Displaying publications 61 - 80 of 768 in total

Abstract:
Sort:
  1. Veeraswamy Kesavan, Abdulrasheed Mansur, Mohd Syahmi Ramzi Salihan, Rahman, M.F., Suhaili, Zarizal, Shukor, M.Y.
    MyJurnal
    The indiscriminate released of heavy metals and xenobiotics into soils and aquatic bodies
    severely alter soil organisms and the ecosystem. The isolation of xenobiotics degrading
    microorganisms is cost-effective and naturally pleasant approach. Lately, the toxicological effect
    of molybdenum to the spermatogenesis of several organisms has been record. This present study
    is aimed at the isolation and characterization of a bacterium capable of converting molybdenum
    to the colloidal molybdenum blue. Bacteria characterization was performed in a microplate
    format using resting cells. Thus, the reduction process can be employed as a device for
    molybdenum bioremediation. The results of the study revealed an optimum reduction at pH
    between 6.0 and 6.3 and temperatures of between 25 and 40 oC. Similarly, it was also observed
    that a phosphate concentration not greater than 5.0 mM and a sodium molybdate concentration
    at 20 mM was required for reduction. Glucose was observed as the best carbon source to support
    reduction. Following the scanning of molybdenum blue, it revealed an absorption spectrum
    indicating the characteristics of molybdenum blue as a reduced phosphomolybdate. Molybdenum
    reduction is inhibited by heavy metals like silver, lead, arsenic and mercury. Furthermore, the
    ability of the bacterium (Pseudomonas sp. strain Dr.Y Kertih) to utilize several organic
    xenobiotics such as phenol, acrylamide, nicotinamide, acetamide, iodoacetamide, propionamide,
    acetamide, sodium dodecyl sulfate (SDS) and diesel as electron donor sources for aiding
    reduction or as carbon sources for growth was also examined. Finding showed that none was
    capable of aiding molybdenum reduction, however the bacterium was capable of growing on both
    diesel and phenol as carbon sources. GC analysis was used to confirmed diesel degradation.
    Matched MeSH terms: Metals, Heavy
  2. Yakasai, M.H., Rahman, M.F., Khayat, M.E., Shukor, M.Y., Shamaan, N.A., Rahim, M.B.H.A.
    MyJurnal
    The presence of both heavy metals and organic xenobiotic pollutants in a contaminated site
    justifies the application of either a multitude of microbial degraders or microorganisms having
    the capacity to detoxify a number of pollutants at the same time. Molybdenum is an essential
    heavy metal that is toxic to ruminants at a high level. Ruminants such as cow and goats
    experience severe hypocuprosis leading to scouring and death at a concentration as low as
    several parts per million. In this study, a molybdenum-reducing bacterium with amide-degrading
    capacity has been isolated from contaminated soils. The bacterium, using glucose as the best
    electron donor reduces molybdenum in the form of sodium molybdate to molybdenum blue. The
    maximal pH reduction occurs between 6.0 and 6.3, and the bacterium showed an excellent
    reduction in temperatures between 25 and 40 oC. The reduction was maximal at molybdate
    concentrations of between 15 and 25 mM. Molybdenum reduction incidentally was inhibited by
    several toxic heavy metals. Other carbon sources including toxic xenobiotics such as amides
    were screened for their ability to support molybdate reduction. Of all the amides, only
    acrylamide can support molybdenum reduction. The other amides; such as acetamide and
    propionamide can support growth. Analysis using phylogenetic analysis resulted in a tentative
    identification of the bacterium as Pseudomonas sp. strain 135. This bacterium is essential in
    remediating sites contaminated with molybdenum, especially in agricultural soil co-contaminated
    with acrylamide, a known soil stabilizer.
    Matched MeSH terms: Metals, Heavy
  3. Gunasekaran, B., Johari, W.L.W., Wasoh, M.H., Masdor, N.A., Shukor, M.Y.
    MyJurnal
    Heavy metals pollution has become a great threat to the world. Since instrumental methods are
    expensive and need skilled technician, a simple and fast method is needed to determine the
    presence of heavy metals in the environment. In this work, a preliminary study was carried out
    on the applicability of various local plants as a source of protease for the future development of
    the inhibitive enzyme assay for heavy-metals. The crude proteases preparation was assayed using
    casein as a substrate in conjunction with the Coomassie dye-binding assay. The crude protease
    from the kesinai plant was found to be the most potent plant protease. The crude enzyme
    exhibited broad temperature and pH ranges for activity and will be developed in the future as a
    potential inhibitive assay for heavy metals.
