Displaying publications 61 - 80 of 89 in total

Abstract:
Sort:
  1. Al-Quraishi MS, Ishak AJ, Ahmad SA, Hasan MK, Al-Qurishi M, Ghapanchizadeh H, et al.
    Med Biol Eng Comput, 2017 May;55(5):747-758.
    PMID: 27484411 DOI: 10.1007/s11517-016-1551-4
    Electromyography (EMG)-based control is the core of prostheses, orthoses, and other rehabilitation devices in recent research. Nonetheless, EMG is difficult to use as a control signal given the complex nature of the signal. To overcome this problem, the researchers employed a pattern recognition technique. EMG pattern recognition mainly involves four stages: signal detection, preprocessing feature extraction, dimensionality reduction, and classification. In particular, the success of any pattern recognition technique depends on the feature extraction stage. In this study, a modified time-domain features set and logarithmic transferred time-domain features (LTD) were evaluated and compared with other traditional time-domain features set (TTD). Three classifiers were employed to assess the two feature sets, namely linear discriminant analysis (LDA), k nearest neighborhood, and Naïve Bayes. Results indicated the superiority of the new time-domain feature set LTD, on conventional time-domain features TTD with the average classification accuracy of 97.23 %. In addition, the LDA classifier outperformed the other two classifiers considered in this study.
    Matched MeSH terms: Pattern Recognition, Automated/methods
  2. Tan JH, Acharya UR, Chua KC, Cheng C, Laude A
    Med Phys, 2016 May;43(5):2311.
    PMID: 27147343 DOI: 10.1118/1.4945413
    The authors propose an algorithm that automatically extracts retinal vasculature and provides a simple measure to correct the extraction. The output of the method is a network of salient points, and blood vessels are drawn by connecting the salient points using a centripetal parameterized Catmull-Rom spline.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  3. Tabatabaey-Mashadi N, Sudirman R, Khalid PI, Lange-Küttner C
    Percept Mot Skills, 2015 Jun;120(3):865-94.
    PMID: 26029964
    Sequential strategies of digitized tablet drawings by 6-7-yr.-old children (N = 203) of average and below-average handwriting ability were analyzed. A Beery Visual Motor Integration (BVMI) and a Bender-Gestalt (BG) pattern, each composed of two tangential shapes, were predefined into area sectors for automatic analysis and adaptive mapping of the drawings. Girls more often began on the left side and used more strokes than boys. The below-average handwriting group showed more directional diversity and idiosyncratic strategies.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  4. Jamal N, Ng KH, Looi LM, McLean D, Zulfiqar A, Tan SP, et al.
    Phys Med Biol, 2006 Nov 21;51(22):5843-57.
    PMID: 17068368
    We describe a semi-automated technique for the quantitative assessment of breast density from digitized mammograms in comparison with patterns suggested by Tabar. It was developed using the MATLAB-based graphical user interface applications. It is based on an interactive thresholding method, after a short automated method that shows the fibroglandular tissue area, breast area and breast density each time new thresholds are placed on the image. The breast density is taken as a percentage of the fibroglandular tissue to the breast tissue areas. It was tested in four different ways, namely by examining: (i) correlation of the quantitative assessment results with subjective classification, (ii) classification performance using the quantitative assessment technique, (iii) interobserver agreement and (iv) intraobserver agreement. The results of the quantitative assessment correlated well (r2 = 0.92) with the subjective Tabar patterns classified by the radiologist (correctly classified 83% of digitized mammograms). The average kappa coefficient for the agreement between the readers was 0.63. This indicated moderate agreement between the three observers in classifying breast density using the quantitative assessment technique. The kappa coefficient of 0.75 for intraobserver agreement reflected good agreement between two sets of readings. The technique may be useful as a supplement to the radiologist's assessment in classifying mammograms into Tabar's pattern associated with breast cancer risk.
    Matched MeSH terms: Pattern Recognition, Automated/methods
  5. Esmaeilpour M, Naderifar V, Shukur Z
    PLoS One, 2014;9(9):e106313.
    PMID: 25243670 DOI: 10.1371/journal.pone.0106313
    Over the last decade, design patterns have been used extensively to generate reusable solutions to frequently encountered problems in software engineering and object oriented programming. A design pattern is a repeatable software design solution that provides a template for solving various instances of a general problem.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  6. Mousavi Kahaki SM, Nordin MJ, Ashtari AH, J Zahra S
    PLoS One, 2016;11(3):e0149710.
