Displaying publications 61 - 80 of 240 in total

Abstract:
Sort:
  1. Kurniawansyah IS, Rusdiana T, Sopyan I, Ramoko H, Wahab HA, Subarnas A
    Heliyon, 2020 Nov;6(11):e05365.
    PMID: 33251348 DOI: 10.1016/j.heliyon.2020.e05365
    Background: Conventional drug delivery systems have some major drawbacks such as low bioavailability, short residence time and rapid precorneal drainage. An in situ gel drug delivery system provides several benefits, such as prolonged pharmacological duration of action, simpler production techniques, and low cost of manufacturing. This research aims to get the optimum formula of chloramphenicol in situ gel based on the physical evaluation.

    Methods: The effects of independent variables (poloxamer 407 and hydroxypropyl methyl cellulose (HPMC) concentration) on various dependent variables (gelling capacity, pH and viscosity) were investigated by using 32 factorial design and organoleptic evaluation was done with descriptive analysis.

    Results: The optimized formula of chloramphenicol in situ gel yielded 9 variations of poloxamer 407 and HPMC bases composition in % w/v as follows, F1 (5; 0.45), F2 (7.5; 0.45), F3 (10; 0.45), F4 (5; 0.725), F5 (7.5; 0.725), F6 (10; 0.725), F7 (5; 1), F8 (7.5; 1), F9 (10; 1). The results indicated that the organoleptic, pH, and gelling capacity parameters matched all formulas (F1-F9), however, the viscosity parameter only matched F3, F6, F8, and F9. Based on factorial design, F6 had the best formula with desirability value of 0.54, but the design recommended that formula with the composition bases of poloxamer 407 and HPMC at the ratio of 8.16 % w/v and 0.77 % w/v, respectively, was the optimum formula with a desirability value of 0.69.

    Conclusion: All formulas have met the Indonesian pharmacopoeia requirements based on the physical evaluation, especially formula 6 (F6), which was supported by the result of factorial design analysis.

    Matched MeSH terms: Viscosity
  2. Sabet M, Soleimani H
    Heliyon, 2019 Jul;5(7):e02053.
    PMID: 31334378 DOI: 10.1016/j.heliyon.2019.e02053
    The spread of graphene in low-density polyethylene (LDPE) improves LDPE/graphene nanocompounds' thermal/mechanical/electrical characteristics. The images of scanning electron microscopy (SEM) verify full graphene exfoliation at 1000 °C. Inclusion graphene develops crystallinity; increases the local order of lattice and thermal stability of LDPE/graphene nanocompounds. The consistent distributions and further inclusion of graphene caused the great heat breakdown strength, increasing heat breakdown activation energy and a superior melting point (Tm) for LDPE nanocompounds. Percolation occurs with the graphene incorporation of 0.5 wt%. The complex viscosity test showed Newtonian behavior for LDPE at a very low frequency. But, graphene inclusion to LDPE changed the viscosity performance from liquid-like to solid-like which caused a decrease in the melt flow rate (MFR) values for all LDPE/graphene nanocompounds.
    Matched MeSH terms: Viscosity
  3. Rezk MG, Foroozesh J
    Heliyon, 2019 Jul;5(7):e02057.
    PMID: 31384679 DOI: 10.1016/j.heliyon.2019.e02057
    This paper investigates the phase behavior and mutual interactions between a light crude oil and CO2 at high pressures and high temperatures (HPHT). To do so, we have measured PVT properties of the CO2-oil system at HPHT using a PVT setup. We have also tried to present a detailed methodology for measuring PVT properties of CO2-oil systems and highlight the difficulties such as oil vaporization by CO2 during the experiments. A crude oil sample, collected from a Malaysian oil field, was used here. Our experiments indicated that, CO2 solubility in the oil increased at higher pressures when measured at a fixed temperature. Our experiments also showed that increasing the test temperature would reduce CO2 solubility in the oil, while its effect is more significant at higher pressures. The swelling factor (SF) measurements showed an increasing trend with pressure up to a certain value so-called extraction pressure, at which, the SF started to be reduced even became less than one. The measurements of oil viscosity indicated that CO2 dissolution in the oil sample could reduce the mixture viscosity up to 61%. The interfacial tensions between CO2 and the crude oil at different pressures were also measured while the results were used to estimate the minimum miscibility pressure (MMP) and the first contact miscibility (FCM) pressure. The IFT measurements at various pressures displayed a reduction trend as a result of more CO2 dissolution in the oil but with two different slopes. That is, at lower pressure values, the measured IFTs were sharply reduced with pressure, while the reduction rate of the IFT became less when pressures exceeded the extraction pressure. This study helps with determining the optimum pressure and temperature conditions of CO2-oil systems to have a minimum IFT, a maximum CO2 solubility and SF, and a minimum oil viscosity that are favorable for CO2-enhanced oil recovery projects. Additionally, the methodology presented here gives guidelines on how to design PVT experiments of CO2-oil systems for petroleum and chemical engineering applications.