    Matched MeSH terms: Metals, Heavy
  4. Thangalazhy-Gopakumar S, Al-Nadheri WM, Jegarajan D, Sahu JN, Mubarak NM, Nizamuddin S
    Bioresour Technol, 2015 Feb;178:65-9.
    PMID: 25278112 DOI: 10.1016/j.biortech.2014.09.068
    In this study, pyrolysis technique was utilized for converting palm oil sludge to value added materials: bio-oil (liquid fuel) and bio-char (soil amendment). The bio-oil yield obtained was 27.4±1.7 wt.% having a heating value of 22.2±3.7 MJ/kg and a negligible ash content of 0.23±0.01 wt.%. The pH of bio-oil was in alkaline region. The bio-char yielded 49.9±0.3 wt.%, which was further investigated for sorption efficiency by adsorbing metal (Cd(2+) ions) from water. The removal efficiency of Cd(2+) was 89.4±2%, which was almost similar to the removal efficiency of a commercial activated carbon. The adsorption isotherm was well described by Langmuir model. Therefore, pyrolysis is proved as an efficient tool for palm oil sludge management, where the waste was converted into valuable products.
    Matched MeSH terms: Metals/chemistry
  5. Ting ASY, Rahman NHA, Isa MIHM, Tan WS
    Bioresour Technol, 2013 Nov;147:636-639.
    PMID: 24001691 DOI: 10.1016/j.biortech.2013.08.064
    Metal removal potential of both alginate-immobilized and free-cells of Effective Microorganisms (EM-1™ Inoculant) was investigated in this study. Results revealed that removal of Cr(III), Cu(II) and Pb(II) followed a similar trend where alginate-immobilized EM were more efficient compared to free-cells of EM. For these metals, 0.940, 2.695 and 4.011 mg g(-1) of Cr(III), Cu(II) and Pb(II) were removed compared to only 0.160, 0.859 and 0.755 mg ml(-1) removed by free-cells, respectively. The higher efficiency of alginate-immobilized EM was primarily attributed to the alginate matrix. This was evident when both alginate-immobilized EM and plain alginate beads (without EM), were not significantly different in their removal efficacies. Presence of alginate also enhanced the use of the biosorbents as maximum metal sorption was achieved after 120 min as opposed to only 60 min for free-cells. EM per se in immobilized or free-cell forms did not enhance metal removal efficacy.
    Matched MeSH terms: Metals/isolation & purification*
  6. Lahijani P, Zainal ZA, Mohamed AR, Mohammadi M
    Bioresour Technol, 2013 Sep;144:288-95.
    PMID: 23880130 DOI: 10.1016/j.biortech.2013.06.059
    This study investigates the influence of alkali (Na, K), alkaline earth (Ca, Mg) and transition (Fe) metal nitrates on CO2 gasification reactivity of pistachio nut shell (PNS) char. The preliminary gasification experiments were performed in thermogravimetric analyzer (TGA) and the results showed considerable improvement in carbon conversion; Na-char>Ca-char>Fe-char>K-char>Mg-char>raw char. Based on TGA studies, NaNO3 (with loadings of 3-7 wt%) was selected as the superior catalyst for further gasification studies in bench-scale reactor; the highest reactivity was devoted to 5 wt% Na loaded char. The data acquired for gasification rate of catalyzed char were fitted with several kinetic models, among which, random pore model was adopted as the best model. Based on obtained gasification rate constant and using the Arrhenius plot, activation energy of 5 wt% Na loaded char was calculated as 151.46 kJ/mol which was 53 kJ/mol lower than that of un-catalyzed char.
    Matched MeSH terms: Metals, Alkaline Earth/pharmacology*
  7. Lahijani P, Zainal ZA, Mohamed AR, Mohammadi M
    Bioresour Technol, 2013 Jun;138:124-30.
