Displaying publications 81 - 100 of 104 in total

Abstract:
Sort:
  1. Sam IC, Noraini W, Sandhu SS, Norizah I, Selvanesan S, Thayan R, et al.
    J Med Virol, 2019 03;91(3):498-502.
    PMID: 30199092 DOI: 10.1002/jmv.25313
    Influenza seasonality in equatorial countries is little understood. Seasonal and alert influenza thresholds were determined for Malaysia, using laboratory-based data obtained from the Malaysia Influenza Surveillance System and a major teaching hospital, from 2011 to 2016. Influenza was present year-round, with no clear annual seasons. Variable periods of higher transmission occurred inconsistently, in November to December, January to March, July to September, or a combination of these. These coincide with seasons in the nearby southeast Asian countries or winter seasons of the northern and southern hemispheres. Changes in the predominant circulating influenza type were only sometimes associated with increased transmission. The data can provide public health interventions such as vaccines.
  2. Tee HK, Tan CW, Yogarajah T, Lee MHP, Chai HJ, Hanapi NA, et al.
    PLoS Pathog, 2019 11;15(11):e1007863.
    PMID: 31730673 DOI: 10.1371/journal.ppat.1007863
    Enterovirus A71 (EV-A71) causes hand, foot and mouth disease epidemics with neurological complications and fatalities. However, the neuropathogenesis of EV-A71 remains poorly understood. In mice, adaptation and virulence determinants have been mapped to mutations at VP2-149, VP1-145 and VP1-244. We investigate how these amino acids alter heparin-binding phenotype and shapes EV-A71 virulence in one-day old mice. We constructed six viruses with varying residues at VP1-98, VP1-145 (which are both heparin-binding determinants) and VP2-149 (based on the wild type 149K/98E/145Q, termed KEQ) to generate KKQ, KKE, KEE, IEE and IEQ variants. We demonstrated that the weak heparin-binder IEE was highly lethal in mice. The initially strong heparin-binding IEQ variant acquired an additional mutation VP1-K244E, which confers weak heparin-binding phenotype resulting in elevated viremia and increased virus antigens in mice brain, with subsequent high virulence. IEE and IEQ-244E variants inoculated into mice disseminated efficiently and displayed high viremia. Increasing polymerase fidelity and impairing recombination of IEQ attenuated the virulence, suggesting the importance of population diversity in EV-A71 pathogenesis in vivo. Combining in silico docking and deep sequencing approaches, we inferred that virus population diversity is shaped by electrostatic interactions at the five-fold axis of the virus surface. Electrostatic surface charges facilitate virus adaptation by generating poor heparin-binding variants for better in vivo dissemination in mice, likely due to reduced adsorption to heparin-rich peripheral tissues, which ultimately results in increased neurovirulence. The dynamic switching between heparin-binding and weak heparin-binding phenotype in vivo explained the neurovirulence of EV-A71.
  3. Sam IC, Chong YM, Abdullah A, Fu JYL, Hasan MS, Jamaluddin FH, et al.
    J Med Virol, 2021 Nov 10.
    PMID: 34757638 DOI: 10.1002/jmv.27441
    Malaysia has experienced three waves of coronavirus disease 2019 (COVID-19) as of March 31, 2021. We studied the associated molecular epidemiology and SARS-CoV-2 seroprevalence during the third wave. We obtained 60 whole-genome SARS-CoV-2 sequences between October 2020 and January 2021 in Kuala Lumpur/Selangor and analyzed 989 available Malaysian sequences. We tested 653 residual serum samples collected between December 2020 to April 2021 for anti-SARS-CoV-2 total antibodies, as a proxy for population immunity. The first wave (January 2020) comprised sporadic imported cases from China of early Pango lineages A and B. The second wave (March-June 2020) was associated with lineage B.6. The ongoing third wave (from September 2020) was propagated by a state election in Sabah. It is due to lineage B.1.524 viruses containing spike mutations D614G and A701V. Lineages B.1.459, B.1.470, and B.1.466.2 were likely imported from the region and confined to Sarawak state. Direct age-standardized seroprevalence in Kuala Lumpur/Selangor was 3.0%. The second and third waves were driven by super-spreading events and different circulating lineages. Malaysia is highly susceptible to further waves, especially as alpha (B.1.1.7) and beta (B.1.351) variants of concern were first detected in December 2020/January 2021. Increased genomic surveillance is critical.
  4. Chan YF
    Med J Malaysia, 1972 Sep;27(1):48-51.
