Displaying publications 61 - 80 of 286 in total

Abstract:
Sort:
  1. Vulliez-Le Normand B, Faber BW, Saul FA, van der Eijk M, Thomas AW, Singh B, et al.
    PLoS One, 2015;10(4):e0123567.
    PMID: 25886591 DOI: 10.1371/journal.pone.0123567
    The malaria parasite Plasmodium knowlesi, previously associated only with infection of macaques, is now known to infect humans as well and has become a significant public health problem in Southeast Asia. This species should therefore be targeted in vaccine and therapeutic strategies against human malaria. Apical Membrane Antigen 1 (AMA1), which plays a role in Plasmodium merozoite invasion of the erythrocyte, is currently being pursued in human vaccine trials against P. falciparum. Recent vaccine trials in macaques using the P. knowlesi orthologue PkAMA1 have shown that it protects against infection by this parasite species and thus should be developed for human vaccination as well. Here, we present the crystal structure of Domains 1 and 2 of the PkAMA1 ectodomain, and of its complex with the invasion-inhibitory monoclonal antibody R31C2. The Domain 2 (D2) loop, which is displaced upon binding the Rhoptry Neck Protein 2 (RON2) receptor, makes significant contacts with the antibody. R31C2 inhibits binding of the Rhoptry Neck Protein 2 (RON2) receptor by steric blocking of the hydrophobic groove and by preventing the displacement of the D2 loop which is essential for exposing the complete binding site on AMA1. R31C2 recognizes a non-polymorphic epitope and should thus be cross-strain reactive. PkAMA1 is much less polymorphic than the P. falciparum and P. vivax orthologues. Unlike these two latter species, there are no polymorphic sites close to the RON2-binding site of PkAMA1, suggesting that P. knowlesi has not developed a mechanism of immune escape from the host's humoral response to AMA1.
    Matched MeSH terms: Membrane Proteins/immunology; Protozoan Proteins/immunology
  2. Fischer H, Tschachler E, Eckhart L
    Apoptosis, 2020 08;25(7-8):474-480.
    PMID: 32533513 DOI: 10.1007/s10495-020-01614-4
    The release of DNA into the cytoplasm upon damage to the nucleus or during viral infection triggers an interferon-mediated defense response, inflammation and cell death. In human cells cytoplasmic DNA is sensed by cyclic GMP-AMP Synthase (cGAS) and Absent In Melanoma 2 (AIM2). Here, we report the identification of a "natural knockout" model of cGAS. Comparative genomics of phylogenetically diverse mammalian species showed that cGAS and its interaction partner Stimulator of Interferon Genes (STING) have been inactivated by mutations in the Malayan pangolin whereas other mammals retained intact copies of these genes. The coding sequences of CGAS and STING1 are also disrupted by premature stop codons and frame-shift mutations in Chinese and tree pangolins, suggesting that expression of these genes was lost in a common ancestor of all pangolins that lived more than 20 million years ago. AIM2 is retained in a functional form in pangolins whereas it is inactivated by mutations in carnivorans, the phylogenetic sister group of pangolins. The deficiency of cGAS and STING points to the existence of alternative mechanisms of controlling cytoplasmic DNA-associated cell damage and viral infections in pangolins.
    Matched MeSH terms: DNA-Binding Proteins/immunology; Membrane Proteins/immunology
  3. Maspi N, Ghaffarifar F, Sharifi Z, Dalimi A, Khademi SZ
    Malays J Pathol, 2017 Dec;39(3):267-275.
    PMID: 29279589
    Vaccination would be the most important strategy for the prevention and elimination of leishmaniasis. The aim of the present study was to compare the immune responses induced following DNA vaccination with LACK (Leishmania analogue of the receptor kinase C), TSA (Thiol-specific-antioxidant) genes alone or LACK-TSA fusion against cutaneous leishmaniasis (CL). Cellular and humoral immune responses were evaluated before and after challenge with Leishmania major (L. major). In addition, the mean lesion size was also measured from 3th week post-infection. All immunized mice showed a partial immunity characterized by higher interferon (IFN)-γ and Immunoglobulin G (IgG2a) levels compared to control groups (p<0.05). IFN-γ/ Interleukin (IL)-4 and IgG2a/IgG1 ratios demonstrated the highest IFN-γ and IgG2a levels in the group receiving LACK-TSA fusion. Mean lesion sizes reduced significantly in all immunized mice compared with control groups at 7th week post-infection (p<0.05). In addition, there was a significant reduction in mean lesion size of LACK-TSA and TSA groups than LACK group after challenge (p<0.05). In the present study, DNA immunization promoted Th1 immune response and confirmed the previous observations on immunogenicity of LACK and TSA antigens against CL. Furthermore, this study demonstrated that a bivalent vaccine can induce stronger immune responses and protection against infectious challenge with L. major.
