protein is an antigen for the pathogen. The lipid environment is an important modulator of membrane protein structure and function. We evaluated the conformation of the TolC protein in the presence of DMPE and POPE bilayers using molecular dynamics simulation. The S. typhi TolC protein exhibited similar conformational dynamics to TolC and its homologues. Conformational flexibility of the protein is seen in the C-terminal, extracellular loops, and α-helical region. Despite differences in the two lipids, significant similarities in the motion of the protein in POPE and DMPE were observed, including the rotational motion of the C-terminal residues and the partially open extracellular loops. However, analysis of the trajectories demonstrated effects of hydrophobic matching of the TolC protein in the membrane, particularly in the lengthening of the lipids and subtle movements of the protein's β-barrel towards the lower leaflet in DMPE. The study exhibited the use of molecular dynamics simulation in revealing the differential effect of membrane proteins and lipids on each other. In this study, POPE is potentially a more suitable model for future simulation of the S. typhi TolC protein.
    Matched MeSH terms: Molecular Dynamics Simulation*
  11. Ahmadi S, Manickam Achari V, Nguan H, Hashim R
    J Mol Model, 2014 Mar;20(3):2165.
    PMID: 24623320 DOI: 10.1007/s00894-014-2165-0
    Fully atomistic molecular dynamics simulation studies of thermotropic bilayers were performed using a set of glycosides namely n-octyl-β-D-glucopyranoside (β-C8Glc), n-octyl-α-D-glucopyranoside (α-C8Glc), n-octyl-β-D-galactopyranoside (β-C8Gal), and n-octyl-α-D-galactopyranoside (α-C8Gal) to investigate the stereochemical relationship of the epimeric/anomeric quartet liner glycolipids with the same octyl chain group. The results showed that, the anomeric stereochemistry or the axial/equatorial orientation of C1-O1 (α/β) is an important factor controlling the area and d-spacing of glycolipid bilayer systems in the thermotropic phase. The head group tilt angle and the chain ordering properties are affected by the anomeric effect. In addition, the L(C) phase of β-C8Gal, is tilting less compared to those in the fluid L(α). The stereochemistry of the C4-epimeric (axial/equatorial) and anomeric (α/β) centers simultaneously influence the inter-molecular hydrogen bond. Thus, the trend in the values of the hydrogen bond for these glycosides is β-C8Gal > α-C8Glc > β-C8Glc > α-C8Gal. The four bilayer systems showed anomalous diffusion behavior with an observed trend for the diffusion coefficients; and this trend is β-C8Gal > β-C8Glc > α-C8Gal > α-C8Glc. The "bent" configuration of the α-anomer results in an increase of the hydrophobic area, chain vibration and chain disorganization. Since thermal energy is dispensed more entropically for the chain region, the overall molecular diffusion decreases.
    Matched MeSH terms: Molecular Dynamics Simulation*
  12. Ng HW, Laughton CA, Doughty SW
    J Chem Inf Model, 2014 Feb 24;54(2):573-81.
    PMID: 24460123 DOI: 10.1021/ci400463z
    Analysis of 300 ns (ns) molecular dynamics (MD) simulations of an adenosine A2a receptor (A2a AR) model, conducted in triplicate, in 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) and 1-palmitoyl-2-oleoylphosphatidylethanolamine (POPE) bilayers reveals significantly different protein dynamical behavior. Principal component analysis (PCA) shows that the dissimilarities stem from interhelical rather than intrahelical motions. The difference in the hydrophobic thicknesses of these simulated lipid bilayers is potentially a significant reason for the observed difference in results. The distinct lipid headgroups might also lead to different molecular interactions and hence different protein loop motions. Overall, the A2a AR shows higher mobility and flexibility in POPC as compared to POPE.
    Matched MeSH terms: Molecular Dynamics Simulation*
  13. Srikumar PS, Rohini K
    Appl Biochem Biotechnol, 2013 Oct;171(4):874-82.
    PMID: 23904258 DOI: 10.1007/s12010-013-0393-x
    Lafora disease (LD) is an autosomal recessive, progressive form of myoclonus epilepsy which affects worldwide. LD occurs mainly in countries like southern Europe, northern Africa, South India, and in the Middle East. LD occurs with its onset mainly in teenagers and leads to decline and death within 2 to 10 years. The genes EPM2A and EPM2B are commonly involved in 90 % of LD cases. EPM2A codes for protein laforin which contains an amino terminal carbohydrate binding module (CBM) belonging to the CBM20 family and a carboxy terminal dual specificity phosphatase domain. Mutations in laforin are found to abolish glycogen binding and have been reported in wet lab methods. In order to investigate on structural insights on laforin mutation K81A, we performed molecular dynamics (MD) simulation studies for native and mutant protein. MD simulation results showed loss of stability due to mutation K87A which confirmed the structural reason for conformational changes observed in laforin. The conformational change of mutant laforin was confirmed by analysis using root mean square deviation, root mean square fluctuation, solvent accessibility surface area, radius of gyration, hydrogen bond, and principle component analysis. Our results identified that the flexibility of K87A mutated laforin structure, with replacement of acidic amino acid to aliphatic amino acid in functional CBM domain, have more impact in abolishing glycogen binding that favors LD.
