Displaying publications 61 - 80 of 88 in total

Abstract:
Sort:
  1. Goh XT, Lim YA, Vythilingam I, Chew CH, Lee PC, Ngui R, et al.
    Malar J, 2013 Jul 31;12:264.
    PMID: 23902626 DOI: 10.1186/1475-2875-12-264
    BACKGROUND: Plasmodium knowlesi is a simian malaria parasite that is widespread in humans in Malaysian Borneo. However, little is known about the incidence and distribution of this parasite in the Sandakan division, Malaysian Borneo. Therefore, the aim of the present epidemiological study was to investigate the incidence and distribution of P. knowlesi as well as other Plasmodium species in this division based on a most recent developed hexaplex PCR system (PlasmoNex™).

    METHODS: A total of 189 whole blood samples were collected from Telupid Health Clinic, Sabah, Malaysia, from 2008 to 2011. All patients who participated in the study were microscopically malaria positive before recruitment. Complete demographic details and haematological profiles were obtained from 85 patients (13 females and 72 males). Identification of Plasmodium species was conducted using PlasmoNex™ targeting the 18S ssu rRNA gene.

    RESULTS: A total of 178 samples were positive for Plasmodium species by using PlasmoNex™. Plasmodium falciparum was identified in 68 samples (38.2%) followed by 64 cases (36.0%) of Plasmodium vivax, 42 (23.6%) cases of P. knowlesi, two (1.1%) cases of Plasmodium malariae and two (1.1%) mixed-species infections (i e, P. vivax/P. falciparum). Thirty-five PlasmoNex™ positive P. knowlesi samples were misdiagnosed as P. malariae by microscopy. Plasmodium knowlesi was detected in all four districts of Sandakan division with the highest incidence in the Kinabatangan district. Thrombocytopaenia and anaemia showed to be the most frequent malaria-associated haematological complications in this study.

    CONCLUSIONS: The discovery of P. knowlesi in Sandakan division showed that prospective studies on the epidemiological risk factors and transmission dynamics of P. knowlesi in these areas are crucial in order to develop strategies for effective malaria control. The availability of advanced diagnostic tool PlasmoNex™ enhanced the accuracy and accelerated the speed in the diagnosis of malaria.

    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  2. Singh B, Daneshvar C
    Clin Microbiol Rev, 2013 Apr;26(2):165-84.
    PMID: 23554413 DOI: 10.1128/CMR.00079-12
    Plasmodium knowlesi is a malaria parasite that is found in nature in long-tailed and pig-tailed macaques. Naturally acquired human infections were thought to be extremely rare until a large focus of human infections was reported in 2004 in Sarawak, Malaysian Borneo. Human infections have since been described throughout Southeast Asia, and P. knowlesi is now recognized as the fifth species of Plasmodium causing malaria in humans. The molecular, entomological, and epidemiological data indicate that human infections with P. knowlesi are not newly emergent and that knowlesi malaria is primarily a zoonosis. Human infections were undiagnosed until molecular detection methods that could distinguish P. knowlesi from the morphologically similar human malaria parasite P. malariae became available. P. knowlesi infections cause a spectrum of disease and are potentially fatal, but if detected early enough, infections in humans are readily treatable. In this review on knowlesi malaria, we describe the early studies on P. knowlesi and focus on the epidemiology, diagnosis, clinical aspects, and treatment of knowlesi malaria. We also discuss the gaps in our knowledge and the challenges that lie ahead in studying the epidemiology and pathogenesis of knowlesi malaria and in the prevention and control of this zoonotic infection.
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  3. Moyes CL, Henry AJ, Golding N, Huang Z, Singh B, Baird JK, et al.
    PLoS Negl Trop Dis, 2014 Mar;8(3):e2780.
    PMID: 24676231 DOI: 10.1371/journal.pntd.0002780
    BACKGROUND: The simian malaria parasite, Plasmodium knowlesi, can cause severe and fatal disease in humans yet it is rarely included in routine public health reporting systems for malaria and its geographical range is largely unknown. Because malaria caused by P. knowlesi is a truly neglected tropical disease, there are substantial obstacles to defining the geographical extent and risk of this disease. Information is required on the occurrence of human cases in different locations, on which non-human primates host this parasite and on which vectors are able to transmit it to humans. We undertook a systematic review and ranked the existing evidence, at a subnational spatial scale, to investigate the potential geographical range of the parasite reservoir capable of infecting humans.