    Matched MeSH terms: Recombinant Fusion Proteins/immunology; Protozoan Proteins/immunology*
  4. Oveissi S, Omar AR, Yusoff K, Jahanshiri F, Hassan SS
    Comp Immunol Microbiol Infect Dis, 2010 Dec;33(6):491-503.
    PMID: 19781778 DOI: 10.1016/j.cimid.2009.08.004
    The H5 gene of avian influenza virus (AIV) strain A/chicken/Malaysia/5744/2004(H5N1) was cloned into pcDNA3.1 vector, and Esat-6 gene of Mycobacterium tuberculosis was fused into downstream of the H5 gene as a genetic adjuvant for DNA vaccine candidates. The antibody level against AIV was measured using enzyme-linked immunosorbent assay (ELISA) and haemagglutination inhibition (HI) test. Sera obtained from specific-pathogen-free chickens immunized with pcDNA3.1/H5 and pcDNA3.1/H5/Esat-6 demonstrated antibody responses as early as 2 weeks after the first immunization. Furthermore, the overall HI antibody titer in chickens immunized with pcDNA3.1/H5/Esat-6 was higher compared to the chickens immunized with pcDNA3.1/H5 (p<0.05). The results suggested that Esat-6 gene of M. tuberculosis is a potential genetic adjuvant for the development of effective H5 DNA vaccine in chickens.
    Matched MeSH terms: Bacterial Proteins/immunology
  5. Tan CH, Tan KY
    Toxins (Basel), 2021 02 09;13(2).
    PMID: 33572266 DOI: 10.3390/toxins13020127
    Envenomation resulted from sea snake bite is a highly lethal health hazard in Southeast Asia. Although commonly caused by sea snakes of Hydrophiinae, each species is evolutionarily distinct and thus, unveiling the toxin gene diversity within individual species is important. Applying next-generation sequencing, this study investigated the venom-gland transcriptome of Hydrophis curtus (spine-bellied sea snake) from Penang, West Malaysia. The transcriptome was de novo assembled, followed by gene annotation and sequence analyses. Transcripts with toxin annotation were only 96 in number but highly expressed, constituting 48.18% of total FPKM in the overall transcriptome. Of the 21 toxin families, three-finger toxins (3FTX) were the most abundantly expressed and functionally diverse, followed by phospholipases A2. Lh_FTX001 (short neurotoxin) and Lh_FTX013 (long neurotoxin) were the most dominant 3FTXs expressed, consistent with the pathophysiology of envenomation. Lh_FTX001 and Lh_FTX013 were variable in amino acid compositions and predicted epitopes, while Lh_FTX001 showed high sequence similarity with the short neurotoxin from Hydrophis schistosus, supporting cross-neutralization effect of Sea Snake Antivenom. Other toxins of low gene expression, for example, snake venom metalloproteinases and L-amino acid oxidases not commonly studied in sea snake venom were also identified, enriching the knowledgebase of sea snake toxins for future study.
    Matched MeSH terms: Reptilian Proteins/immunology
  6. Chin CF, Lai JY, Choong YS, Anthony AA, Ismail A, Lim TS
    Sci Rep, 2017 05 19;7(1):2176.