    PMID: 26985996 DOI: 10.1371/journal.pone.0149710
    An invariant feature matching method is proposed as a spatially invariant feature matching approach. Deformation effects, such as affine and homography, change the local information within the image and can result in ambiguous local information pertaining to image points. New method based on dissimilarity values, which measures the dissimilarity of the features through the path based on Eigenvector properties, is proposed. Evidence shows that existing matching techniques using similarity metrics--such as normalized cross-correlation, squared sum of intensity differences and correlation coefficient--are insufficient for achieving adequate results under different image deformations. Thus, new descriptor's similarity metrics based on normalized Eigenvector correlation and signal directional differences, which are robust under local variation of the image information, are proposed to establish an efficient feature matching technique. The method proposed in this study measures the dissimilarity in the signal frequency along the path between two features. Moreover, these dissimilarity values are accumulated in a 2D dissimilarity space, allowing accurate corresponding features to be extracted based on the cumulative space using a voting strategy. This method can be used in image registration applications, as it overcomes the limitations of the existing approaches. The output results demonstrate that the proposed technique outperforms the other methods when evaluated using a standard dataset, in terms of precision-recall and corner correspondence.
    Matched MeSH terms: Pattern Recognition, Automated/methods
  7. Abbasi A, Woo CS, Ibrahim RW, Islam S
    PLoS One, 2015;10(4):e0123427.
    PMID: 25884854 DOI: 10.1371/journal.pone.0123427
    Digital image watermarking is an important technique for the authentication of multimedia content and copyright protection. Conventional digital image watermarking techniques are often vulnerable to geometric distortions such as Rotation, Scaling, and Translation (RST). These distortions desynchronize the watermark information embedded in an image and thus disable watermark detection. To solve this problem, we propose an RST invariant domain watermarking technique based on fractional calculus. We have constructed a domain using Heaviside function of order alpha (HFOA). The HFOA models the signal as a polynomial for watermark embedding. The watermark is embedded in all the coefficients of the image. We have also constructed a fractional variance formula using fractional Gaussian field. A cross correlation method based on the fractional Gaussian field is used for watermark detection. Furthermore the proposed method enables blind watermark detection where the original image is not required during the watermark detection thereby making it more practical than non-blind watermarking techniques. Experimental results confirmed that the proposed technique has a high level of robustness.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  8. Vijayasarveswari V, Andrew AM, Jusoh M, Sabapathy T, Raof RAA, Yasin MNM, et al.
    PLoS One, 2020;15(8):e0229367.
    PMID: 32790672 DOI: 10.1371/journal.pone.0229367
    Breast cancer is the most common cancer among women and it is one of the main causes of death for women worldwide. To attain an optimum medical treatment for breast cancer, an early breast cancer detection is crucial. This paper proposes a multi- stage feature selection method that extracts statistically significant features for breast cancer size detection using proposed data normalization techniques. Ultra-wideband (UWB) signals, controlled using microcontroller are transmitted via an antenna from one end of the breast phantom and are received on the other end. These ultra-wideband analogue signals are represented in both time and frequency domain. The preprocessed digital data is passed to the proposed multi- stage feature selection algorithm. This algorithm has four selection stages. It comprises of data normalization methods, feature extraction, data dimensional reduction and feature fusion. The output data is fused together to form the proposed datasets, namely, 8-HybridFeature, 9-HybridFeature and 10-HybridFeature datasets. The classification performance of these datasets is tested using the Support Vector Machine, Probabilistic Neural Network and Naïve Bayes classifiers for breast cancer size classification. The research findings indicate that the 8-HybridFeature dataset performs better in comparison to the other two datasets. For the 8-HybridFeature dataset, the Naïve Bayes classifier (91.98%) outperformed the Support Vector Machine (90.44%) and Probabilistic Neural Network (80.05%) classifiers in terms of classification accuracy. The finalized method is tested and visualized in the MATLAB based 2D and 3D environment.
    Matched MeSH terms: Pattern Recognition, Automated/methods
  9. Kahaki SMM, Arshad H, Nordin MJ, Ismail W
    PLoS One, 2018;13(7):e0200676.