    PMID: 35158536
    No abstract available.
  5. Chan YF
    Med J Malaysia, 1972 Mar;26(3):211-214.
    PMID: 35158524
    No abstract available.
  6. Sam IC, Chua CL, Rovie-Ryan JJ, Fu JY, Tong C, Sitam FT, et al.
    Emerg Infect Dis, 2015 Sep;21(9):1683-5.
    PMID: 26291585 DOI: 10.3201/eid2109.150439
  7. NikNadia N, Tan CW, Ong KC, Sam IC, Chan YF
    J Med Virol, 2018 06;90(6):1164-1167.
    PMID: 29457642 DOI: 10.1002/jmv.25061
    Enterovirus A71 (EV-A71) neutralization escape mutants were generated with monoclonal antibody MAB979 (Millipore). The VP2-T141I and VP1-D14N substitutions were identified. Using reverse genetics, infectious clones with these substitutions were constructed and tested by neutralization assay with immune sera from mice and humans. The N-terminus VP1-14 is more important than EF loop VP2-141 in acute human infection, mainly because it recognised IgM present in acute infection. The N-terminus VP1 could be a useful target for diagnostics and therapeutic antibodies in acute infection.
  8. Tan XH, Chong WL, Lee VS, Abdullah S, Jasni K, Suarni SQ, et al.
    Vaccines (Basel), 2023 Aug 14;11(8).
    PMID: 37631931 DOI: 10.3390/vaccines11081363
    Hand, foot and mouth disease (HFMD) is a childhood disease caused by enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16). Capsid loops are important epitopes for EV-A71 and CV-A16. Seven chimeric EV-A71 (ChiE71) involving VP1 BC (45.5% similarity), DE, EF, GH and HI loops, VP2 EF loop and VP3 GH loop (91.3% similarity) were substituted with corresponding CV-A16 loops. Only ChiE71-1-BC, ChiE71-1-EF, ChiE71-1-GH and ChiE71-3-GH were viable. EV-A71 and CV-A16 antiserum neutralized ChiE71-1-BC and ChiE71-1-EF. Mice immunized with inactivated ChiE71 elicited high IgG, IFN-γ, IL-2, IL-4 and IL-10. Neonatal mice receiving passive transfer of WT EV-A71, ChiE71-1-EF and ChiE71-1-BC immune sera had 100%, 80.0% and no survival, respectively, against lethal challenges with EV-A71, suggesting that the substituted CV-A16 loops disrupted EV-A71 immunogenicity. Passive transfer of CV-A16, ChiE71-1-EF and ChiE71-1-BC immune sera provided 40.0%, 20.0% and 42.9% survival, respectively, against CV-A16. One-day-old neonatal mice immunized with WT EV-A71, ChiE71-1-BC, ChiE71-1-EF and CV-A16 achieved 62.5%, 60.0%, 57.1%, and no survival, respectively, after the EV-A71 challenge. Active immunization using CV-A16 provided full protection while WT EV-A71, ChiE71-1-BC and ChiE71-1-EF immunization showed partial cross-protection in CV-A16 lethal challenge with survival rates of 50.0%, 20.0% and 40%, respectively. Disruption of a capsid loop could affect virus immunogenicity, and future vaccine design should include conservation of the enterovirus capsid loops.
  9. Fu JYL, Chong YM, Sam IC, Chan YF
    J Virol Methods, 2022 Mar;301:114462.
    PMID: 35026305 DOI: 10.1016/j.jviromet.2022.114462
    Emerging SARS-CoV-2 variants of concern (VOC) have been associated with enhanced transmissibility and immune escape. Next-generation sequencing (NGS) of the whole genome is the gold standard for variant identification for surveillance but is time-consuming and costly. Rapid and cost-effective assays that detect SARS-CoV-2 variants are needed. We evaluated Allplex SARS-CoV-2 Master Assay and Variants I Assay to detect HV69/70 deletion, Y144 deletion, E484K, N501Y, and P681H spike mutations in 248 positive samples collected in Kuala Lumpur, Malaysia, between January and May 2021. Spike variants were detected in 78/248 (31.5 %), comprising 60 VOC B.1.351 (beta) and 18 B.1.1.7 (alpha). With NGS as reference for 115 samples, the sensitivity for detecting the spike mutations was 98.7 % with the Master Assay and 100 % with the Variants I Assay. The emergence of beta variants correlated with increasing COVID-19 infections in Malaysia. The prevalence of alpha VOC and lineage B.1.466.2 was low. These assays detect mutations present in alpha, beta and gamma VOCs. Of the VOCs which have subsequently emerged, the assays should detect omicron (B.1.1.529) but not B.1.617.2 (delta). In conclusion, spike variant PCR assays can be used to rapidly monitor selected SARS-CoV-2 VOCs in resource-limited settings, but require updates as new variants emerge.