    PMID: 28526816 DOI: 10.1038/s41598-017-01987-8
    Hemolysin E (HlyE) is an immunogenic novel pore-forming toxin involved in the pathogenesis of typhoid fever. Thus, mapping of B-cell epitopes of Salmonella enterica serovar Typhi (S. Typhi) is critical to identify key immunogenic regions of HlyE. A random 20-mer peptide library was used for biopanning with enriched anti-HlyE polyclonal antibodies from typhoid patient sera. Bioinformatic tools were used to refine, analyze and map the enriched peptide sequences against the protein to identify the epitopes. The analysis identified both linear and conformational epitopes on the HlyE protein. The predicted linear GAAAGIVAG and conformational epitope PYSQESVLSADSQNQK were further validated against the pooled sera. The identified epitopes were then used to isolate epitope specific monoclonal antibodies by antibody phage display. Monoclonal scFv antibodies were enriched for both linear and conformational epitopes. Molecular docking was performed to elucidate the antigen-antibody interaction of the monoclonal antibodies against the epitopes on the HlyE monomer and oligomer structure. An in-depth view of the mechanistic and positional characteristics of the antibodies and epitope for HlyE was successfully accomplished by a combination of phage display and bioinformatic analysis. The predicted function and structure of the antibodies highlights the possibility of utilizing the antibodies as neutralizing agents for typhoid fever.
    Matched MeSH terms: Hemolysin Proteins/immunology*
  7. Islam AH, Singh KK, Ismail A
    Diagn Microbiol Infect Dis, 2011 Jan;69(1):38-44.
    PMID: 21146712 DOI: 10.1016/j.diagmicrobio.2010.09.008
    Acinetobacter baumannii is an emerging nosocomial pathogen that is resistant to many types of antibiotics, and hence, a fast, sensitive, specific, and economical test for its rapid diagnosis is needed. Development of such a test requires a specific antigen, and outer membrane proteins (OMPs) are the prime candidates. The goal of this study was to find a specific OMP of A. baumannii and demonstrate the presence of specific IgM, IgA, and IgG against the candidate protein in human serum. OMPs of A. baumannii ATCC 19606 and 16 other clinical isolates of A. baumannii were extracted from an overnight culture grown at 37 °C. Protein profiles were obtained using sodium dodecyl sulfate polyacrylamide gel electrophoresis, and Western blot analysis was performed to detect the presence of IgM, IgA, and IgG against the OMP in host serum. An antigenic 34.4-kDa OMP was uniquely recognized by IgM, IgA, and IgG from patients with A. baumannii infection, and it did not cross-react with sera from patients with other types of infection. The band was also found in the other 16 A. baumannii isolates. This 34.4-kDa OMP is a prime candidate for development of a diagnostic test for the presence of A. baumannii.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/immunology*
  8. Yeo AS, Rathakrishnan A, Wang SM, Ponnampalavanar S, Manikam R, Sathar J, et al.
    Biomed Res Int, 2015;2015:420867.
    PMID: 25815314 DOI: 10.1155/2015/420867
    Dengue virus infection is a common tropical disease which often occurs without being detected. These asymptomatic cases provide information in relation to the manifestation of immunological aspects. In this study, we developed an ELISA method to compare neutralizing effects of dengue prM and E antibodies between dengue patients and their asymptomatic household members. Recombinant D2 premembrane (prM) was constructed, cloned, and tested for antigenicity. The recombinant protein was purified and tested with controls by using an indirect ELISA method. Positive dengue serum samples with their asymptomatic pair were then carried out onto the developed ELISA. In addition, commercially available recombinant envelope (E) protein was used to develop an ELISA which was tested with the same set of serum samples in the prM ELISA. Asymptomatic individuals showed preexisting heterotypic neutralizing antibodies. The recombinant prM was antigenically reactive in the developed ELISA. Dengue patients had higher prM and E antibodies compared to their household members. Our study highlights the neutralizing antibodies levels with respect to dengue prM and E between dengue patients and asymptomatic individuals.
    Matched MeSH terms: Recombinant Proteins/immunology
  9. Abd-Jamil J, Cheah CY, AbuBakar S
    Protein Eng. Des. Sel., 2008 Oct;21(10):605-11.