    Matched MeSH terms: Molecular Dynamics Simulation*
  14. Ng HW, Laughton CA, Doughty SW
    J Chem Inf Model, 2013 May 24;53(5):1168-78.
    PMID: 23514445 DOI: 10.1021/ci300610w
    Molecular dynamics (MD) simulations of membrane-embedded G-protein coupled receptors (GPCRs) have rapidly gained popularity among the molecular simulation community in recent years, a trend which has an obvious link to the tremendous pharmaceutical importance of this group of receptors and the increasing availability of crystal structures. In view of the widespread use of this technique, it is of fundamental importance to ensure the reliability and robustness of the methodologies so they yield valid results and enable sufficiently accurate predictions to be made. In this work, 200 ns simulations of the A2a adenosine receptor (A2a AR) have been produced and evaluated in the light of these requirements. The conformational dynamics of the target protein, as obtained from replicate simulations in both the presence and absence of an inverse agonist ligand (ZM241385), have been investigated and compared using principal component analysis (PCA). Results show that, on this time scale, convergence of the replicates is not readily evident and dependent on the types of the protein motions considered. Thus rates of inter- as opposed to intrahelical relaxation and sampling can be different. When studied individually, we find that helices III and IV have noticeably greater stability than helices I, II, V, VI, and VII in the apo form. The addition of the inverse agonist ligand greatly improves the stability of all helices.
    Matched MeSH terms: Molecular Dynamics Simulation*
  15. Choi SB, Normi YM, Wahab HA
    BMC Bioinformatics, 2011;12 Suppl 13:S11.
    PMID: 22372825 DOI: 10.1186/1471-2105-12-S13-S11
    Previously, the hypothetical protein, KPN00728 from Klebsiella pneumoniae MGH78578 was the Succinate dehydrogenase (SDH) chain C subunit via structural prediction and molecular docking simulation studies. However, due to limitation in docking simulation, an in-depth understanding of how SDH interaction occurs across the transmembrane of mitochondria could not be provided.
    Matched MeSH terms: Molecular Dynamics Simulation*
  16. Abdul Rahman MZ, Salleh AB, Abdul Rahman RN, Abdul Rahman MB, Basri M, Leow TC
    Protein Sci, 2012 Aug;21(8):1210-21.
    PMID: 22692819 DOI: 10.1002/pro.2108
    The activation of lipases has been postulated to proceed by interfacial activation, temperature switch activation, or aqueous activation. Recently, based on molecular dynamics (MD) simulation experiments, the T1 lipase activation mechanism was proposed to involve aqueous activation in addition to a double-flap mechanism. Because the open conformation structure is still unavailable, it is difficult to validate the proposed theory unambiguously to understand the behavior of the enzyme. In this study, we try to validate the previous reports and uncover the mystery behind the activation process using structural analysis and MD simulations. To investigate the effects of temperature and environmental conditions on the activation process, MD simulations in different solvent environments (water and water-octane interface) and temperatures (20, 50, 70, 80, and 100°C) were performed. Based on the structural analysis of the lipases in the same family of T1 lipase (I.5 lipase family), we proposed that the lid domain comprises α6 and α7 helices connected by a loop, thus forming a helix-loop-helix motif involved in interfacial activation. Throughout the MD simulations experiments, lid displacements were only observed in the water-octane interface, not in the aqueous environment with respect to the temperature effect, suggesting that the activation process is governed by interfacial activation coupled with temperature switch activation. Examining the activation process in detail revealed that the large structural rearrangement of the lid domain was caused by the interaction between the hydrophobic residues of the lid with octane, a nonpolar solvent, and this conformation was found to be thermodynamically favorable.
    Matched MeSH terms: Molecular Dynamics Simulation*
  17. Ramli AN, Mahadi NM, Shamsir MS, Rabu A, Joyce-Tan KH, Murad AM, et al.
    J Comput Aided Mol Des, 2012 Aug;26(8):947-61.
    PMID: 22710891 DOI: 10.1007/s10822-012-9585-7
    The structure of psychrophilic chitinase (CHI II) from Glaciozyma antarctica PI12 has yet to be studied in detail. Due to its low sequence identity (<30 %), the structural prediction of CHI II is a challenge. A 3D model of CHI II was built by first using a threading approach to search for a suitable template and to generate an optimum target-template alignment, followed by model building using MODELLER9v7. Analysis of the catalytic insertion domain structure in CHI II revealed an increase in the number of aromatic residues and longer loops compared to mesophilic and thermophilic chitinases. A molecular dynamics simulation was used to examine the stability of the CHI II structure at 273, 288 and 300 K. Structural analysis of the substrate-binding cleft revealed a few exposed aromatic residues. Substitutions of certain amino acids in the surface and loop regions of CHI II conferred an increased flexibility to the enzyme, allowing for an adaptation to cold temperatures. A substrate binding comparison of CHI II with the mesophilic chitinase from Coccidioides immitis, 1D2K, suggested that the psychrophilic adaptation and catalytic activity at low temperatures were achieved through a reduction in the number of salt bridges, fewer hydrogen bonds and an increase in the exposure of the hydrophobic side chains to the solvent.
