Displaying publications 81 - 84 of 84 in total

Abstract:
Sort:
  1. Skhirtladze L, Keruckiene R, Bezvikonnyi O, Mahmoudi M, Volyniuk D, Leitonas K, et al.
    PMID: 37890326 DOI: 10.1016/j.saa.2023.123531
    Two compounds consisting of electron-accepting trifluoromethylphenyl moiety and electron-donating phenoxazine and phenothiazine moieties were designed and synthesized via Buchwald-Hartwig coupling reaction. Thermal, photophysical, and electrochemical properties of the compounds are discussed. Only compound with phenothiazine form molecular glass, with glass transition temperatures of 90 °C. The geometry and electronic characteristics of the compounds were substantiated within density functional theory (DFT). 10,10'-(2-(Trifluoromethyl)-1,4-phenylene)bis(10H-phenoxazine) shows efficient thermally activated delayed fluorescence with high spin-orbit coupling values. 10,10'-(2-(Trifluoromethyl)-1,4-phenylene)bis(10H-phenothiazine) as efficient room-temperature phosphor shows high oxygen sensitivity.
  2. Nazrin A, Kuan TM, Mansour DA, Farade RA, Ariffin AM, Rahman MSA, et al.
    Heliyon, 2024 Aug 15;10(15):e34737.
    PMID: 39170543 DOI: 10.1016/j.heliyon.2024.e34737
    Throughout the history of power systems, power cables have been used to securely and efficiently distribute electrical energy to the destined locations. Cross-linked polyethylene (XLPE), a commonly used insulator in high-voltage cables, have several desirable properties, such as low dielectric loss, high dielectric constant, high thermal conductivity, enhanced thermal stability, and superior resistance against electrical stress. However, further improvements of XLPE's performance are needed. The incorporation of large specific surface area nanoparticles, such as boron nitride nanosheets and graphene oxide, exhibited a great potential in enhancing XLPE's properties. These nanoparticles create numerous trapping sites, even at small loading levels, due to their large interfacial regions. In addition, voltage stabilisers with polar groups can scavenge high-energy electrons generated by local electric fields, thereby inhibiting the electrical tree growth. Another important aspect of enhancing XLPE's dielectric performance is the inclusion of antioxidants with phenolic groups. These antioxidants react with peroxyl radicals, mitigating their harmful effects. This review summarises the effects of nanoparticles, voltage stabilisers, antioxidants, and polymer amalgamation on dielectric performance of XLPE as an insulation material. The major challenges in dielectric insulation such as breakdown voltage strength, electrical tree growth, structural defect, space charge accumulation, and thermal aging are addressed.
  3. Kee CH, Ariffin A, Awang K, Takeya K, Morita H, Hussain SI, et al.
    Org Biomol Chem, 2010 Dec 21;8(24):5646-60.
    PMID: 20941451 DOI: 10.1039/c0ob00296h
    The syntheses of fourteen unusual o-carboxamido stilbenes by the Heck protocol revealed surprising complexity related to intriguing substituent effects with mechanistic implications. The unexpected cytotoxic and chemopreventive properties also seem to be substituent dependent. For example, although stilbene 15d (with a 4-methoxy substituent) showed cytotoxicity on HT29 colon cancer cells with an IC(50) of 4.9 μM, the 3,4-dimethoxy derivative (15c) is inactive. It is interesting to observe that the 3,5-dimethoxy derivative (15e) showed remarkable chemopreventive activity in WRL-68 fetal hepatocytes, surpassing the gold standard, resveratrol. The resveratrol concentration needed to be 5 times higher than that of 15e to produce comparable elevation of NQO1.
  4. Gapil Tiamas S, Daressy F, Abou Samra A, Bignon J, Steinmetz V, Litaudon M, et al.
    Bioorg Med Chem Lett, 2020 04 01;30(7):127003.
    PMID: 32035700 DOI: 10.1016/j.bmcl.2020.127003
    A library of 26 novel carboxamides deriving from natural fislatifolic acid has been prepared. The synthetic strategy involved a bio-inspired Diels-Alder cycloaddition, followed by functionalisations of the carbonyl moiety. All the compounds were evaluated on Bcl-xL, Mcl-1 and Bcl-2 proteins. In this series of cyclohexenyl chalcone analogues, six compounds behaved as dual Bcl-xL/Mcl-1 inhibitors in micromolar range and one exhibited sub-micromolar affinities toward Mcl-1 and Bcl-2. The most potent compounds evaluated on A549 and MCF7 cancer cell lines showed moderate cytotoxicities.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links