    PMID: 18669522 DOI: 10.1093/protein/gzn041
    A method to map the specific site on dengue virus envelope protein (E) that interacts with cells and a neutralizing antibody is developed using serially truncated dengue virus type 2 (DENV-2) E displayed on M13 phages as recombinant E-g3p fusion proteins. Recombinant phages displaying the truncated E consisting of amino acids 297-423 (EB2) and amino acids 379-423 (EB4) were neutralized by DENV-2 patient sera and the DENV-2 E-specific 3H5-1 monoclonal antibodies suggesting that the phages retained the DENV-2 E antigenic properties. The EB4 followed by EB2 recombinant phages bound the most to human monocytes (THP-1), African green monkey kidney (Vero) cells, mosquito (C6/36) cells, ScFv specific against E and C6/36 cell proteins. Two potential cell attachment sites were mapped to loop I (amino acids 297 to 312) and loop II (amino acids 379-385) of the DENV-2 E using the phage-displayed truncated DENV-2 E fragments and by the analysis of the E structure. Loop II was present only in EB4 recombinant phages. There was no competition for binding to C6/36 cell proteins between EB2 and EB4 phages. Loop I and loop II are similar to the sub-complex specific and type-specific neutralizing monoclonal antibody binding sites, respectively. Hence, it is proposed that binding and entry of DENV involves the interaction of loop I to cell surface glycosaminoglycan-motif and a subsequent highly specific interaction involving loop II with other cell proteins. The phage displayed truncated DENV-2 E is a powerful and useful method for the direct determination of DENV-2 E cell binding sites.
    Matched MeSH terms: Recombinant Fusion Proteins/immunology; Viral Envelope Proteins/immunology
  10. Kazi A, Hisyam Ismail CMK, Anthony AA, Chuah C, Leow CH, Lim BH, et al.
    Infect Genet Evol, 2020 06;80:104176.
    PMID: 31923724 DOI: 10.1016/j.meegid.2020.104176
    Shigellosis is one of the most common diseases found in the developing countries, especially those countries that are prone flood. The causative agent for this disease is the Shigella species. This organism is one of the third most common enteropathogens responsible for childhood diarrhea. Since Shigella can survive gastric acidity and is an intracellular pathogen, it becomes difficult to treat. Also, uncontrolled use of antibiotics has led to development of resistant strains which poses a threat to public health. Therefore, there is a need for long term control of Shigella infection which can be achieved by designing a proper and effective vaccine. In this study, emphasis was made on designing a candidate that could elicit both B-cell and T-cell immune response. Hence B- and T-cell epitopes of outer membrane channel protein (OM) and putative lipoprotein (PL) from S. flexneri 2a were computationally predicted using immunoinformatics approach and a chimeric construct (chimeric-OP) containing the immunogenic epitopes selected from OM and PL was designed, cloned and expressed in E. coli system. The immunogenicity of the recombinant chimeric-OP was assessed using Shigella antigen infected rabbit antibody. The result showed that the chimeric-OP was a synthetic peptide candidate suitable for the development of vaccine and immunodiagnostics against Shigella infection.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/immunology*
  11. Chai HC, Tay ST
    Mycoses, 2009 Mar;52(2):166-70.
    PMID: 18643920 DOI: 10.1111/j.1439-0507.2008.01549.x
    The serological responses to Cryptococcus neoformans proteins of blood donors and HIV patients with active cryptococcosis from a tropical region were investigated in this study. Exposure to C. neoformans, an organism ubiquitous in the environment, contributes to the antibody responses observed in the blood donors. IgG responses to cryptococcal proteins were stronger than IgM responses in most sera tested in this study. A 53-kDa cryptococcal protein fragment was identified as the most immunoreactive protein on the IgM immunoblots of both blood donors and patients. Overall, there was no obvious difference in IgG responses of patients when compared with blood donors. Some immunogenic protein fragments (27.5, 76, 78 and 91.5 kDa) were detected at least two times more frequently on IgM immunoblots of patients compared with those of blood donors. It is yet to be investigated whether the proteins identified in this study may have any potential to be used as biomarker for cryptococcosis.
    Matched MeSH terms: Fungal Proteins/immunology*
  12. Verdugo-Rodriguez A, Gam LH, Devi S, Koh CL, Puthucheary SD, Calva E, et al.
    Asian Pac J Allergy Immunol, 1993 Jun;11(1):45-52.