    Matched MeSH terms: Viscosity
  4. Zainol NA, Ming TS, Darwis Y
    Indian J Pharm Sci, 2015 12 15;77(4):422-33.
    PMID: 26664058 DOI: 10.4103/0250-474x.164785
    Cinnamon leaf oil contains a high percentage of eugenol and has antimicrobial, antioxidant and antiinflammatory properties. However, the undiluted oil can cause irritation to the skin. Therefore, the aims of this study were to develop and evaluate cinnamon leaf oil nanocream using palm oil. Nanocream base was prepared using different ratios of oil, surfactants and water. The surfactant used were mixture of Tween 80:Carbitol or Tween 80:Span 65 at different hydrophile-lipophile balance values. The pseudoternary phase diagrams were constructed to identify the nanocream base areas and the results showed that the nanocream bases using Span 65 as co-surfactant produced bigger cream area. Fifteen formulations using mixtures of Tween 80:Span 65 were further evaluated for accelerated stability test, droplet size, zeta potential, rheological properties and apparent viscosity. The nanocream base which had an average droplet size of 219 nm and had plastic flow with thixotropic behavior was selected for incorporation of 2% cinnamon leaf oil. The nanocream containing cinnamon leaf oil had the average size of 286 nm and good rheological characteristics. The in vitro release study demonstrated that eugenol as the main constituent of cinnamon leaf oil was released for about 81% in 10 h. The short-term stability study conducted for 6 months showed that the cinnamon leaf oil nanocream was stable at a temperature of 25° and thus, cinnamon leaf oil nanocream is a promising natural based preparation to be used for topical application.
    Matched MeSH terms: Viscosity
  5. Noranizan, M., Pean, L. F., Li, J. W., Aadil, R. M., Ahmad, T., Rosli, S. Z., et al.
    MyJurnal
    The present work investigated the impact of several juice extraction methods (blender,
    centrifugal juicer, and slow juicer) and thermal pasteurisation (72°C, 15 s) on the different
    properties [physicochemical, polyphenol oxidase (PPO) activity, and functional] of
    Clinacanthus nutans juice mix during storage (28 d, 4°C). Regardless of juicing technique, all
    juices had similar colour and antioxidants [tested using 2,2-diphenyl-1-picrylhydrazyl
    (DPPH) and ferric reducing antioxidant power (FRAP) methods]. The juices also had similar
    PPO activity and sensory acceptance in terms of colour, aroma, flavour, mouthfeel, and
    overall acceptability. The blender yielded juice with higher pH, soluble solids, and relative
    viscosity than other methods. The slow juicer was the best at retaining ascorbic acid (39.33 ±
    3.06 mg/100 mL), while the blender was best at retaining phenolic compounds (11.82 ± 0.12
    mg gallic acid equivalents/100 mL) and chlorophyll (6.95 ± 0.31 μg/mL). Pasteurisation
    negatively affected the colour, functional properties, and sensory characteristics (colour,
    aroma, flavour, and mouthfeel) of the juice.