    PMID: 23612170 DOI: 10.1016/j.biortech.2013.03.179
    In this investigation, palm empty fruit bunch (EFB) and almond shell (AS) were implemented as two natural catalysts rich in alkali metals, especially potassium, to enhance the reactivity of tire-char through co-gasification process. Co-gasification experiments were conducted at several blending ratios using isothermal Thermogravimetric analysis (TGA) under CO2. The pronounced effect of inherent alkali content of biomass-chars on promoting the reactivity of tire-char was proven when acid-treated biomass-chars did not exert any catalytic effect on improving the reactivity of tire-char in co-gasification experiments. In kinetic studies of the co-gasified samples in chemically-controlled regime, modified random pore model (M-RPM) was adopted to describe the reactive behavior of the tire-char/biomass-char blends. By virtue of the catalytic effect of biomass, the activation energy for tire-char gasification was lowered from 250 kJ/mol in pure form 203 to 187 kJ/mol for AS-char and EFB-char co-gasified samples, respectively.
    Matched MeSH terms: Metals/analysis
  8. Ebrahimpour A, Rahman RN, Basri M, Salleh AB
    Bioresour Technol, 2011 Jul;102(13):6972-81.
    PMID: 21531550 DOI: 10.1016/j.biortech.2011.03.083
    The mature ARM lipase gene was cloned into the pTrcHis expression vector and over-expressed in Escherichia coli TOP10 host. The optimum lipase expression was obtained after 18 h post induction incubation with 1.0mM IPTG, where the lipase activity was approximately 1623-fold higher than wild type. A rapid, high efficient, one-step purification of the His-tagged recombinant lipase was achieved using immobilized metal affinity chromatography with 63.2% recovery and purification factor of 14.6. The purified lipase was characterized as a high active (7092 U mg(-1)), serine-hydrolase, thermostable, organic solvent tolerant, 1,3-specific lipase with a molecular weight of about 44 kDa. The enzyme was a monomer with disulfide bond(s) in its structure, but was not a metalloenzyme. ARM lipase was active in a broad range of temperature and pH with optimum lipolytic activity at pH 8.0 and 65°C. The enzyme retained 50% residual activity at pH 6.0-7.0, 50°C for more than 150 min.
    Matched MeSH terms: Metals/pharmacology
  9. Wan Ngah WS, Hanafiah MA
    Bioresour Technol, 2008 Jul;99(10):3935-48.
    PMID: 17681755
    The application of low-cost adsorbents obtained from plant wastes as a replacement for costly conventional methods of removing heavy metal ions from wastewater has been reviewed. It is well known that cellulosic waste materials can be obtained and employed as cheap adsorbents and their performance to remove heavy metal ions can be affected upon chemical treatment. In general, chemically modified plant wastes exhibit higher adsorption capacities than unmodified forms. Numerous chemicals have been used for modifications which include mineral and organic acids, bases, oxidizing agent, organic compounds, etc. In this review, an extensive list of plant wastes as adsorbents including rice husks, spent grain, sawdust, sugarcane bagasse, fruit wastes, weeds and others has been compiled. Some of the treated adsorbents show good adsorption capacities for Cd, Cu, Pb, Zn and Ni.
    Matched MeSH terms: Metals; Metals, Heavy/chemistry*
  10. Aroua MK, Leong SP, Teo LY, Yin CY, Daud WM
    Bioresour Technol, 2008 Sep;99(13):5786-92.
    PMID: 18023577
    In this study, the kinetics of adsorption of Pb(II) from aqueous solution onto palm shell-based activated carbon (PSAC) were investigated by employing ion selective electrode (ISE) for real-time Pb(II) and pH monitoring. Usage of ISE was very appropriate for real-time adsorption kinetics data collection as it facilitated recording of adsorption data at very specific and short time intervals as well as provided consistent kinetics data. Parameters studied were initial Pb(II) concentration and agitation speed. It was found that increases in initial Pb(II) concentration and agitation speed resulted in higher initial rate of adsorption. Pseudo first-order, pseudo second-order, Elovich, intraparticle diffusion and liquid film diffusion models were used to fit the adsorption kinetics data. It was suggested that chemisorption was the rate-controlling step for adsorption of Pb(II) onto PSAC since the adsorption kinetics data fitted both the pseudo second-order and Elovich models well.