    Matched MeSH terms: Molecular Dynamics Simulation*
  18. Karjiban RA, Basyaruddin M, Rahman A, Salleh AB, Basri M, Zaliha RN, et al.
    Protein Pept Lett, 2010 Jun;17(6):699-707.
    PMID: 19958281
    An all-atom level MD simulation in explicit solvent at high temperature is a powerful technique to increase our knowledge about the structurally important regions modulating thermal stability in thermenzymes. In this respect, two large-sized thermoalkalophilic enzymes from Bacillus stearothermophilus L1 (L1 lipase) and Geobacillus zalihae strain T1 (T1 lipase) are well-established representatives. In this paper, comparative results from temperature-induced MD simulations of both model systems at 300 K, 400 K and 500 K are presented and discussed with respect to identification of highly flexible regions critical to thermostability. From our MD simulation results, specific regions along the L1 lipase and T1 lipase polypeptide chain including the small domain and the main catalytic domain or core domain of both enzymes show a marked increase in fluctuations and dynamics followed by clear structural changes. Overall, the N-terminal moiety of both enzymes and their small domains exhibit hyper-sensitivity to thermal stress. The results appear to propose that these regions are critical in determining of the overall thermal stability of both organisms.
    Matched MeSH terms: Molecular Dynamics Simulation*
  19. Rohini K, Srikumar PS
    Appl Biochem Biotechnol, 2013 Mar;169(6):1790-8.
    PMID: 23340867 DOI: 10.1007/s12010-013-0110-9
    Tuberculosis (TB), an epidemic disease, affects the world with death rate of two million people every year. The bacterium Mycobacterium tuberculosis was found to be a more potent and disease-prolonged bacterium among the world due to multi-drug resistance. Emergence of new drug targets is needed to overcome the bacterial resistance that leads to control epidemic tuberculosis. The pathway thiamine biosynthesis was targeting M. tuberculosis due to its role in intracellular growth of the bacterium. The screening of enzymes involved in thiamin biosynthesis showed novel target thiazole synthase (ThiG) involved in catalysis of rearrangement of 1-deoxy-D-xylulose 5-phosphate (DXP) to produce the thiazole phosphate moiety of thiamine. We carried out homology modeling for ThiG to understand the structure-function relationship, and the model was refined with MD simulations. The results showed that the model predicted with (α + β)8-fold of synthase family proteins. Molecular docking of ThiG model with substrate DXP showed binding mode and key residues ARG46, ASN69, THR41, and LYS96 involved in the catalysis. First-line anti-tuberculosis drugs were docked with ThiG to identify the inhibition. The report showed the anti-tuberculosis drugs interact well with ThiG which may lead to block thiamin biosynthesis pathway.
    Matched MeSH terms: Molecular Dynamics Simulation*
  20. Ismail NA, Jusoh SA
    Interdiscip Sci, 2017 Dec;9(4):499-511.
    PMID: 26969331 DOI: 10.1007/s12539-016-0157-8
    Dengue infections are currently estimated to be 390 million cases annually. Yet, there is no vaccine or specific therapy available. Envelope glycoprotein E (E protein) of DENV mediates viral attachment and entry into the host cells. Several flavonoids have been shown to inhibit HIV-1 and hepatitis C virus entry during the virus-host membrane fusion. In this work, molecular docking method was employed to predict the binding of nine flavonoids (baicalin, baicalein, EGCG, fisetin, glabranine, hyperoside, ladanein, quercetin and flavone) to the soluble ectodomain of DENV type 2 (DENV2) E protein. Interestingly, eight flavonoids were found to dock into the same binding pocket located between the domain I and domain II of different subunits of E protein. Consistent docking results were observed not only for the E protein structures of the DENV2-Thai and DENV2-Malaysia (a homology model) but also for the E protein structures of tick-borne encephalitis virus and Japanese encephalitis virus. In addition, molecular dynamics simulations were performed to further evaluate the interaction profile of the docked E protein-flavonoid complexes. Ile4, Gly5, Asp98, Gly100 and Val151 residues of the DENV2-My E protein that aligned to the same residues in the DENV2-Thai E protein form consistent hydrogen bond interactions with baicalein, quercetin and EGCG during the simulations. This study demonstrates flavonoids potentially form interactions with the E protein of DENV2.
    Matched MeSH terms: Molecular Dynamics Simulation*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links