Displaying publications 61 - 80 of 89 in total

Abstract:
Sort:
  1. Raghavendra U, Gudigar A, Bhandary SV, Rao TN, Ciaccio EJ, Acharya UR
    J Med Syst, 2019 Jul 30;43(9):299.
    PMID: 31359230 DOI: 10.1007/s10916-019-1427-x
    Glaucoma is a type of eye condition which may result in partial or consummate vision loss. Higher intraocular pressure is the leading cause for this condition. Screening for glaucoma and early detection can avert vision loss. Computer aided diagnosis (CAD) is an automated process with the potential to identify glaucoma early through quantitative analysis of digital fundus images. Preparing an effective model for CAD requires a large database. This study presents a CAD tool for the precise detection of glaucoma using a machine learning approach. An autoencoder is trained to determine effective and important features from fundus images. These features are used to develop classes of glaucoma for testing. The method achieved an F - measure value of 0.95 utilizing 1426 digital fundus images (589 control and 837 glaucoma). The efficacy of the system is evident, and is suggestive of its possible utility as an additional tool for verification of clinical decisions.
    Matched MeSH terms: Pattern Recognition, Automated/methods
  2. Ahmad Fadzil MH, Ihtatho D, Affandi AM, Hussein SH
    PMID: 19163606 DOI: 10.1109/IEMBS.2008.4650103
    Skin colour is vital information in dermatological diagnosis. It reflects pathological condition beneath the skin and commonly being used to indicate the extent of a disease. Psoriasis is a skin disease which is indicated by the appearance of red plaques. Although there is no cure for psoriasis, there are many treatment modalities to help control the disease. To evaluate treatment efficacy, PASI (Psoriasis Area and Severity Index) which is the current gold standard method is used to determine severity of psoriasis lesion. Erythema (redness) is one parameter in PASI. Commonly, the erythema is assessed visually, thus leading to subjective and inconsistent result. In this work, we proposed an objective assessment of psoriasis erythema for PASI scoring. The colour of psoriasis lesion is analyzed by DeltaL, Deltahue, and Deltachroma of CIELAB colour space. References of lesion with different scores are obtained from the selected lesions by two dermatologists. Results based on 38 lesions from 22 patients with various level of skin pigmentation show that PASI erythema score can be determined objectively and consistent with dermatology scoring.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  3. Pogorelov K, Suman S, Azmadi Hussin F, Saeed Malik A, Ostroukhova O, Riegler M, et al.
    J Appl Clin Med Phys, 2019 Aug;20(8):141-154.
    PMID: 31251460 DOI: 10.1002/acm2.12662
    Wireless capsule endoscopy (WCE) is an effective technology that can be used to make a gastrointestinal (GI) tract diagnosis of various lesions and abnormalities. Due to a long time required to pass through the GI tract, the resulting WCE data stream contains a large number of frames which leads to a tedious job for clinical experts to perform a visual check of each and every frame of a complete patient's video footage. In this paper, an automated technique for bleeding detection based on color and texture features is proposed. The approach combines the color information which is an essential feature for initial detection of frame with bleeding. Additionally, it uses the texture which plays an important role to extract more information from the lesion captured in the frames and allows the system to distinguish finely between borderline cases. The detection algorithm utilizes machine-learning-based classification methods, and it can efficiently distinguish between bleeding and nonbleeding frames and perform pixel-level segmentation of bleeding areas in WCE frames. The performed experimental studies demonstrate the performance of the proposed bleeding detection method in terms of detection accuracy, where we are at least as good as the state-of-the-art approaches. In this research, we have conducted a broad comparison of a number of different state-of-the-art features and classification methods that allows building an efficient and flexible WCE video processing system.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  4. Al-Quraishi MS, Ishak AJ, Ahmad SA, Hasan MK, Al-Qurishi M, Ghapanchizadeh H, et al.
    Med Biol Eng Comput, 2017 May;55(5):747-758.