    Matched MeSH terms: Viscosity
  6. Ruzaina, I., Norizzah, A.R., Halimahton Zahrah, M.S., Cheow, C.S., Adi, M.S., Noorakmar, A.W., et al.
    MyJurnal
    Guava is a climacteric fruit which has high nutritional content. It is a highly perishable fruit, undergoes rapid postharvest ripening in a few days under ambient condition. This paper aims to determine the effect of palm stearin and palm kernel olein blends on maintaining the quality of guava during storage. Two different coating formulations of palm stearin (PS) and palm kernel olein (PKOo) blends (1:1 and 3:2) were analysed for their slip melting point (SMP), cohesiveness, viscosity and density. Beeswax was used as a commercial coating for comparison whiles the uncoated guava was used as control. These coatings were applied onto guavas by hand-wipe technique using a sponge. Guavas were dried in corrugated fibre board boxes and stored in an air-conditioned room maintained at 20°C while a chiller maintained at 10°C was used for chilled temperature. Coating pick up, thickness and surface area were measured while guava properties were analysed for coating effect on weight loss, O2 and CO2 gases, firmness and glossiness during storage at ambient temperature (20°C) for 21 days and chilled temperature (10ºC) for 30 days. Microstructure analysis was conducted within 2 days of coating at ambient temperature (20ºC). The results obtained indicated that 1:1 PSPKOo blends had higher cohesiveness compared to beeswax. Both PSPKOo blends significantly (p
    Matched MeSH terms: Viscosity
  7. Nurul Hanani, M.Z., Halimahton Zahrah, M.S., Zaibunnisa, A.H.
    MyJurnal
    This study was conducted to develop an edible coating containing combined hydrophilic (chitosan) and hydrophobic (palm stearin) components which demonstrated gas barrier and moisture barrier properties, respectively, to prolong the post harvest life of star fruits (Averrhoa carambola L.). The emulsions of chitosan (C) and palm stearin (S) were prepared by using different ratios of C:S which were 1:0, 1:1, 1;2, 1:3, 2:1, 3:1 and 0:1. Viscosity of emulsions was studied. The physicochemical properties of coated star fruits were also evaluated in terms of weight loss, firmness, visual appearance, oxygen concentration, carbon dioxide concentration and ethylene concentration during storage at room temperature (26-28˚C) for 18 days. The results obtained showed that coating reduced weight loss, maintained firmness and appearance, slowed down the production of respiratory gases and reduced ethylene production. The most recommended coating for star fruits was C:S of 1:1 ratio as it showed good water barrier and gas barrier properties and could extend the post harvest life of star fruits up to 20 days as compared to the control samples which had a post harvest life of 12 days.
    Matched MeSH terms: Viscosity
  8. Syafiq, A., Amir, I.Z., Sharon, W.X.R.
    MyJurnal
    The impacts on both rheological parameters; Casson yield stress and Casson viscosity were determined. The interactions among blend’s components; xanthan gum (XG), corn starch (CS), glycerin (GL) and their relationship with both flow parameters were also investigated by using D-Optimal mixture design. Three levels of cocoa butter substitution assigned in chocolate production were at 5%, 10% and 15% level with random proportions of each component generated by Design Expert software. An appropriate mathematical model was applied to evaluate each response as a function of the proportions of the components enabling in prediction of future response by using any blend of components. As the incorporation of the blends (XG/CS/GL) in chocolate production was elevated from 5% to 15%, both parameters; viscosity and yield stress of chocolate were gradually increased, as in range 7.819 to 10.529 Pa, and 2.372 to 3.727 Pa.s, respectively. Neither binary nor ternary component-component interaction exhibited synergistic effect. Nevertheless, strongest antagonistic effect on both rheological parameters of substituted chocolate at 5% level and 10% level were respectively observed at ternary interaction region for the former, and at binary interaction area of CS:GL, closer to CS corner as for the latter. This study somehow provides ideas on how component-component interactions influence experimented response.