    PMID: 30024921 DOI: 10.1371/journal.pone.0200676
    Image registration of remotely sensed imagery is challenging, as complex deformations are common. Different deformations, such as affine and homogenous transformation, combined with multimodal data capturing can emerge in the data acquisition process. These effects, when combined, tend to compromise the performance of the currently available registration methods. A new image transform, known as geometric mean projection transform, is introduced in this work. As it is deformation invariant, it can be employed as a feature descriptor, whereby it analyzes the functions of all vertical and horizontal signals in local areas of the image. Moreover, an invariant feature correspondence method is proposed as a point matching algorithm, which incorporates new descriptor's dissimilarity metric. Considering the image as a signal, the proposed approach utilizes a square Eigenvector correlation (SEC) based on the Eigenvector properties. In our experiments on standard test images sourced from "Featurespace" and "IKONOS" datasets, the proposed method achieved higher average accuracy relative to that obtained from other state of the art image registration techniques. The accuracy of the proposed method was assessed using six standard evaluation metrics. Furthermore, statistical analyses, including t-test and Friedman test, demonstrate that the method developed as a part of this study is superior to the existing methods.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  10. Ewe ELR, Lee CP, Lim KM, Kwek LC, Alqahtani A
    PLoS One, 2024;19(4):e0298699.
    PMID: 38574042 DOI: 10.1371/journal.pone.0298699
    Sign language recognition presents significant challenges due to the intricate nature of hand gestures and the necessity to capture fine-grained details. In response to these challenges, a novel approach is proposed-Lightweight Attentive VGG16 with Random Forest (LAVRF) model. LAVRF introduces a refined adaptation of the VGG16 model integrated with attention modules, complemented by a Random Forest classifier. By streamlining the VGG16 architecture, the Lightweight Attentive VGG16 effectively manages complexity while incorporating attention mechanisms that dynamically concentrate on pertinent regions within input images, resulting in enhanced representation learning. Leveraging the Random Forest classifier provides notable benefits, including proficient handling of high-dimensional feature representations, reduction of variance and overfitting concerns, and resilience against noisy and incomplete data. Additionally, the model performance is further optimized through hyperparameter optimization, utilizing the Optuna in conjunction with hill climbing, which efficiently explores the hyperparameter space to discover optimal configurations. The proposed LAVRF model demonstrates outstanding accuracy on three datasets, achieving remarkable results of 99.98%, 99.90%, and 100% on the American Sign Language, American Sign Language with Digits, and NUS Hand Posture datasets, respectively.
    Matched MeSH terms: Pattern Recognition, Automated/methods
  11. Ibitoye MO, Hamzaid NA, Zuniga JM, Hasnan N, Wahab AK
    Sensors (Basel), 2014;14(12):22940-70.
    PMID: 25479326 DOI: 10.3390/s141222940
    The research conducted in the last three decades has collectively demonstrated that the skeletal muscle performance can be alternatively assessed by mechanomyographic signal (MMG) parameters. Indices of muscle performance, not limited to force, power, work, endurance and the related physiological processes underlying muscle activities during contraction have been evaluated in the light of the signal features. As a non-stationary signal that reflects several distinctive patterns of muscle actions, the illustrations obtained from the literature support the reliability of MMG in the analysis of muscles under voluntary and stimulus evoked contractions. An appraisal of the standard practice including the measurement theories of the methods used to extract parameters of the signal is vital to the application of the signal during experimental and clinical practices, especially in areas where electromyograms are contraindicated or have limited application. As we highlight the underpinning technical guidelines and domains where each method is well-suited, the limitations of the methods are also presented to position the state of the art in MMG parameters extraction, thus providing the theoretical framework for improvement on the current practices to widen the opportunity for new insights and discoveries. Since the signal modality has not been widely deployed due partly to the limited information extractable from the signals when compared with other classical techniques used to assess muscle performance, this survey is particularly relevant to the projected future of MMG applications in the realm of musculoskeletal assessments and in the real time detection of muscle activity.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  12. Zainal-Mokhtar K, Mohamad-Saleh J
    Sensors (Basel), 2013;13(9):11385-406.
    PMID: 24064598 DOI: 10.3390/s130911385
    This paper presents novel research on the development of a generic intelligent oil fraction sensor based on Electrical Capacitance Tomography (ECT) data. An artificial Neural Network (ANN) has been employed as the intelligent system to sense and estimate oil fractions from the cross-sections of two-component flows comprising oil and gas in a pipeline. Previous works only focused on estimating the oil fraction in the pipeline based on fixed ECT sensor parameters. With fixed ECT design sensors, an oil fraction neural sensor can be trained to deal with ECT data based on the particular sensor parameters, hence the neural sensor is not generic. This work focuses on development of a generic neural oil fraction sensor based on training a Multi-Layer Perceptron (MLP) ANN with various ECT sensor parameters. On average, the proposed oil fraction neural sensor has shown to be able to give a mean absolute error of 3.05% for various ECT sensor sizes.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  13. Chowdhury RH, Reaz MB, Ali MA, Bakar AA, Chellappan K, Chang TG
    Sensors (Basel), 2013;13(9):12431-66.