    PMID: 27484411 DOI: 10.1007/s11517-016-1551-4
    Electromyography (EMG)-based control is the core of prostheses, orthoses, and other rehabilitation devices in recent research. Nonetheless, EMG is difficult to use as a control signal given the complex nature of the signal. To overcome this problem, the researchers employed a pattern recognition technique. EMG pattern recognition mainly involves four stages: signal detection, preprocessing feature extraction, dimensionality reduction, and classification. In particular, the success of any pattern recognition technique depends on the feature extraction stage. In this study, a modified time-domain features set and logarithmic transferred time-domain features (LTD) were evaluated and compared with other traditional time-domain features set (TTD). Three classifiers were employed to assess the two feature sets, namely linear discriminant analysis (LDA), k nearest neighborhood, and Naïve Bayes. Results indicated the superiority of the new time-domain feature set LTD, on conventional time-domain features TTD with the average classification accuracy of 97.23 %. In addition, the LDA classifier outperformed the other two classifiers considered in this study.
    Matched MeSH terms: Pattern Recognition, Automated/methods
  5. Yousef Kalafi E, Tan WB, Town C, Dhillon SK
    BMC Bioinformatics, 2016 Dec 22;17(Suppl 19):511.
    PMID: 28155722 DOI: 10.1186/s12859-016-1376-z
    BACKGROUND: Monogeneans are flatworms (Platyhelminthes) that are primarily found on gills and skin of fishes. Monogenean parasites have attachment appendages at their haptoral regions that help them to move about the body surface and feed on skin and gill debris. Haptoral attachment organs consist of sclerotized hard parts such as hooks, anchors and marginal hooks. Monogenean species are differentiated based on their haptoral bars, anchors, marginal hooks, reproductive parts' (male and female copulatory organs) morphological characters and soft anatomical parts. The complex structure of these diagnostic organs and also their overlapping in microscopic digital images are impediments for developing fully automated identification system for monogeneans (LNCS 7666:256-263, 2012), (ISDA; 457-462, 2011), (J Zoolog Syst Evol Res 52(2): 95-99. 2013;). In this study images of hard parts of the haptoral organs such as bars and anchors are used to develop a fully automated identification technique for monogenean species identification by implementing image processing techniques and machine learning methods.

    RESULT: Images of four monogenean species namely Sinodiplectanotrema malayanus, Trianchoratus pahangensis, Metahaliotrema mizellei and Metahaliotrema sp. (undescribed) were used to develop an automated technique for identification. K-nearest neighbour (KNN) was applied to classify the monogenean specimens based on the extracted features. 50% of the dataset was used for training and the other 50% was used as testing for system evaluation. Our approach demonstrated overall classification accuracy of 90%. In this study Leave One Out (LOO) cross validation is used for validation of our system and the accuracy is 91.25%.

    CONCLUSIONS: The methods presented in this study facilitate fast and accurate fully automated classification of monogeneans at the species level. In future studies more classes will be included in the model, the time to capture the monogenean images will be reduced and improvements in extraction and selection of features will be implemented.

    Matched MeSH terms: Pattern Recognition, Automated/methods*
  6. AlDahoul N, Md Sabri AQ, Mansoor AM
    Comput Intell Neurosci, 2018;2018:1639561.
    PMID: 29623089 DOI: 10.1155/2018/1639561
    Human detection in videos plays an important role in various real life applications. Most of traditional approaches depend on utilizing handcrafted features which are problem-dependent and optimal for specific tasks. Moreover, they are highly susceptible to dynamical events such as illumination changes, camera jitter, and variations in object sizes. On the other hand, the proposed feature learning approaches are cheaper and easier because highly abstract and discriminative features can be produced automatically without the need of expert knowledge. In this paper, we utilize automatic feature learning methods which combine optical flow and three different deep models (i.e., supervised convolutional neural network (S-CNN), pretrained CNN feature extractor, and hierarchical extreme learning machine) for human detection in videos captured using a nonstatic camera on an aerial platform with varying altitudes. The models are trained and tested on the publicly available and highly challenging UCF-ARG aerial dataset. The comparison between these models in terms of training, testing accuracy, and learning speed is analyzed. The performance evaluation considers five human actions (digging, waving, throwing, walking, and running). Experimental results demonstrated that the proposed methods are successful for human detection task. Pretrained CNN produces an average accuracy of 98.09%. S-CNN produces an average accuracy of 95.6% with soft-max and 91.7% with Support Vector Machines (SVM). H-ELM has an average accuracy of 95.9%. Using a normal Central Processing Unit (CPU), H-ELM's training time takes 445 seconds. Learning in S-CNN takes 770 seconds with a high performance Graphical Processing Unit (GPU).