    Matched MeSH terms: Viscosity
  9. Mohd Hanim, A.B., Chin, N.L., Yusof, Y.A.
    MyJurnal
    Proximate, functional and pasting properties of a new variety of sweet potato, VitAto, flour, known for its high vitamin A contents, were compared with two other commercial sweet potatoes, Bukit Naga and Okinawan, flour available in Malaysia. The recoveries of each sweet potato from milling were not significantly different at about 20% but in proximate analysis, the VitAto presented the highest protein (5.7%) and dietary fiber (14.8%) contents with more energy 399.6 kcal/100 g produced. The VitAto flour has average particle size of 132.04 μm. The pasting temperature of the VitAto flour was 65oC, with highest setback and trough viscosity values of 530.90 and 197.20 mPa.s, respectively. The flour is classified as easy flowing and stable powders. This study provides information which helps in the handling, packing and storage of sweet potato flours. It also shows that the VitAto flour has an array of functional, pasting and proximate properties that can facilitate its uses in many areas with better nutritional properties.
    Matched MeSH terms: Viscosity
  10. Ali, M.A., Daud, A.S.M., Latip, R.A., Othman, N.H., Islam, M.A.
    MyJurnal
    The aim of the present study was to evaluate the effect of chicken nuggets addition on the degradation of canola oil during frying compared to the changes occurring when the same frying medium was simply heated at frying temperature as control. Heating or frying test was carried out at 185±5oC using electric fryer for 8 h/day for 3 consecutive days and the oil sample was collected every 4 h. The changes in fatty acids composition and physicochemical properties of the oil samples during frying and controlled heating experiments were monitored. In this study, refractive index, free fatty acid content, peroxide value, p-anisidine value, polar compounds and viscosity of the oils all increased, whereas iodine value and C18:2/C16:0 ratio decreased as heating or frying progressed. The percentage of linoleic acid tended to decrease, whereas the percentages of palmitic acid increased. Gas chromatography analysis revealed that adding chicken nuggets to heated canola oil led to higher decrease in the ratio of C18.2/C16:0 compared to what was measured when the fat alone was heated at frying temperature. The presence of chicken nuggets accelerates the formation of polymerization products and polar compounds in canola oil during frying.
    Matched MeSH terms: Viscosity
  11. Zzaman, W., Issara, U., Febrianto, N.F., Yang, T.A.
    International Food Research Journal, 2014;21(3):10191-1023.
    MyJurnal
    The study was conducted to investigate fatty acid composition, rheological properties and crystal formation of rambutan fat and cocoa butter. The results showed that lauric acid, palmitic acid, and stearic fatty acid in rambutan fat were less than cocoa butter, but oleic acid found almost the same. The crystal formation of cocoa butter was not complex at 25oC, while rambutan fat and their mixture shown complicated network of crystal form. The Newton, Bingham and Casson plastic rheological models was used to describe fat flow in this experiment and the result showed that rambutan fat had higher viscosity than cocoa fat. Based on the results the study recommended that mixture proportion up to 30% rambutan seed fat can be used as a cocoa butter substitute whereas higher proportion completely alters original cocoa butter properties. Therefore, there is feasibility of using the rambutan fat to substitute cocoa butter and the mixtures of the two fats in suitable proportion in chocolate manufacturing.
    Matched MeSH terms: Viscosity
  12. Abbas, F.M.A., Saifullah, R., Azhar, M.E.
    MyJurnal
    Physical properties of ripe banana flour were studied in Cavendish and Dream banana, in order to distinguish the two varieties. Flour was analyzed for pH, total soluble solids (TSS), water holding capacity
    (WHC) and oil holding capacity (OHC) at 40, 60 and 80 °C, color values L*, a* and b*, back extrusion force
    and viscosity. Physical properties data were analyzed by cluster analysis (CA) and discriminant analysis (DA). CA showed that the two types of flour were different in terms of selected physical properties. DA indicated that WHC at 60 °C was the main contributor in discriminating the two types of flour.