    Matched MeSH terms: Metals, Heavy/analysis; Metals, Heavy/toxicity
  11. Chong HL, Chia PS, Ahmad MN
    Bioresour Technol, 2013 Feb;130:181-6.
    PMID: 23306127 DOI: 10.1016/j.biortech.2012.11.136
    Oil palm shell, a waste from palm oil industry, was cleaned and utilized as adsorbent. Its particle size distribution gave the uniformity coefficient of approximately two indicating that it can be used as filter bed media for continuous operation without resting. Its measured pH(pzc) of 4.1 is below the common pH of constructed wetland water body suggesting positive adsorption for heavy metal. The effect of various parameters on its adsorption was studied via batch experiments. The adsorption of Cu(II) and Pb(II) ions by oil palm shell showed a slightly better fit with the Freundlich compared to Langmuir. Its monolayer adsorption capacities were found to be 1.756 and 3.390mg/g for Cu(II) and Pb(II), respectively. High correlation coefficient of over 0.99 given by the pseudo-second-order model suggests that the rate limiting factor may be chemisorption. These findings suggest its potential application as constructed wetland media for the removal of heavy metal.
    Matched MeSH terms: Metals, Heavy/isolation & purification*
  12. Sannasi P, Kader J, Ismail BS, Salmijah S
    Bioresour Technol, 2006 Mar;97(5):740-7.
    PMID: 16324841
    This paper reports the sorption of three metallic ions, namely Cr(VI), Cu(II) and Pb(II) in aqueous solution by a consortium culture (CC) comprising an acclimatised mixed bacterial culture collected from point and non-point sources. Metal sorption capability of growing and non-growing cells at initial pH of between 3 and 8 in the 1-100mg/L concentration range were studied based on Q(max) and K(f) values of the Langmuir and linearised Freundlich isotherm models, respectively. Maximal metal loading was generally observed to be dependent on the initial pH. Growing cells displayed significant maximal loading (Q(max)) for Pb(II) (238.09 mg/g) and Cu(II) (178.87 mg/g) at pH 6 and at pH 7 for Cr(VI) (90.91 mg/g) compared to non-growing cells (p < 0.05). At the pH range of 6-8, growing cells showed higher loading capacity compared to non-growing cells i.e. 38-52% for Cr, 17-28% for Cu and 3-17% for Pb. At lower metal concentrations and at more acidic pH (3-4) however, non-growing cells had higher metal loading capacity than growing cells. The metal sorption capacity for both populations were as follows: Pb(II) > Cu(II) > Cr(VI).
    Matched MeSH terms: Metals, Heavy/pharmacokinetics*
  13. Saidur MR, Aziz AR, Basirun WJ
    Biosens Bioelectron, 2017 Apr 15;90:125-139.
    PMID: 27886599 DOI: 10.1016/j.bios.2016.11.039
    The presence of heavy metal in food chains due to the rapid industrialization poses a serious threat on the environment. Therefore, detection and monitoring of heavy metals contamination are gaining more attention nowadays. However, the current analytical methods (based on spectroscopy) for the detection of heavy metal contamination are often very expensive, tedious and can only be handled by trained personnel. DNA biosensors, which are based on electrochemical transduction, is a sensitive but inexpensive method of detection. The principles, sensitivity, selectivity and challenges of electrochemical biosensors are discussed in this review. This review also highlights the major advances of DNA-based electrochemical biosensors for the detection of heavy metal ions such as Hg(2+), Ag(+), Cu(2+) and Pb(2+).
    Matched MeSH terms: Metals, Heavy/isolation & purification*; Metals, Heavy/toxicity
  14. Woon JS, Mackeen MM, Mahadi NM, Illias RM, Abdul Murad AM, Abu Bakar FD
    Biotechnol Appl Biochem, 2016 Sep;63(5):690-698.