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  7. Kahaki SMM, Arshad H, Nordin MJ, Ismail W
    PLoS One, 2018;13(7):e0200676.
    PMID: 30024921 DOI: 10.1371/journal.pone.0200676
    Image registration of remotely sensed imagery is challenging, as complex deformations are common. Different deformations, such as affine and homogenous transformation, combined with multimodal data capturing can emerge in the data acquisition process. These effects, when combined, tend to compromise the performance of the currently available registration methods. A new image transform, known as geometric mean projection transform, is introduced in this work. As it is deformation invariant, it can be employed as a feature descriptor, whereby it analyzes the functions of all vertical and horizontal signals in local areas of the image. Moreover, an invariant feature correspondence method is proposed as a point matching algorithm, which incorporates new descriptor's dissimilarity metric. Considering the image as a signal, the proposed approach utilizes a square Eigenvector correlation (SEC) based on the Eigenvector properties. In our experiments on standard test images sourced from "Featurespace" and "IKONOS" datasets, the proposed method achieved higher average accuracy relative to that obtained from other state of the art image registration techniques. The accuracy of the proposed method was assessed using six standard evaluation metrics. Furthermore, statistical analyses, including t-test and Friedman test, demonstrate that the method developed as a part of this study is superior to the existing methods.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  8. Tung CH, Chen CW, Guo RC, Ng HF, Chu YW
    Biomed Res Int, 2016;2016:9480276.
    PMID: 27610389 DOI: 10.1155/2016/9480276
    Background. Quaternary structures of proteins are closely relevant to gene regulation, signal transduction, and many other biological functions of proteins. In the current study, a new method based on protein-conserved motif composition in block format for feature extraction is proposed, which is termed block composition. Results. The protein quaternary assembly states prediction system which combines blocks with functional domain composition, called QuaBingo, is constructed by three layers of classifiers that can categorize quaternary structural attributes of monomer, homooligomer, and heterooligomer. The building of the first layer classifier uses support vector machines (SVM) based on blocks and functional domains of proteins, and the second layer SVM was utilized to process the outputs of the first layer. Finally, the result is determined by the Random Forest of the third layer. We compared the effectiveness of the combination of block composition, functional domain composition, and pseudoamino acid composition of the model. In the 11 kinds of functional protein families, QuaBingo is 23% of Matthews Correlation Coefficient (MCC) higher than the existing prediction system. The results also revealed the biological characterization of the top five block compositions. Conclusions. QuaBingo provides better predictive ability for predicting the quaternary structural attributes of proteins.
    Matched MeSH terms: Pattern Recognition, Automated/methods
  9. Iqbal U, Wah TY, Habib Ur Rehman M, Mujtaba G, Imran M, Shoaib M
    J Med Syst, 2018 Nov 05;42(12):252.