    PMID: 24048337 DOI: 10.3390/s130912431
    Electromyography (EMG) signals are becoming increasingly important in many applications, including clinical/biomedical, prosthesis or rehabilitation devices, human machine interactions, and more. However, noisy EMG signals are the major hurdles to be overcome in order to achieve improved performance in the above applications. Detection, processing and classification analysis in electromyography (EMG) is very desirable because it allows a more standardized and precise evaluation of the neurophysiological, rehabitational and assistive technological findings. This paper reviews two prominent areas; first: the pre-processing method for eliminating possible artifacts via appropriate preparation at the time of recording EMG signals, and second: a brief explanation of the different methods for processing and classifying EMG signals. This study then compares the numerous methods of analyzing EMG signals, in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  14. Rassam MA, Zainal A, Maarof MA
    Sensors (Basel), 2013;13(8):10087-122.
    PMID: 23966182 DOI: 10.3390/s130810087
    Wireless Sensor Networks (WSNs) are important and necessary platforms for the future as the concept "Internet of Things" has emerged lately. They are used for monitoring, tracking, or controlling of many applications in industry, health care, habitat, and military. However, the quality of data collected by sensor nodes is affected by anomalies that occur due to various reasons, such as node failures, reading errors, unusual events, and malicious attacks. Therefore, anomaly detection is a necessary process to ensure the quality of sensor data before it is utilized for making decisions. In this review, we present the challenges of anomaly detection in WSNs and state the requirements to design efficient and effective anomaly detection models. We then review the latest advancements of data anomaly detection research in WSNs and classify current detection approaches in five main classes based on the detection methods used to design these approaches. Varieties of the state-of-the-art models for each class are covered and their limitations are highlighted to provide ideas for potential future works. Furthermore, the reviewed approaches are compared and evaluated based on how well they meet the stated requirements. Finally, the general limitations of current approaches are mentioned and further research opportunities are suggested and discussed.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  15. Fadilah N, Mohamad-Saleh J, Abdul Halim Z, Ibrahim H, Syed Ali SS
    Sensors (Basel), 2012;12(10):14179-95.
    PMID: 23202043 DOI: 10.3390/s121014179
    Ripeness classification of oil palm fresh fruit bunches (FFBs) during harvesting is important to ensure that they are harvested during optimum stage for maximum oil production. This paper presents the application of color vision for automated ripeness classification of oil palm FFB. Images of oil palm FFBs of type DxP Yangambi were collected and analyzed using digital image processing techniques. Then the color features were extracted from those images and used as the inputs for Artificial Neural Network (ANN) learning. The performance of the ANN for ripeness classification of oil palm FFB was investigated using two methods: training ANN with full features and training ANN with reduced features based on the Principal Component Analysis (PCA) data reduction technique. Results showed that compared with using full features in ANN, using the ANN trained with reduced features can improve the classification accuracy by 1.66% and is more effective in developing an automated ripeness classifier for oil palm FFB. The developed ripeness classifier can act as a sensor in determining the correct oil palm FFB ripeness category.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  16. Ahmed MA, Zaidan BB, Zaidan AA, Salih MM, Lakulu MMB
    Sensors (Basel), 2018 Jul 09;18(7).
    PMID: 29987266 DOI: 10.3390/s18072208
    Loss of the ability to speak or hear exerts psychological and social impacts on the affected persons due to the lack of proper communication. Multiple and systematic scholarly interventions that vary according to context have been implemented to overcome disability-related difficulties. Sign language recognition (SLR) systems based on sensory gloves are significant innovations that aim to procure data on the shape or movement of the human hand. Innovative technology for this matter is mainly restricted and dispersed. The available trends and gaps should be explored in this research approach to provide valuable insights into technological environments. Thus, a review is conducted to create a coherent taxonomy to describe the latest research divided into four main categories: development, framework, other hand gesture recognition, and reviews and surveys. Then, we conduct analyses of the glove systems for SLR device characteristics, develop a roadmap for technology evolution, discuss its limitations, and provide valuable insights into technological environments. This will help researchers to understand the current options and gaps in this area, thus contributing to this line of research.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  17. Suriani NS, Hussain A, Zulkifley MA
    Sensors (Basel), 2013 Aug 05;13(8):9966-98.