  10. Baharin SNAN, Tan SL, Sam IC, Chan YF
    Trop Biomed, 2023 Dec 01;40(4):478-485.
    PMID: 38308836 DOI: 10.47665/tb.40.4.014
    Hand, foot, and mouth disease (HFMD) is a contagious childhood disease caused by enteroviruses including enterovirus A71 (EV-A71), coxsackievirus A6 (CV-A6) and CV-A16 transmitted via direct and indirect contact. Different types of toy surfaces can affect the stability of viruses. Understanding the stability of enteroviruses on toys provides insightful data for effective disinfection in kindergartens or homes. Porous (ethylene-vinyl acetate mat foam, paper, pinewood, polyester fabric, and squishy polyurethane foam) and non-porous (acrylonitrile butadiene styrene plastic and stainless-steel coin) surfaces were inoculated with EV-A71 at 4, 24, and 35°C, and coxsackieviruses at 24°C. Infectious enteroviruses were recovered and titred in median tissue culture infectious dose assay (TCID50). Atomic force microscopy (AFM) images were taken from surfaces to examine association of surface roughness with virus stability. Overall, infectious enteroviruses were persistent on all non-porous and porous surfaces. Virus persistence was longest at 4°C followed by 24°C and 35°C. EV-A71 half-lives ranged between 6.4-12.8 hours at 4°C, 2.4-6.7 hours at 24°C, and 0.13-2.7 hours at 35°C. At lower virus titres exposed to 24°C, half-lives of enteroviruses ranged from 0.1-1.4 hours. Surface roughness values from AFM suggested smooth surfaces of non-porous surfaces were associated with better virus stability. Temperature, enterovirus concentration, and type of surface affected persistence and stability of enteroviruses. Our findings suggest both porous and non-porous surfaces in kindergartens allow enterovirus persistence and should be frequently disinfected to curb HFMD outbreaks in kindergartens.
  11. Leifels M, Khalilur Rahman O, Sam IC, Cheng D, Chua FJD, Nainani D, et al.
    ISME Commun, 2022;2(1):107.
    PMID: 36338866 DOI: 10.1038/s43705-022-00191-8
    The human population has doubled in the last 50 years from about 3.7 billion to approximately 7.8 billion. With this rapid expansion, more people live in close contact with wildlife, livestock, and pets, which in turn creates increasing opportunities for zoonotic diseases to pass between animals and people. At present an estimated 75% of all emerging virus-associated infectious diseases possess a zoonotic origin, and outbreaks of Zika, Ebola and COVID-19 in the past decade showed their huge disruptive potential on the global economy. Here, we describe how One Health inspired environmental surveillance campaigns have emerged as the preferred tools to monitor human-adjacent environments for known and yet to be discovered infectious diseases, and how they can complement classical clinical diagnostics. We highlight the importance of environmental factors concerning interactions between animals, pathogens and/or humans that drive the emergence of zoonoses, and the methodologies currently proposed to monitor them-the surveillance of wastewater, for example, was identified as one of the main tools to assess the spread of SARS-CoV-2 by public health professionals and policy makers during the COVID-19 pandemic. One-Health driven approaches that facilitate surveillance, thus harbour the potential of preparing humanity for future pandemics caused by aetiological agents with environmental reservoirs. Via the example of COVID-19 and other viral diseases, we propose that wastewater surveillance is a useful complement to clinical diagnosis as it is centralized, robust, cost-effective, and relatively easy to implement.
  12. Aw-Yong KL, Sam IC, Koh MT, Chan YF
    PLoS One, 2016;11(11):e0165659.