    PMID: 30397730 DOI: 10.1007/s10916-018-1107-2
    Electrocardiography (ECG) sensors play a vital role in the Internet of Medical Things, and these sensors help in monitoring the electrical activity of the heart. ECG signal analysis can improve human life in many ways, from diagnosing diseases among cardiac patients to managing the lifestyles of diabetic patients. Abnormalities in heart activities lead to different cardiac diseases and arrhythmia. However, some cardiac diseases, such as myocardial infarction (MI) and atrial fibrillation (Af), require special attention due to their direct impact on human life. The classification of flattened T wave cases of MI in ECG signals and how much of these cases are similar to ST-T changes in MI remain an open issue for researchers. This article presents a novel contribution to classify MI and Af. To this end, we propose a new approach called deep deterministic learning (DDL), which works by combining predefined heart activities with fused datasets. In this research, we used two datasets. The first dataset, Massachusetts Institute of Technology-Beth Israel Hospital, is publicly available, and we exclusively obtained the second dataset from the University of Malaya Medical Center, Kuala Lumpur Malaysia. We first initiated predefined activities on each individual dataset to recognize patterns between the ST-T change and flattened T wave cases and then used the data fusion approach to merge both datasets in a manner that delivers the most accurate pattern recognition results. The proposed DDL approach is a systematic stage-wise methodology that relies on accurate detection of R peaks in ECG signals, time domain features of ECG signals, and fine tune-up of artificial neural networks. The empirical evaluation shows high accuracy (i.e., ≤99.97%) in pattern matching ST-T changes and flattened T waves using the proposed DDL approach. The proposed pattern recognition approach is a significant contribution to the diagnosis of special cases of MI.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  10. Abdulhay E, Mohammed MA, Ibrahim DA, Arunkumar N, Venkatraman V
    J Med Syst, 2018 Feb 17;42(4):58.
    PMID: 29455440 DOI: 10.1007/s10916-018-0912-y
    Blood leucocytes segmentation in medical images is viewed as difficult process due to the variability of blood cells concerning their shape and size and the difficulty towards determining location of Blood Leucocytes. Physical analysis of blood tests to recognize leukocytes is tedious, time-consuming and liable to error because of the various morphological components of the cells. Segmentation of medical imagery has been considered as a difficult task because of complexity of images, and also due to the non-availability of leucocytes models which entirely captures the probable shapes in each structures and also incorporate cell overlapping, the expansive variety of the blood cells concerning their shape and size, various elements influencing the outer appearance of the blood leucocytes, and low Static Microscope Image disparity from extra issues outcoming about because of noise. We suggest a strategy towards segmentation of blood leucocytes using static microscope images which is a resultant of three prevailing systems of computer vision fiction: enhancing the image, Support vector machine for segmenting the image, and filtering out non ROI (region of interest) on the basis of Local binary patterns and texture features. Every one of these strategies are modified for blood leucocytes division issue, in this manner the subsequent techniques are very vigorous when compared with its individual segments. Eventually, we assess framework based by compare the outcome and manual division. The findings outcome from this study have shown a new approach that automatically segments the blood leucocytes and identify it from a static microscope images. Initially, the method uses a trainable segmentation procedure and trained support vector machine classifier to accurately identify the position of the ROI. After that, filtering out non ROI have proposed based on histogram analysis to avoid the non ROI and chose the right object. Finally, identify the blood leucocytes type using the texture feature. The performance of the foreseen approach has been tried in appearing differently in relation to the system against manual examination by a gynaecologist utilizing diverse scales. A total of 100 microscope images were used for the comparison, and the results showed that the proposed solution is a viable alternative to the manual segmentation method for accurately determining the ROI. We have evaluated the blood leucocytes identification using the ROI texture (LBP Feature). The identification accuracy in the technique used is about 95.3%., with 100 sensitivity and 91.66% specificity.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  11. Nazmi N, Abdul Rahman MA, Yamamoto S, Ahmad SA, Zamzuri H, Mazlan SA
    Sensors (Basel), 2016 Aug 17;16(8).
    PMID: 27548165 DOI: 10.3390/s16081304
    In recent years, there has been major interest in the exposure to physical therapy during rehabilitation. Several publications have demonstrated its usefulness in clinical/medical and human machine interface (HMI) applications. An automated system will guide the user to perform the training during rehabilitation independently. Advances in engineering have extended electromyography (EMG) beyond the traditional diagnostic applications to also include applications in diverse areas such as movement analysis. This paper gives an overview of the numerous methods available to recognize motion patterns of EMG signals for both isotonic and isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who would like to select the most appropriate methodology in classifying motion patterns, especially during different types of contractions. For feature extraction, the probability density function (PDF) of EMG signals will be the main interest of this study. Following that, a brief explanation of the different methods for pre-processing, feature extraction and classifying EMG signals will be compared in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  12. Salari N, Shohaimi S, Najafi F, Nallappan M, Karishnarajah I
    Theor Biol Med Model, 2013 Sep 18;10:57.