    PMID: 23921828 DOI: 10.3390/s130809966
    Event recognition is one of the most active research areas in video surveillance fields. Advancement in event recognition systems mainly aims to provide convenience, safety and an efficient lifestyle for humanity. A precise, accurate and robust approach is necessary to enable event recognition systems to respond to sudden changes in various uncontrolled environments, such as the case of an emergency, physical threat and a fire or bomb alert. The performance of sudden event recognition systems depends heavily on the accuracy of low level processing, like detection, recognition, tracking and machine learning algorithms. This survey aims to detect and characterize a sudden event, which is a subset of an abnormal event in several video surveillance applications. This paper discusses the following in detail: (1) the importance of a sudden event over a general anomalous event; (2) frameworks used in sudden event recognition; (3) the requirements and comparative studies of a sudden event recognition system and (4) various decision-making approaches for sudden event recognition. The advantages and drawbacks of using 3D images from multiple cameras for real-time application are also discussed. The paper concludes with suggestions for future research directions in sudden event recognition.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  18. Nazmi N, Abdul Rahman MA, Yamamoto S, Ahmad SA, Zamzuri H, Mazlan SA
    Sensors (Basel), 2016 Aug 17;16(8).
    PMID: 27548165 DOI: 10.3390/s16081304
    In recent years, there has been major interest in the exposure to physical therapy during rehabilitation. Several publications have demonstrated its usefulness in clinical/medical and human machine interface (HMI) applications. An automated system will guide the user to perform the training during rehabilitation independently. Advances in engineering have extended electromyography (EMG) beyond the traditional diagnostic applications to also include applications in diverse areas such as movement analysis. This paper gives an overview of the numerous methods available to recognize motion patterns of EMG signals for both isotonic and isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who would like to select the most appropriate methodology in classifying motion patterns, especially during different types of contractions. For feature extraction, the probability density function (PDF) of EMG signals will be the main interest of this study. Following that, a brief explanation of the different methods for pre-processing, feature extraction and classifying EMG signals will be compared in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  19. Malik AS, Humayun J, Kamel N, Yap FB
    Skin Res Technol, 2014 Aug;20(3):322-31.
    PMID: 24329769 DOI: 10.1111/srt.12122
    BACKGROUND: More than 99% acne patients suffer from acne vulgaris. While diagnosing the severity of acne vulgaris lesions, dermatologists have observed inter-rater and intra-rater variability in diagnosis results. This is because during assessment, identifying lesion types and their counting is a tedious job for dermatologists. To make the assessment job objective and easier for dermatologists, an automated system based on image processing methods is proposed in this study.
    OBJECTIVES: There are two main objectives: (i) to develop an algorithm for the enhancement of various acne vulgaris lesions; and (ii) to develop a method for the segmentation of enhanced acne vulgaris lesions.
    METHODS: For the first objective, an algorithm is developed based on the theory of high dynamic range (HDR) images. The proposed algorithm uses local rank transform to generate the HDR images from a single acne image followed by the log transformation. Then, segmentation is performed by clustering the pixels based on Mahalanobis distance of each pixel from spectral models of acne vulgaris lesions.
    RESULTS: Two metrics are used to evaluate the enhancement of acne vulgaris lesions, i.e., contrast improvement factor (CIF) and image contrast normalization (ICN). The proposed algorithm is compared with two other methods. The proposed enhancement algorithm shows better result than both the other methods based on CIF and ICN. In addition, sensitivity and specificity are calculated for the segmentation results. The proposed segmentation method shows higher sensitivity and specificity than other methods.
    CONCLUSION: This article specifically discusses the contrast enhancement and segmentation for automated diagnosis system of acne vulgaris lesions. The results are promising that can be used for further classification of acne vulgaris lesions for final grading of the lesions.
    KEYWORDS: acne grading; acne lesions; acne vulgaris; enhancement; segmentation
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  20. Moghaddasi Z, Jalab HA, Md Noor R, Aghabozorgi S
    ScientificWorldJournal, 2014;2014:606570.
    PMID: 25295304 DOI: 10.1155/2014/606570
    Digital image forgery is becoming easier to perform because of the rapid development of various manipulation tools. Image splicing is one of the most prevalent techniques. Digital images had lost their trustability, and researches have exerted considerable effort to regain such trustability by focusing mostly on algorithms. However, most of the proposed algorithms are incapable of handling high dimensionality and redundancy in the extracted features. Moreover, existing algorithms are limited by high computational time. This study focuses on improving one of the image splicing detection algorithms, that is, the run length run number algorithm (RLRN), by applying two dimension reduction methods, namely, principal component analysis (PCA) and kernel PCA. Support vector machine is used to distinguish between authentic and spliced images. Results show that kernel PCA is a nonlinear dimension reduction method that has the best effect on R, G, B, and Y channels and gray-scale images.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links