    PMID: 8216558
    An indirect ELISA was used to detect antibodies against outer membrane protein preparations (OMPs) from Salmonella typhi. Sera from patients with a definitive diagnosis of typhoid fever (TF) gave a mean absorbance reading, at 414 nm, of 1.52 +/- 0.23 as compared to 0.30 +/- 0.11 for sera from healthy individuals. This gave a positive to negative ratio of absorbance readings of approximately 5.1. Suspected TF patients (no isolation of S. typhi), with positive and negative Widal titers had mean absorbance readings of 1.282 +/00.46 and 0.25 +/- 0.19, respectively. Sera from patients with leptospirosis, rickettsial typhus, dengue fever, and other infections gave mean absorbances of 0.20 +/- 0.08, 0.24 +/- 0.08, 0.27 +/- 0.08, and 0.31 +/- 0.16, respectively. The sensitivity, specificity, positive and negative predictive values were 100%, 94%, 80% and 100%, respectively. The antibody response detected in the definitive TF cases was predominantly IgG in nature and no cross-reactivity was seen with OMP preparations extracted from E. coli. Variable reactivity was noted with OMP preparations obtained from other Salmonella spp. Three major OMPs are presented in the antigen preparation and strong binding of positive sera was detected to all three bands.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/immunology*
  13. Kurup VP, Yeang HY, Sussman GL, Bansal NK, Beezhold DH, Kelly KJ, et al.
    Clin Exp Allergy, 2000 Mar;30(3):359-69.
    PMID: 10691894
    BACKGROUND: Latex allergy is largely an occupational allergy due to sensitization to natural rubber latex allergens present in a number of health care and household products. Although several purified allergens are currently available for study, information on the usefulness of these purified, native or recombinant allergens in the demonstration of specific immunoglobulin (Ig) E in the sera of patients is lacking.

    OBJECTIVE: To evaluate the purified latex allergens and to demonstrate specific IgE antibody in the sera of health care workers and spina bifida patients with clinical latex allergy.

    METHODS: Two radioallergosorbent and an enzyme-linked immunosorbent assay (ELISA) using latex proteins Hev b 1, 2, 3, 4, 6 and 7 along with two glove extracts and Malaysian nonammoniated latex (MNA) were evaluated to demonstrate IgE in the sera of health care workers and spina bifida with latex allergy and controls with no history of latex allergy.

    RESULTS: ELISA using the purified latex allergens demonstrated specific IgE in 32-65% health care workers and 54-100% of spina bifida patients with latex allergy. The corresponding figures for RAST were 13-48 and 23-85 for RAST-1 and 19-61 and 36-57 for RAST-2. These results were comparable with the results obtained with glove extracts and crude rubber latex proteins.

    CONCLUSIONS: When used simultaneously, latex proteins Hev b 2 and Hev b 7 reacted significantly with specific serum IgE in 80% of health care workers and 92% of spina bifida patients with latex allergy by ELISA technique, while this combination gave lower positivity when the RASTs were used. By the addition of Hev b 3, specific IgE was detected in all spina bifida patients with latex allergy. Both RASTs failed to show specific IgE in the control subjects, while the ELISA showed significant latex-specific IgE in 22% of controls.

    Matched MeSH terms: Plant Proteins/immunology; Recombinant Proteins/immunology
  14. Liu W, Wang YT, Tian DS, Yin ZC, Kwang J
    Dis Aquat Organ, 2002 Apr 24;49(1):11-8.
    PMID: 12093036
    The vp28 gene encoding an envelope protein (28 kDa) of white spot syndrome virus (WSSV) was amplified from WSSV-infected tiger shrimp that originated from Malaysia. Recombinant VP28 protein (r-28) was expressed in Escherichia coli and used as an antigen for preparation of monoclonal antibodies (MAbs). Three murine MAbs (6F6, 6H4 and 9C10) that were screened by r-28 antigen-based enzyme-linked immunosorbent assay (ELISA) were also able to recognize viral VP28 protein as well as r-28 on Western blot. Three non-overlapping epitopes of VP28 protein were determined using the MAbs in competitive ELISA; thus, an antigen-capture ELISA (Ac-ELISA) was developed by virtue of these MAbs. Ac-ELISA can differentiate WSSV-infected shrimp from uninfected shrimp and was further confirmed by a polymerase chain reaction (PCR) and Western blot. Approximately 400 pg of purified WSSV sample and 20 pg of r-28 could be detected by Ac-ELISA, which is comparable in sensitivity to PCR assay but more sensitive than Western blot in the detection of purified virus. Hemolymph and tissue homogenate samples collected from a shrimp farm in Malaysia during December 2000 and July 2001 were also detected by Ac-ELISA and PCR with corroborating results.