    PMID: 24044669 DOI: 10.1186/1742-4682-10-57
    OBJECTIVE: The classification of Acute Coronary Syndrome (ACS), using artificial intelligence (AI), has recently drawn the attention of the medical researchers. Using this approach, patients with myocardial infarction can be differentiated from those with unstable angina. The present study aims to develop an integrated model, based on the feature selection and classification, for the automatic classification of ACS.

    METHODS: A dataset containing medical records of 809 patients suspected to suffer from ACS was used. For each subject, 266 clinical factors were collected. At first, a feature selection was performed based on interviews with 20 cardiologists; thereby 40 seminal features for classifying ACS were selected. Next, a feature selection algorithm was also applied to detect a subset of the features with the best classification accuracy. As a result, the feature numbers considerably reduced to only seven. Lastly, based on the seven selected features, eight various common pattern recognition tools for classification of ACS were used.

    RESULTS: The performance of the aforementioned classifiers was compared based on their accuracy computed from their confusion matrices. Among these methods, the multi-layer perceptron showed the best performance with the 83.2% accuracy.

    CONCLUSION: The results reveal that an integrated AI-based feature selection and classification approach is an effective method for the early and accurate classification of ACS and ultimately a timely diagnosis and treatment of this disease.

    Matched MeSH terms: Pattern Recognition, Automated/methods*
  13. Esmaeilpour M, Naderifar V, Shukur Z
    PLoS One, 2014;9(9):e106313.
    PMID: 25243670 DOI: 10.1371/journal.pone.0106313
    Over the last decade, design patterns have been used extensively to generate reusable solutions to frequently encountered problems in software engineering and object oriented programming. A design pattern is a repeatable software design solution that provides a template for solving various instances of a general problem.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  14. Ng H, Tan WH, Abdullah J, Tong HL
    ScientificWorldJournal, 2014;2014:376569.
    PMID: 25143972 DOI: 10.1155/2014/376569
    This paper describes the acquisition setup and development of a new gait database, MMUGait. This database consists of 82 subjects walking under normal condition and 19 subjects walking with 11 covariate factors, which were captured under two views. This paper also proposes a multiview model-based gait recognition system with joint detection approach that performs well under different walking trajectories and covariate factors, which include self-occluded or external occluded silhouettes. In the proposed system, the process begins by enhancing the human silhouette to remove the artifacts. Next, the width and height of the body are obtained. Subsequently, the joint angular trajectories are determined once the body joints are automatically detected. Lastly, crotch height and step-size of the walking subject are determined. The extracted features are smoothened by Gaussian filter to eliminate the effect of outliers. The extracted features are normalized with linear scaling, which is followed by feature selection prior to the classification process. The classification experiments carried out on MMUGait database were benchmarked against the SOTON Small DB from University of Southampton. Results showed correct classification rate above 90% for all the databases. The proposed approach is found to outperform other approaches on SOTON Small DB in most cases.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  15. Al-Dabbagh MM, Salim N, Rehman A, Alkawaz MH, Saba T, Al-Rodhaan M, et al.
    ScientificWorldJournal, 2014;2014:612787.
    PMID: 25309952 DOI: 10.1155/2014/612787
    This paper presents a novel features mining approach from documents that could not be mined via optical character recognition (OCR). By identifying the intimate relationship between the text and graphical components, the proposed technique pulls out the Start, End, and Exact values for each bar. Furthermore, the word 2-gram and Euclidean distance methods are used to accurately detect and determine plagiarism in bar charts.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  16. Samimi P, Ravana SD
    ScientificWorldJournal, 2014;2014:135641.