    METHODOLOGY/PRINCIPAL FINDINGS: After reviewing the published literature we identified potential host and vector species and ranked these based on how informative they are for the presence of an infectious parasite reservoir, based on current evidence. We collated spatial data on parasite occurrence and the ranges of the identified host and vector species. The ranked spatial data allowed us to assign an evidence score to 475 subnational areas in 19 countries and we present the results on a map of the Southeast and South Asia region.

    CONCLUSIONS/SIGNIFICANCE: We have ranked subnational areas within the potential disease range according to evidence for presence of a disease risk to humans, providing geographical evidence to support decisions on prevention, management and prophylaxis. This work also highlights the unknown risk status of large parts of the region. Within this unknown category, our map identifies which areas have most evidence for the potential to support an infectious reservoir and are therefore a priority for further investigation. Furthermore we identify geographical areas where further investigation of putative host and vector species would be highly informative for the region-wide assessment.

    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  4. Jiram AI, Vythilingam I, NoorAzian YM, Yusof YM, Azahari AH, Fong MY
    Malar J, 2012;11:213.
    PMID: 22727041
    The first natural infection of Plasmodium knowlesi in humans was recorded in 1965 in peninsular Malaysia. Extensive research was then conducted and it was postulated that it was a rare incident and that simian malaria will not be easily transmitted to humans. However, at the turn of the 21st century, knowlesi malaria was prevalent throughout Southeast Asia and is life threatening. Thus, a longitudinal study was initiated to determine the vectors, their seasonal variation and preference to humans and macaques.
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  5. Ta TT, Salas A, Ali-Tammam M, Martínez Mdel C, Lanza M, Arroyo E, et al.
    Malar J, 2010;9:219.
    PMID: 20663184 DOI: 10.1186/1475-2875-9-219
    Previously, Plasmodium knowlesi was not considered as a species of Plasmodium that could cause malaria in human beings, as it is parasite of long-tailed (Macaca fascicularis) and pig-tailed (Macaca nemestrina) macaques found in Southeast Asia. A case of infection by P. knowlesi is described in a Spanish traveller, who came back to Spain with daily fever after his last overseas travel, which was a six-month holiday in forested areas of Southeast Asia between 2008 and 2009. His P. knowlesi infection was detected by multiplex Real time quantitative PCR and confirmed by sequencing the amplified fragment. Using nested multiplex malaria PCR (reference method in Spain) and a rapid diagnostic test, the P. knowlesi infection was negative. This patient was discharged and asymptomatic when the positive result to P. knowlesi was reported. Prior to this case, there have been two more reports of European travellers with malaria caused by P. knowlesi, a Finnish man who travelled to Peninsular Malaysia during four weeks in March 2007, and a Swedish man who did a short visit to Malaysian Borneo in October 2006. Taken together with this report of P. knowlesi infection in a Spanish traveller returning from Southeast Asia, this is the third case of P. knowlesi infection in Europe, indicating that this simian parasite can infect visitors to endemic areas in Southeast Asia. This last European case is quite surprising, given that it is an untreated-symptomatic P. knowlesi in human, in contrast to what is currently known about P. knowlesi infection. Most previous reports of human P. knowlesi malaria infections were in adults, often with symptoms and relatively high parasite densities, up to the recent report in Ninh Thuan province, located in the southern part of central Vietnam, inhabited mainly by the Ra-glai ethnic minority, in which all P. knowlesi infections were asymptomatic, co-infected with P. malariae, with low parasite densities and two of the three identified cases were very young children under five years old.