    Matched MeSH terms: Viscosity
  13. Akanbi, T.O., Nazamid, S., Adebowale, A.A.
    MyJurnal
    This study was carried out to determine the proximate, functional and pasting properties of breadfruit starch. Breadfruit starch was isolated from matured breadfruit (Artocarpus altilis) and was analyzed for its fuctional, proximate and pasting properties. The starch contains 10.83%, 0.53%, 0.39%, 22.52%, 77.48% and 1.77% moisture, crude protein, fat, amylose, amylopectin and ash contents respectively. The average particle size, pH, bulk density and dispersibility of the breadfruit starch were 18 μm, 6.5, 0.673 g/mls, and 40.67% respectively. The swelling power of the breadfruit starch increases with increase in temperature, but there was a rapid increase in the swelling power from 70 to 80 0C. The pasting temperature of the starch paste was 84.05 0C, setback and breakdown values were 40.08 and 7.92 RVU respectively. The peak viscosity value was 121.25 RVU while final viscosity value was 153.42 RVU. This study concluded that breadfruit starch has an array of functional, pasting and proximate properties that can facilitate its use in so many areas where the properties of other starches are acceptable.
    Matched MeSH terms: Viscosity
  14. Habilla, C., Sim, S.Y., Nor Aziah, Cheng, L.H.
    MyJurnal
    In this study, acid-thinned starch was blended with konjac glucomannan or psyllium husk powder at a concentration of 3% w/w (starch basis). The blends were characterized by pasting analysis and rheological
    properties evaluation. Jelly candy was made from the blends and textural characteristics were studied. Pasting analysis showed that both gums were found to significantly increase some of the pasting parameters, such as peak viscosity, trough, breakdown, final viscosity and setback values. From the frequency sweep, it was found that addition of konjac glucomanan or psyllium husk powder increased the storage modulus (G’) and loss modulus (G’’) values, with psyllium added sample showing more prominent effect than konjac added ones, when compared to the control samples. All samples were found to demonstrate thixotropic flow behaviour. Jelly candy texture profile analysis revealed that konjac glucomannan or psyllium husk powder addition, although decreasing chewability, but rendered the jelly candy less sticky.
    Matched MeSH terms: Viscosity
  15. Suseno, S.H., Tajul, A.Y
    MyJurnal
    This study was aimed at improving the quality of fish oil. A synthetic filter aid (Magnesol XL) was used at various concentration (1, 3 and 5%) and time levels (5, 10, 15 and 20 minutes) to adsorb the polar compound products of the oil. Some physical and chemical properties (viscosity, colour, density, acid value, peroxide value and free fatty acid) of the treated oil were determined. Results indicate that Magnesol XL at 1 and 3% levels significantly reduced the acid value, peroxide value and free fatty acid contents of the treated oil.
    Treatment of the fish oil with Magnesol XL at 1 and 3% levels was also better than treatment with 5% Magnesol XL on improving the fish oil quality. The fatty acid profile for Σ n3 at untreated and treatment adsorbent showed significant at 0.05 level but not significant at Magnesol XL adsorbent concentration 1-5%.
    Matched MeSH terms: Viscosity
  16. Sanaei, A.V., Mahmoodani, F., See, S.F., Yusop, S.M., Babji, A.S.
    MyJurnal
    The extraction of catfish (Clarias gariepinus) bone gelatin was optimized by using Response Surface Methodology (RSM) involving 4-factors, 5-levels Central Composite Design (CCD). The optimum conditions for extraction were produced by a pre-treatment of 3.35% HCl for 14.5 h along with hot water extraction at 67.23°C for 5.2 h. Results showed that the predicted yield by RSM (61.81%) was closely matched the experimental yield of 60.54%. The results also indicated that the extracted bone gelatin possessed high protein content (81.75%) and imino acid (proline and hydroxyproline) (144 residues per 1000 residues), with gel strength (230.25 g), viscosity (4.64 mPa.s) and isoionic point (5.35) comparable to that of bovine gelatin. The results suggested that RSM is a great optimizing tool for extraction of gelatin from clarias catfish bone and values of the physicochemical properties of gelatin are higher or comparable than those from other fish species and bovine gelatin.