    PMID: 26265428 DOI: 10.1002/bab.1431
    The gene encoding a cellobiohydrolase 7B (CBH7B) of the thermophilic fungus Thielavia terrestris was identified, subcloned, and expressed in Pichia pastoris. CBH7B encoded 455 amino acid residues with a molecular mass of 51.8 kDa. Domain analysis indicated that CBH7B contains a family 7 glycosyl hydrolase catalytic core but lacks a carbohydrate-binding module. Purified CBH7B exhibited optimum catalytic activity at pH 5.0 and 55 °C with 4-methylumbelliferryl-cellobioside as the substrate and retained 85% of its activity following 24 H incubation at 50 °C. Despite the lack of activity toward microcrystalline substrates, this enzyme worked synergistically with the commercial enzyme cocktail Cellic(®) CTec2 to enhance saccharification by 39% when added to a reaction mixture containing 0.25% alkaline pretreated oil palm empty fruit bunch (OPEFB). Attenuated total reflectance Fourier transform infrared spectroscopy suggested a reduction of lignin and crystalline cellulose in OPEFB samples supplemented with CBH7B. Scanning electron microscopy revealed greater destruction extent of OPEFB strands in samples supplemented with CBH7B as compared with the nonsupplemented control. Therefore, CBH7B has the potential to complement commercial enzymes in hydrolyzing lignocellulosic biomass.
    Matched MeSH terms: Metals/pharmacology
  15. Ismail KS, Sakamoto T, Hasunuma T, Zhao XQ, Kondo A
    Biotechnol J, 2014 Dec;9(12):1519-25.
    PMID: 24924214 DOI: 10.1002/biot.201300553
    Lignocellulosic biomass is a potential substrate for ethanol production. However, pretreatment of lignocellulosic materials produces inhibitory compounds such as acetic acid, which negatively affect ethanol production by Saccharomyces cerevisiae. Supplementation of the medium with three metal ions (Zn(2+) , Mg(2+) , and Ca(2+) ) increased the tolerance of S. cerevisiae toward acetic acid compared to the absence of the ions. Ethanol production from xylose was most improved (by 34%) when the medium was supplemented with 2 mM Ca(2+) , followed by supplementation with 3.5 mM Mg(2+) (29% improvement), and 180 μM Zn(2+) (26% improvement). Higher ethanol production was linked to high cell viability in the presence of metal ions. Comparative transcriptomics between the supplemented cultures and the control suggested that improved cell viability resulted from the induction of genes controlling the cell wall and membrane. Only one gene, FIT2, was found to be up-regulated in common between the three metal ions. Also up-regulation of HXT1 and TKL1 might enhance xylose consumption in the presence of acetic acid. Thus, the addition of ionic nutrients is a simple and cost-effective method to improve the acetic acid tolerance of S. cerevisiae.
    Matched MeSH terms: Metals/pharmacology*
  16. Masoomi Dezfooli S, Tan WS, Tey BT, Ooi CW, Hussain SA
    Biotechnol Prog, 2016 Jan-Feb;32(1):171-7.
    PMID: 26519022 DOI: 10.1002/btpr.2192
    Nipah virus (NiV) causes fatal respiratory illness and encephalitis in humans and animals. The matrix (M) protein of NiV plays an important role in the viral assembly and budding process. Thus, an access to the NiV M protein is vital to the design of viral antigens as diagnostic reagents. In this study, recombinant DNA technology was successfully adopted in the cloning and expression of NiV M protein. A recombinant expression cassette (baculovirus expression vector) was used to encode an N-terminally His-tagged NiV M protein in insect cells. A time-course study demonstrated that the highest yield of recombinant M protein (400-500 μg) was expressed from 107 infected cells 3 days after infection. A single-step purification method based on metal ion affinity chromatography was established to purify the NiV M protein, which successfully yielded a purity level of 95.67% and a purification factor of 3.39. The Western blotting and enzyme-linked immunosorbent assay (ELISA) showed that the purified recombinant M protein (48 kDa) was antigenic and reacted strongly with the serum of a NiV infected pig.
    Matched MeSH terms: Metals
  17. Pradit S, Shazili NA, Towatana P, Saengmanee W
    Bull Environ Contam Toxicol, 2016 Apr;96(4):472-7.