    PMID: 24977172 DOI: 10.1155/2014/135641
    Test collection is used to evaluate the information retrieval systems in laboratory-based evaluation experimentation. In a classic setting, generating relevance judgments involves human assessors and is a costly and time consuming task. Researchers and practitioners are still being challenged in performing reliable and low-cost evaluation of retrieval systems. Crowdsourcing as a novel method of data acquisition is broadly used in many research fields. It has been proven that crowdsourcing is an inexpensive and quick solution as well as a reliable alternative for creating relevance judgments. One of the crowdsourcing applications in IR is to judge relevancy of query document pair. In order to have a successful crowdsourcing experiment, the relevance judgment tasks should be designed precisely to emphasize quality control. This paper is intended to explore different factors that have an influence on the accuracy of relevance judgments accomplished by workers and how to intensify the reliability of judgments in crowdsourcing experiment.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  17. Taha AM, Mustapha A, Chen SD
    ScientificWorldJournal, 2013;2013:325973.
    PMID: 24396295 DOI: 10.1155/2013/325973
    When the amount of data and information is said to double in every 20 months or so, feature selection has become highly important and beneficial. Further improvements in feature selection will positively affect a wide array of applications in fields such as pattern recognition, machine learning, or signal processing. Bio-inspired method called Bat Algorithm hybridized with a Naive Bayes classifier has been presented in this work. The performance of the proposed feature selection algorithm was investigated using twelve benchmark datasets from different domains and was compared to three other well-known feature selection algorithms. Discussion focused on four perspectives: number of features, classification accuracy, stability, and feature generalization. The results showed that BANB significantly outperformed other algorithms in selecting lower number of features, hence removing irrelevant, redundant, or noisy features while maintaining the classification accuracy. BANB is also proven to be more stable than other methods and is capable of producing more general feature subsets.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  18. Oong TH, Isa NA
    IEEE Trans Neural Netw, 2011 Nov;22(11):1823-36.
    PMID: 21968733 DOI: 10.1109/TNN.2011.2169426
    This paper presents a new evolutionary approach called the hybrid evolutionary artificial neural network (HEANN) for simultaneously evolving an artificial neural networks (ANNs) topology and weights. Evolutionary algorithms (EAs) with strong global search capabilities are likely to provide the most promising region. However, they are less efficient in fine-tuning the search space locally. HEANN emphasizes the balancing of the global search and local search for the evolutionary process by adapting the mutation probability and the step size of the weight perturbation. This is distinguishable from most previous studies that incorporate EA to search for network topology and gradient learning for weight updating. Four benchmark functions were used to test the evolutionary framework of HEANN. In addition, HEANN was tested on seven classification benchmark problems from the UCI machine learning repository. Experimental results show the superior performance of HEANN in fine-tuning the network complexity within a small number of generations while preserving the generalization capability compared with other algorithms.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  19. Yap KS, Lim CP, Abidin IZ
    IEEE Trans Neural Netw, 2008 Sep;19(9):1641-6.
    PMID: 18779094 DOI: 10.1109/TNN.2008.2000992
    In this brief, a new neural network model called generalized adaptive resonance theory (GART) is introduced. GART is a hybrid model that comprises a modified Gaussian adaptive resonance theory (MGA) and the generalized regression neural network (GRNN). It is an enhanced version of the GRNN, which preserves the online learning properties of adaptive resonance theory (ART). A series of empirical studies to assess the effectiveness of GART in classification, regression, and time series prediction tasks is conducted. The results demonstrate that GART is able to produce good performances as compared with those of other methods, including the online sequential extreme learning machine (OSELM) and sequential learning radial basis function (RBF) neural network models.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
  20. Tabatabaey-Mashadi N, Sudirman R, Khalid PI, Lange-Küttner C
    Percept Mot Skills, 2015 Jun;120(3):865-94.
    PMID: 26029964
    Sequential strategies of digitized tablet drawings by 6-7-yr.-old children (N = 203) of average and below-average handwriting ability were analyzed. A Beery Visual Motor Integration (BVMI) and a Bender-Gestalt (BG) pattern, each composed of two tangential shapes, were predefined into area sectors for automatic analysis and adaptive mapping of the drawings. Girls more often began on the left side and used more strokes than boys. The below-average handwriting group showed more directional diversity and idiosyncratic strategies.
    Matched MeSH terms: Pattern Recognition, Automated/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links