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  6. van Hellemond JJ, van Genderen PJ
    Ned Tijdschr Geneeskd, 2010;154:A1353.
    PMID: 20456798
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  7. Kantele A, Jokiranta S
    Duodecim, 2010;126(4):427-34.
    PMID: 20486493
    Four species have been known to bring on human malaria, the most severe disease being caused by Plasmodium falciparum. In 2007, after returning from Malaysia, a Finnish tourist was found to be infected with a fifth Plasmodium species, P. knowlesi which usually infects macaques. Over the past few years, hundreds of human cases have been found in Malaysia. The clinical disease caused by P. knowlesi appears less severe than P. falciparum infection, but more severe than infection with other malaria-causing species. Diagnosis is based both on PCR and microscopy. P. knowlesi is currently. considered as the fifth species causing malaria in humans.
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  8. Van den Eede P, Vythilingam I, Ngo DT, Nguyen VH, Le XH, D'Alessandro U, et al.
    Malar J, 2010;9:20.
    PMID: 20082717 DOI: 10.1186/1475-2875-9-20
    A recently published comment on a report of Plasmodium knowlesi infections in Vietnam states that this may not accurately represent the situation in the study area because the PCR primers used may cross-hybridize with Plasmodium vivax. Nevertheless, P. knowlesi infections have been confirmed by sequencing. In addition, a neighbour-joining tree based on the 18S S-Type SSUrRNA gene shows that the Vietnamese samples clearly cluster with the P. knowlesi isolates identified in Malaysia and are distinct from the corresponding P. vivax sequences. All samples came from asymptomatic individuals who did not consult for fever during the months preceding or following the survey, indicating that asymptomatic P. knowlesi infections occur in this population, although this does not exclude the occurrence of symptomatic cases. Large-scale studies to determine the extent and the epidemiology of P. knowlesi malaria in Vietnam are further needed.
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  9. Vythilingam I, Tan CH, Asmad M, Chan ST, Lee KS, Singh B
    Trans R Soc Trop Med Hyg, 2006 Nov;100(11):1087-8.
    PMID: 16725166
    Four species of malaria parasites are known to infect humans. A fifth species, Plasmodium knowlesi, has been reported to infect humans in Malaysian Borneo. Here we report for the first time the incrimination of Anopheles latens as the vector of P. knowlesi among humans and monkeys in Sarawak, Malaysia.
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification
  10. Wong ML, Chua TH, Leong CS, Khaw LT, Fornace K, Wan-Sulaiman WY, et al.
    PLoS Negl Trop Dis, 2015;9(10):e0004135.
    PMID: 26448052 DOI: 10.1371/journal.pntd.0004135
    BACKGROUND: The simian malaria parasite Plasmodium knowlesi is emerging as a public health problem in Southeast Asia, particularly in Malaysian Borneo where it now accounts for the greatest burden of malaria cases and deaths. Control is hindered by limited understanding of the ecology of potential vector species.

    METHODOLOGY/PRINCIPAL FINDINGS: We conducted a one year longitudinal study of P. knowlesi vectors in three sites within an endemic area of Sabah, Malaysia. All mosquitoes were captured using human landing catch. Anopheles mosquitoes were dissected to determine, oocyst, sporozoites and parous rate. Anopheles balabacensis is confirmed as the primary vector of. P. knowlesi (using nested PCR) in Sabah for the first time. Vector densities were significantly higher and more seasonally variable in the village than forest or small scale farming site. However An. balabacensis survival and P. knowlesi infection rates were highest in forest and small scale farm sites. Anopheles balabacensis mostly bites humans outdoors in the early evening between 1800 to 2000 hrs.

    CONCLUSIONS/SIGNIFICANCE: This study indicates transmission is unlikely to be prevented by bednets. This combined with its high vectorial capacity poses a threat to malaria elimination programmes within the region.