    PMID: 26725081 DOI: 10.1007/s00128-015-1717-z
    This study was undertaken to assess the levels of trace metals (As, Cd, Cu, Pb, and Zn) in two common species of cockles (Anadara granosa and Anadara inaequivalvis) from two coastal areas in Thailand (Pattani Bay) and Malaysia (the Setiu Wetlands). A total of 350 cockles were collected in February and September 2014. Trace metals were determined by Inductively Coupled Plasma Mass Spectrometry. We observed that cockles in both areas had a higher accumulation of metals in September. Notably, the biota-sediment accumulation (BSAF) of Cd was highest in both areas. A strong positive correlation of Cd with the length of the cockles at Pattani Bay (r(2) = 0.597) and the Setiu Wetlands (r(2) = 0.675) was noted. It was suggested that As could be a limiting element (BSAF < 1) of cockles obtained from Pattani Bay. In comparison with the permissible limits set by the Thailand Ministry of Public Health and the Malaysia Food Regulations, mean values of As, Cd, Cu, Pb, and Zn were within acceptable limits, but the maximum values of Cd and Pb exceeded the limits for both areas. Regular monitoring of trace metals in cockles from both areas is suggested for more definitive contamination determination.
    Matched MeSH terms: Metals, Heavy/analysis*
  18. Ee-Ling O, Mustaffa NI, Amil N, Khan MF, Latif MT
    Bull Environ Contam Toxicol, 2015 Apr;94(4):537-42.
    PMID: 25652682 DOI: 10.1007/s00128-015-1477-9
    This study determined the source contribution of PM2.5 (particulate matter <2.5 μm) in air at three locations on the Malaysian Peninsula. PM2.5 samples were collected using a high volume sampler equipped with quartz filters. Ion chromatography was used to determine the ionic composition of the samples and inductively coupled plasma mass spectrometry was used to determine the concentrations of heavy metals. Principal component analysis with multilinear regressions were used to identify the possible sources of PM2.5. The range of PM2.5 was between 10 ± 3 and 30 ± 7 µg m(-3). Sulfate (SO4 (2-)) was the major ionic compound detected and zinc was found to dominate the heavy metals. Source apportionment analysis revealed that motor vehicle and soil dust dominated the composition of PM2.5 in the urban area. Domestic waste combustion dominated in the suburban area, while biomass burning dominated in the rural area.
    Matched MeSH terms: Metals, Heavy/analysis*
  19. Idriss AA, Ahmad AK
    Bull Environ Contam Toxicol, 2015 Feb;94(2):204-8.
    PMID: 25564001 DOI: 10.1007/s00128-014-1452-x
    This study examined the concentration of heavy metals in 13 fish species. The results indicated that shellfish species (clams) have the highest metal concentrations, followed by demersal and pelagic fishes. The mean concentration of metals in clams are Zn 88.74 ± 11.98 µg/g, Cu 4.96 ± 1.06 µg/g, Pb 1.22 ± 0.19 µg/g, Cd 0.34 ± 0.04 µg/g dry wt. basis, whereas the same measure in fish tissues was 58.04 ± 18.51, 2.47 ± 1.21, 0.58 ± 0.27 and 0.17 ± 0.08 µg/g dry wt. basis. The concentrations of heavy metals in clams and fish tissues were still lower than the maximum allowable concentrations as suggested by the Malaysian Food Act (1983) and are considered safe for local human consumption.
    Matched MeSH terms: Metals, Heavy/metabolism*; Metals, Heavy/chemistry*
  20. Naji A, Ismail A, Kamrani E, Sohrabi T
    Bull Environ Contam Toxicol, 2014 Jun;92(6):674-9.
    PMID: 24590446 DOI: 10.1007/s00128-014-1243-4
    Metallothionein (MT) concentrations in gill and liver tissues of Oreochromis mossambicus were determined to assess biological response of fish to levels of some metals. Metal concentrations in gill and liver tissues of O. mossambicus ranged from 0.6 to 2.6 for Cd, 16 to 52 for Zn, 0.5 to 17 for Cu and 2 to 67 for T-Hg (all in μg/g wet weight, except for T-Hg in ng/g wet weight). Accumulation of Cd, Zn, Cu and Hg (μg/g wet weight) in the liver and gills of O. mossambicus were in the order of liver > gills. The concentrations of Cd, Zn, Cu and Hg in fish tissues were correlated with MT content. The increases in MT levels from the reference area Puchong Tengah compared to the polluted area Kampung Seri Kenangan were 3.4- and 3.8-fold for gills and livers, respectively. The results indicate that MT concentrations were tissue-specific, with the highest levels in the liver. Therefore, the liver can act as a tissue indicator in O. mossambicus in the study area.
    Matched MeSH terms: Metals, Heavy/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links