    Matched MeSH terms: Viscosity
  17. Noorlaila, A., Siti Aziah, A., Asmeda, R., Norizzah, A.R.
    MyJurnal
    The emulsifying properties of extracted okra (Abelmoschus esculentus L.) mucilage at different maturity indices (1, 2 and 3) were studied. The okra mucilage was prepared using water extraction method and was determined their viscosity at different temperature (10, 30, 50 and 70°C), water holding capacity (WHC), oil holding capacity (OHC), as well as their emulsion capacity (EC) and emulsion stability (ES). Results found that okra with maturity index 2 produced the highest percentage yield of mucilage (1.46%) and followed by index 1 (1.10%) and index 3 (0.31%) (p
    Matched MeSH terms: Viscosity
  18. Rosli, N., Sarbon, N.M.
    MyJurnal
    The aims of this study are to report on the extraction and characterization of Asian swamp eel (Monopterus albus) skin gelatin. The characterization conducted were includes chemical composition, pH, gel strength, viscosity, thermal property, color and structure determination of extracted eel skin gelatin. Eel skin contains 70.28% moisture, 11.07% protein, 4.21% fat, and 5.01% ash. The chemical composition of eel skin gelatin (yield of 12.75%) was 18.8% moisture, 67.64% protein, 0.34% fat and 1.08% ash, with a pH of 4.62 and gel strength of 215.96 g (± 9.62 g). Although viscosity (2.8 cPa/min) profile of eel skin gelatin showed lower than that of bovine gelatin, the higher melting temperature (35 °C) of eel skin gelatin indicating its higher stability than bovine gelatin with FTIR spectrum similar to that of typical bovine gelatin. Eel skin gelatin has a 71.4 (± 1.14), a +3.2 (± 0.29), and a +7.52 (± 0.29) for L*, a* and b* value respectively, indicate a darker and less yellow colour. These findings show promising potential for the application of eel skin gelatin as an alternative to commercial gelatin.
    Matched MeSH terms: Viscosity
  19. Fauziah, C.I., Zaibunnisa, A.H., Osman, H., Wan Aida, W.M.
    MyJurnal
    The aim of this study were to find out the physicochemical characteristics of cholesterol-reduced egg yolk powder and its application in the production of mayonnaises. Cholesterol-reduced egg yolk powder (CREYP) were prepared from removal of cholesterol by formation of cholesterol:β-cyclodextrin inclusion complex. The physicochemical characteristics of CREYP and NEYP were foaming capacity (FC): 1.96%, 4%; foaming stability (FS): 96.48%, 94.55%; emulsion capacity (EC): 59.82%, 58.43% and emulsion stability (ES): 43.94%, 41.48% respectively. Whereas the viscosity of CREY, NEY and commercial mayonnaises were 8000, 4768 and 6747 cP respectively. The lightness (L*), redness (a*), yellowness (b*), saturation (C*) and hue angle (h°) values for CREYP and NEYP results showed significantly different (p>0.05) for all chroma values with CREYP showed higher L* and h° values but lower in a*, b* and C* values showing that the yellow colour of NEYP lessened. Commercial mayonnaise appeared to be lighter and less yellowish than CREY mayonnaises with L* and b* values of
    commercial to CREY mayonnaises were L*: 78.34; 63.78% and b*: 8.29; 14.98% respectively. It can be concluded that CREYP can be used as replace to the NEYP and whole liquid egg yolk
    with enhance nutritional values. The results obtained from this study will be very useful for producing CREYP.
    Matched MeSH terms: Viscosity
  20. Nurul, A.G., Sarbon, N.M.
    MyJurnal
    This study examines and compares the influence of pH on the functional, rheological and structural properties of eel skin (Monopterus sp.) and bovine gelatins. Functional properties studied and compared were emulsifying capacity and stability; water holding capacity; fat binding capacity; foaming capacity; and foaming stability. The rheological properties studied include gel strength and dynamic oscillatory measurements. The structural properties of eel skin and bovine gelatin were determined by Fourier transform infrared spectroscopy (FTIR). Results obtained showed that eel skin gelatin treated at pH 8 (compared to pH 5) exhibited the higher emulsifying, fat binding, foaming and viscoelasticity properties. The FTIR spectrum assay showed that eel skin gelatin presented a similar structure to that of bovine gelatin. This study demonstrated that pH levels influence functional, rheological and structural properties of eel skin gelatin and that these properties were enhanced to either equal or surpass those of bovine gelatin. Hence, this study indicates that eel skin gelatin has immense potential for use as an alternative to bovine gelatin.
    Matched MeSH terms: Viscosity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links