    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  11. Chua TH, Manin BO, Vythilingam I, Fornace K, Drakeley CJ
    Parasit Vectors, 2019 Jul 25;12(1):364.
    PMID: 31345256 DOI: 10.1186/s13071-019-3627-0
    BACKGROUND: We investigated the effect of five common habitat types on the diversity and abundance of Anopheles spp. and on the biting rate and time of Anopheles balabacensis (currently the only known vector for Plasmodium knowlesi in Sabah) at Paradason village, Kudat, Sabah. The habitats were forest edge, playground area, longhouse, oil palm plantation and shrub-bushes area. Sampling of Anopheles was done monthly using the human landing catch method in all habitat types for 14 months (October 2013 to December 2014, excluding June 2014). The Anopheles species were morphologically identified and subjected to PCR assay for the detection of Plasmodium parasites. Generalised linear mixed models (GLMM) were applied to test the variation in abundance and biting rates of An. balabacensis in different habitat types.

    RESULTS: A total of 1599 Anopheles specimens were collected in the village, of which about 90% were An. balabacensis. Anopheles balabacensis was present throughout the year and was the dominant Anopheles species in all habitat types. The shrub bushes habitat had the highest Anopheles species diversity while forest edge had the greatest number of Anopheles individuals caught. GLMM analysis indicated that An. balabacensis abundance was not affected by the type of habitats, and it was more active during the early and late night compared to predawn and dawn. PCR assay showed that 1.61% of the tested An. balabacensis were positive for malaria parasites, most of which were caught in oil palm estates and infected with one to two Plasmodium species.

    CONCLUSIONS: The identification of infected vectors in a range of habitats, including agricultural and farming areas, illustrates the potential for humans to be exposed to P. knowlesi outside forested areas. This finding contributes to a growing body of evidence implicating environmental changes due to deforestation, expansion of agricultural and farming areas, and development of human settlements near to forest fringes in the emergence of P. knowlesi in Sabah.

    Matched MeSH terms: Plasmodium knowlesi/isolation & purification
  12. Fungfuang W, Udom C, Tongthainan D, Kadir KA, Singh B
    Malar J, 2020 Oct 01;19(1):350.
    PMID: 33004070 DOI: 10.1186/s12936-020-03424-0
    BACKGROUND: Certain species of macaques are natural hosts of Plasmodium knowlesi and Plasmodium cynomolgi, which can both cause malaria in humans, and Plasmodium inui, which can be experimentally transmitted to humans. A significant number of zoonotic malaria cases have been reported in humans throughout Southeast Asia, including Thailand. There have been only two studies undertaken in Thailand to identify malaria parasites in non-human primates in 6 provinces. The objective of this study was to determine the prevalence of P. knowlesi, P. cynomolgi, P. inui, Plasmodium coatneyi and Plasmodium fieldi in non-human primates from 4 new locations in Thailand.

    METHODS: A total of 93 blood samples from Macaca fascicularis, Macaca leonina and Macaca arctoides were collected from four locations in Thailand: 32 were captive M. fascicularis from Chachoengsao Province (CHA), 4 were wild M. fascicularis from Ranong Province (RAN), 32 were wild M. arctoides from Prachuap Kiri Khan Province (PRA), and 25 were wild M. leonina from Nakornratchasima Province (NAK). DNA was extracted from these samples and analysed by nested PCR assays to detect Plasmodium, and subsequently to detect P. knowlesi, P. coatneyi, P. cynomolgi, P. inui and P. fieldi.

    RESULTS: Twenty-seven of the 93 (29%) samples were Plasmodium-positive by nested PCR assays. Among wild macaques, all 4 M. fascicularis at RAN were infected with malaria parasites followed by 50% of 32 M. arctoides at PRA and 20% of 25 M. leonina at NAK. Only 2 (6.3%) of the 32 captive M. fascicularis at CHA were malaria-positive. All 5 species of Plasmodium were detected and 16 (59.3%) of the 27 macaques had single infections, 9 had double and 2 had triple infections. The composition of Plasmodium species in macaques at each sampling site was different. Macaca arctoides from PRA were infected with P. knowlesi, P. coatneyi, P. cynomolgi, P. inui and P. fieldi.