    Matched MeSH terms: Viral Envelope Proteins/immunology*
  15. Moeini H, Omar AR, Rahim RA, Yusoff K
    Comp Immunol Microbiol Infect Dis, 2011 May;34(3):227-36.
    PMID: 21146874 DOI: 10.1016/j.cimid.2010.11.006
    In the present study, we describe the development of a DNA vaccine against chicken anemia virus. The VP1 and VP2 genes of CAV were amplified and cloned into pBudCE4.1 to construct two DNA vaccines, namely, pBudVP1 and pBudVP2-VP1. In vitro and in vivo studies showed that co-expression of VP1 with VP2 are required to induce significant levels of antibody against CAV. Subsequently, the vaccines were tested in 2-week-old SPF chickens. Chickens immunized with the DNA-plasmid pBudVP2-VP1 showed positive neutralizing antibody titer against CAV. Furthermore, VP1-specific proliferation induction of splenocytes and also high serum levels of Th1 cytokines, IL-2 and IFN-γ were detected in the pBudVP2-VP1-vaccinated chickens. These results suggest that the recombinant DNA plasmid co-expressing VP1 and VP2 can be used as a potential DNA vaccine against CAV.
    Matched MeSH terms: Capsid Proteins/immunology*
  16. Lim CC, Woo PCY, Lim TS
    Sci Rep, 2019 Apr 15;9(1):6088.
    PMID: 30988390 DOI: 10.1038/s41598-019-42628-6
    Antibody phage display has been pivotal in the quest to generate human monoclonal antibodies for biomedical and research applications. Target antigen preparation is a main bottleneck associated with the panning process. This includes production complexity, downstream purification, quality and yield. In many instances, purified antigens are preferred for panning but this may not be possible for certain difficult target antigens. Here, we describe an improved procedure of affinity selection against crude or non-purified antigen by saturation of non-binders with blocking agents to promote positive binder enrichment termed as Yin-Yang panning. A naïve human scFv library with kappa light chain repertoire with a library size of 109 was developed. The improved Yin-Yang biopanning process was able to enrich monoclonal antibodies specific to the MERS-CoV nucleoprotein. Three unique monoclonal antibodies were isolated in the process. The Yin-Yang biopanning method highlights the possibility of utilizing crude antigens for the isolation of monoclonal antibodies by phage display.
    Matched MeSH terms: Nucleocapsid Proteins/immunology*
  17. Rahumatullah A, Lim TS, Yunus MH, Noordin R
    Am J Trop Med Hyg, 2019 08;101(2):436-440.
    PMID: 31162018 DOI: 10.4269/ajtmh.19-0034
    Lymphatic filariasis is a mosquito-borne parasitic disease responsible for morbidity and disability that affects 1.2 billion people worldwide, mainly the poor communities. Currently, filarial antigen testing is the method of choice for the detection of bancroftian filariasis, and to date, there are two commonly used tests. In the present study, a recently reported recombinant monoclonal antibody (5B) specific to BmSXP filarial antigen was used in developing an ELISA for the detection of circulating filarial antigen in sera of patients with bancroftian filariasis. The performance of the ELISA was evaluated using 124 serum samples. The ELISA was positive with all sera from microfilaremic bancroftian filariasis patients (n = 34). It also showed 100% diagnostic specificity when tested with sera from 50 healthy individuals and 40 patients with other parasitic diseases. The developed assay using the novel 5B recombinant monoclonal antibody could potentially be a promising alternative antigen detection test for bancroftian filariasis.
    Matched MeSH terms: Helminth Proteins/immunology*
  18. Mohd Amiruddin MN, Ang GY, Yu CY, Falero-Diaz G, Otero O, Reyes F, et al.
    J Microbiol Methods, 2020 09;176:106003.