    CONCLUSIONS: The prevalence and species of Plasmodium varied among the wild and captive macaques, and between macaques at 4 sampling sites in Thailand. Macaca arctoides is a new natural host for P. knowlesi, P. inui, P. coatneyi and P. fieldi.

    Matched MeSH terms: Plasmodium knowlesi/isolation & purification
  13. Lai MY, Ooi CH, Jaimin JJ, Lau YL
    Am J Trop Med Hyg, 2020 06;102(6):1370-1372.
    PMID: 32228783 DOI: 10.4269/ajtmh.20-0001
    The incidence of zoonotic malaria, Plasmodium knowlesi, infection is increasing and now is the major cause of malaria in Malaysia. Here, we describe a WarmStart colorimetric loop-mediated isothermal amplification (LAMP) assay for the detection of Plasmodium spp. The detection limit for this assay was 10 copies/µL for P knowlesi and Plasmodium ovale and 1 copy/µL for Plasmodium falciparum, Plasmodium vivax, and Plasmodium malariae. To test clinical sensitivity and specificity, 100 microscopy-positive and 20 malaria-negative samples were used. The WarmStart colorimetric LAMP was 98% sensitive and 100% specific. Amplification products were visible for direct observation, thereby eliminating the need for post-amplification processing steps. Therefore, WarmStart colorimetric LAMP is suitable for use in resource-limited settings.
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  14. Barber BE, Rajahram GS, Grigg MJ, William T, Anstey NM
    Malar J, 2017 03 31;16(1):135.
    PMID: 28359340 DOI: 10.1186/s12936-017-1787-y
    BACKGROUND: The 2016 World Health Organization (WHO) World Malaria Report documents substantial progress towards control and elimination of malaria. However, major challenges remain. In some regions of Southeast Asia, the simian parasite Plasmodium knowlesi has emerged as an important cause of human malaria, and the authors believe this species warrants regular inclusion in the World Malaria Report.

    MAIN TEXT: Plasmodium knowlesi is the most common cause of malaria in Malaysia, and cases have also been reported in nearly all countries of Southeast Asia. Outside of Malaysia, P. knowlesi is frequently misdiagnosed by microscopy as Plasmodium falciparum or Plasmodium vivax. Thus, P. knowlesi may be underdiagnosed in affected regions and its true incidence underestimated. Acknowledgement in the World Malaria Report of the regional importance of P. knowlesi will facilitate efforts to improve surveillance of this emerging parasite. Furthermore, increased recognition will likely lead to improved delivery of effective treatment for this potentially fatal infection, as has occurred in Malaysia where P. knowlesi case-fatality rates have fallen despite rising incidence. In a number of knowlesi-endemic countries, substantial progress has been made towards the elimination of P. vivax and P. falciparum. However, efforts to eliminate these human-only species should not preclude efforts to reduce human malaria from P. knowlesi. The regional importance of knowlesi malaria was recognized by the WHO with its recent Evidence Review Group meeting on knowlesi malaria to address strategies for prevention and mitigation.

    CONCLUSION: The WHO World Malaria Report has an appropriate focus on falciparum and vivax malaria, the major causes of global mortality and morbidity. However, the authors hope that in future years this important publication will also incorporate data on the progress and challenges in reducing knowlesi malaria in regions where transmission occurs.

    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  15. Lau YL, Cheong FW, Chin LC, Mahmud R, Chen Y, Fong MY
    Trop Biomed, 2014 Dec;31(4):749-59.
    PMID: 25776601 MyJurnal
    Malaria causes high global mortality and morbidity annually. Plasmodium knowlesi has been recognised as the fifth human Plasmodium sp. and its infection is widely distributed in Southeast Asia. Merozoite surface protein-119 (MSP-119) appears as a potential candidate for malaria blood stage vaccine as it could induce protective immunity. In this study, codon optimized P. knowlesi MSP-119 (pkMSP-119) was expressed and purified in yeast Pichia pastoris expression system. The purified recombinant protein was further evaluated using Western blot assay using knowlesi malaria, non-knowlesi human malaria, non-malarial parasitic infections and healthy serum samples (n = 50). The sensitivity of purified pkMSP-119 towards detection of knowlesi infection was as 28.6% (2/7). pkMSP-119 did not react with all non-malarial parasitic infections and healthy donor sera, yet reacted with some non-knowlesi human malaria sera, therefore lead to a specificity of 86.0% (37/43).
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification
  16. Stark DJ, Fornace KM, Brock PM, Abidin TR, Gilhooly L, Jalius C, et al.
    Ecohealth, 2019 12;16(4):638-646.
    PMID: 30927165 DOI: 10.1007/s10393-019-01403-9
    Land-use changes can impact infectious disease transmission by increasing spatial overlap between people and wildlife disease reservoirs. In Malaysian Borneo, increases in human infections by the zoonotic malaria Plasmodium knowlesi are hypothesised to be due to increasing contact between people and macaques due to deforestation. To explore how macaque responses to environmental change impact disease risks, we analysed movement of a GPS-collared long-tailed macaque in a knowlesi-endemic area in Sabah, Malaysia, during a deforestation event. Land-cover maps were derived from satellite-based and aerial remote sensing data and models of macaque occurrence were developed to evaluate how macaque habitat use was influenced by land-use change. During deforestation, changes were observed in macaque troop home range size, movement speeds and use of different habitat types. Results of models were consistent with the hypothesis that macaque ranging behaviour is disturbed by deforestation events but begins to equilibrate after seeking and occupying a new habitat, potentially impacting human disease risks. Further research is required to explore how these changes in macaque movement affect knowlesi epidemiology on a wider spatial scale.
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  17. Lee KS, Cox-Singh J, Brooke G, Matusop A, Singh B
    Int J Parasitol, 2009 Aug;39(10):1125-8.
    PMID: 19358848 DOI: 10.1016/j.ijpara.2009.03.003
    Human infections with Plasmodium knowlesi have been misdiagnosed by microscopy as Plasmodium malariae due to their morphological similarities. Although microscopy-identified P. malariae cases have been reported in the state of Sarawak (Malaysian Borneo) as early as 1952, recent epidemiological studies suggest the absence of indigenous P. malariae infections. The present study aimed to determine the past incidence and distribution of P. knowlesi infections in the state of Sarawak based on archival blood films from patients diagnosed by microscopy as having P. malariae infections. Nested PCR assays were used to identify Plasmodium species in DNA extracted from 47 thick blood films collected in 1996 from patients in seven different divisions throughout the state of Sarawak. Plasmodium knowlesi DNA was detected in 35 (97.2%) of 36 blood films that were positive for Plasmodium DNA, with patients originating from all seven divisions. Only one sample was positive for P. malariae DNA. This study provides further evidence of the widespread distribution of human infections with P. knowlesi in Sarawak and its past occurrence. Taken together with data from previous studies, our findings suggest that P. knowlesi malaria is not a newly emergent disease in humans.
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  18. Kantele A, Marti H, Felger I, Müller D, Jokiranta TS
    Emerg Infect Dis, 2008 Sep;14(9):1434-6.
    PMID: 18760013 DOI: 10.3201/eid1409.080170
    In 2007, a Finnish traveler was infected in Peninsular Malaysia with Plasmodium knowlesi, a parasite that usually causes malaria in monkeys. P. knowlesi has established itself as the fifth Plasmodium species that can cause human malaria. The disease is potentially life-threatening in humans; clinicians and laboratory personnel should become more aware of this pathogen in travelers.
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  19. De Silva JR, Lau YL, Fong MY
    Parasit Vectors, 2017 01 03;10(1):2.
    PMID: 28049516 DOI: 10.1186/s13071-016-1935-1
    BACKGROUND: The simian malaria parasite Plasmodium knowlesi has been reported to cause significant numbers of human infection in South East Asia. Its merozoite surface protein-3 (MSP3) is a protein that belongs to a multi-gene family of proteins first found in Plasmodium falciparum. Several studies have evaluated the potential of P. falciparum MSP3 as a potential vaccine candidate. However, to date no detailed studies have been carried out on P. knowlesi MSP3 gene (pkmsp3). The present study investigates the genetic diversity, and haplotypes groups of pkmsp3 in P. knowlesi clinical samples from Peninsular Malaysia.