    PMID: 32702386 DOI: 10.1016/j.mimet.2020.106003
    Mycobacterium tuberculosis (Mtb) is a pathogenic bacterium that causes tuberculosis (TB). This contagious disease remains a severe health problem in the world. The disease is transmitted via inhalation of airborne droplets carrying Mtb from TB patients. Early detection of the disease is vital to prevent transmission of the infection to people in close contact with the patients. To date, there is a need of a simple, rapid, sensitive and specific diagnostic test for TB. Previous studies showed the potential of Mtb 16 kDa antigen (Ag16) in TB diagnosis. In this study, lateral flow immunoassay, also called simple strip immunoassay or immunochromatographic test (ICT) for detection of Ag16 was developed (Mtb-strip) and assessed as a potential rapid TB diagnosis method. A monoclonal antibody against Ag16 was optimized as the capturing and detection antibody on the Mtb-strip. Parameters affecting the performance of the Mtb-strip were also optimized before a complete prototype was developed. Analytical sensitivity showed that Mtb-strip was capable to detect as low as 125 ng of purified Ag16. The analytical sensitivity of Mtb-strip suggests its potential usefulness in different clinical applications.
    Matched MeSH terms: Bacterial Proteins/immunology*
  19. Mohd Ali MR, Sum JS, Aminuddin Baki NN, Choong YS, Nor Amdan NA, Amran F, et al.
    Int J Biol Macromol, 2021 Jan 31;168:289-300.
    PMID: 33310091 DOI: 10.1016/j.ijbiomac.2020.12.062
    Leptospirosis is a potentially fatal zoonosis that is caused by spirochete Leptospira. The signs and symptoms of leptospirosis are usually varied, allowing it to be mistaken for other causes of acute febrile syndromes. Thus, early diagnosis and identification of a specific agent in clinical samples is crucial for effective treatment. This study was aimed to develop specific monoclonal antibodies against LipL21 antigen for future use in leptospirosis rapid and accurate immunoassay. A recombinant LipL21 (rLipL21) antigen was optimized for expression and evaluated for immunogenicity. Then, a naïve phage antibody library was utilized to identify single chain fragment variable (scFv) clones against the rLipL21 antigen. A total of 47 clones were analysed through monoclonal phage ELISA. However, after taking into consideration the background OD405 values, only 4 clones were sent for sequencing to determine human germline sequences. The sequence analysis showed that all 4 clones are identical. The in silico analysis of scFv-lip-1 complex indicated that the charged residues of scFv CDRs are responsible for the recognition with rLipL21 epitopes. The generated monoclonal antibody against rLipL21 will be evaluated as a detection reagent for the diagnosis of human leptospirosis in a future study.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/immunology*
  20. Sudo M, Yamaguchi Y, Späth PJ, Matsumoto-Morita K, Ong BK, Shahrizaila N, et al.
    PLoS One, 2014;9(9):e107772.
    PMID: 25259950 DOI: 10.1371/journal.pone.0107772
    Intravenous immunoglobulin (IVIG) is the first line treatment for Guillain-Barré syndrome and multifocal motor neuropathy, which are caused by anti-ganglioside antibody-mediated complement-dependent cytotoxicity. IVIG has many potential mechanisms of action, and sialylation of the IgG Fc portion reportedly has an anti-inflammatory effect in antibody-dependent cell-mediated cytotoxicity models. We investigated the effects of different IVIG glycoforms on the inhibition of antibody-mediated complement-dependent cytotoxicity. Deglycosylated, degalactosylated, galactosylated and sialylated IgG were prepared from IVIG following treatment with glycosidases and glycosyltransferases. Sera from patients with Guillain-Barré syndrome, Miller Fisher syndrome and multifocal motor neuropathy associated with anti-ganglioside antibodies were used. Inhibition of complement deposition subsequent to IgG or IgM autoantibody binding to ganglioside, GM1 or GQ1b was assessed on microtiter plates. Sialylated and galactosylated IVIGs more effectively inhibited C3 deposition than original IVIG or enzyme-treated IVIGs (agalactosylated and deglycosylated IVIGs). Therefore, sialylated and galactosylated IVIGs may be more effective than conventional IVIG in the treatment of complement-dependent autoimmune diseases.
    Matched MeSH terms: Complement System Proteins/immunology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links