    METHODS: Blood samples were collected from P. knowlesi malaria patients within a period of 4 years (2008-2012). The pkmsp3 gene of the isolates was amplified via PCR, and subsequently cloned and sequenced. The full length pkmsp3 sequence was divided into Domain A and Domain B. Natural selection, genetic diversity, and haplotypes of pkmsp3 were analysed using MEGA6 and DnaSP ver. 5.10.00 programmes.

    RESULTS: From 23 samples, 48 pkmsp3 sequences were successfully obtained. At the nucleotide level, 101 synonymous and 238 non-synonymous mutations were observed. Tests of neutrality were not significant for the full length, Domain A or Domain B sequences. However, the dN/dS ratio of Domain B indicates purifying selection for this domain. Analysis of the deduced amino acid sequences revealed 42 different haplotypes. Neighbour Joining phylogenetic tree and haplotype network analyses revealed that the haplotypes clustered into two distinct groups.

    CONCLUSIONS: A moderate level of genetic diversity was observed in the pkmsp3 and only the C-terminal region (Domain B) appeared to be under purifying selection. The separation of the pkmsp3 into two haplotype groups provides further evidence of the existence of two distinct P. knowlesi types or lineages. Future studies should investigate the diversity of pkmsp3 among P. knowlesi isolates in North Borneo, where large numbers of human knowlesi malaria infection still occur.

    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  20. Mahendran P, Liew JWK, Amir A, Ching XT, Lau YL
    Malar J, 2020 Jul 10;19(1):241.
    PMID: 32650774 DOI: 10.1186/s12936-020-03314-5
    BACKGROUND: Plasmodium knowlesi and Plasmodium vivax are the predominant Plasmodium species that cause malaria in Malaysia and play a role in asymptomatic malaria disease transmission in Malaysia. The diagnostic tools available to diagnose malaria, such as microscopy and rapid diagnostic test (RDT), are less sensitive at detecting lower parasite density. Droplet digital polymerase chain reaction (ddPCR), which has been shown to have higher sensitivity at diagnosing malaria, allows direct quantification without the need for a standard curve. The aim of this study is to develop and use a duplex ddPCR assay for the detection of P. knowlesi and P. vivax, and compare this method to nested PCR and qPCR.

    METHODS: The concordance rate, sensitivity and specificity of the duplex ddPCR assay were determined and compared to nested PCR and duplex qPCR.

    RESULTS: The duplex ddPCR assay had higher analytical sensitivity (P. vivax = 10 copies/µL and P. knowlesi = 0.01 copies/µL) compared to qPCR (P. vivax = 100 copies/µL and P. knowlesi = 10 copies/µL). Moreover, the ddPCR assay had acceptable clinical sensitivity (P. vivax = 80% and P. knowlesi = 90%) and clinical specificity (P. vivax = 87.84% and P. knowlesi = 81.08%) when compared to nested PCR. Both ddPCR and qPCR detected more double infections in the samples.

    CONCLUSIONS: Overall, the ddPCR assay demonstrated acceptable efficiency in detection of P. knowlesi and P. vivax, and was more sensitive than nested PCR in detecting mixed infections. However, the duplex ddPCR assay still needs optimization to improve the assay's clinical sensitivity and specificity.

    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links