    PMID: 27806091 DOI: 10.1371/journal.pone.0165659
    Enterovirus A71 (EV-A71) is one of the main causative agents of hand, foot and mouth disease (HFMD). Unlike other enteroviruses that cause HFMD, EV-A71 is more frequently associated with severe neurological complications and fatality. To date, no effective licensed antivirals are available to combat EV-A71 infection. Little is known about the immunogenicity of viral non-structural proteins in humans. Previous studies have mainly focused on characterization of epitopes of EV-A71 structural proteins by using immunized animal antisera. In this study, we have characterized human antibody responses against the structural and non-structural proteins of EV-A71. Each viral protein was cloned and expressed in either bacterial or mammalian systems, and tested with antisera by western blot. Results revealed that all structural proteins (VP1-4), and non-structural proteins 2A, 3C and 3D were targets of EV-A71 IgM, whereas EV-A71 IgG recognized all the structural and non-structural proteins. Sixty three synthetic peptides predicted to be immunogenic in silico were synthesized and used for the characterization of EV-A71 linear B-cell epitopes. In total, we identified 22 IgM and four IgG dominant epitopes. Synthetic peptide PEP27, corresponding to residues 142-156 of VP1, was identified as the EV-A71 IgM-specific immunodominant epitope. PEP23, mapped to VP1 41-55, was recognized as the EV-A71 IgG cross-reactive immunodominant epitope. The structural protein VP1 is the major immunodominant site targeted by anti-EV-A71 IgM and IgG antibodies, but epitopes against non-structural proteins were also detected. These data provide new understanding of the immune response to EV-A71 infection, which benefits the development of diagnostic tools, potential therapeutics and subunit vaccine candidates.
  13. Gonçalves-Carneiro D, Mastrocola E, Lei X, DaSilva J, Chan YF, Bieniasz PD
    Nat Microbiol, 2022 Oct;7(10):1558-1567.
    PMID: 36075961 DOI: 10.1038/s41564-022-01223-8
    Attenuation of a virulent virus is a proven approach for generating vaccines but can be unpredictable. For example, synonymous recoding of viral genomes can attenuate replication but sometimes results in pleiotropic effects that confound rational vaccine design. To enable specific, conditional attenuation of viruses, we examined target RNA features that enable zinc finger antiviral protein (ZAP) function. ZAP recognized CpG dinucleotides and targeted CpG-rich RNAs for depletion, but RNA features such as CpG numbers, spacing and surrounding nucleotide composition that enable specific modulation by ZAP were undefined. Using synonymously mutated HIV-1 genomes, we defined several sequence features that govern ZAP sensitivity and enable stable attenuation. We applied rules derived from experiments with HIV-1 to engineer a mutant enterovirus A71 genome whose attenuation was stable and strictly ZAP-dependent, both in cell culture and in mice. The conditionally attenuated enterovirus A71 mutant elicited neutralizing antibodies that were protective against wild-type enterovirus A71 infection and disease in mice. ZAP sensitivity can thus be readily applied for the rational design of conditionally attenuated viral vaccines.
  14. Sam IC, Shaw R, Chan YF, Hooi PS, Hurt AC, Barr IG
    J Med Virol, 2013 Aug;85(8):1420-5.
    PMID: 23765779 DOI: 10.1002/jmv.23622
    Relatively little is known about the burden of influenza in tropical countries. The seroprevalence of pandemic influenza A (H1N1) 2009, seasonal H1N1 and H3N2 was determined in Kuala Lumpur, Malaysia. Pre- and post-pandemic residual laboratory sera were tested by hemagglutination-inhibition. The seroprevalence of A(H1N1)pdm09 increased from 3.7% pre-pandemic to 21.9% post-pandemic, giving an overall cumulative incidence of 18.1% (95% CI, 13.8-22.5%), mainly due to increases in those <5, 5-17, and 18-29 years old. In contrast with findings from USA, Europe, and Australia, pre-existing seroprevalence to A(H1N1)pdm09 was low at 5.6% in the elderly age group of >55 years. A(H1N1)pdm09 affected almost a third of those <30 years in Kuala Lumpur. Pre-pandemic seroprevalence was 14.7% for seasonal H1N1 and 21.0% for H3N2, and these rates did not change significantly after the pandemic. Seasonal and pandemic influenza cause a considerable burden in tropical Malaysia, particularly in children and young adults.
  15. Sam IC, Abdul-Murad A, Karunakaran R, Rampal S, Chan YF, Nathan AM, et al.
    Int J Infect Dis, 2010 Sep;14 Suppl 3:e36-40.
    PMID: 20153233 DOI: 10.1016/j.ijid.2009.10.005
    OBJECTIVES: The clinical impact of seasonal influenza is understudied in tropical countries. The aim of this study was to describe the clinical features and seasonal pattern of influenza in children hospitalized in Malaysia, and to identify predictors of severe disease.
    METHODS: Children hospitalized with community-acquired, laboratory-confirmed influenza at a teaching hospital in Kuala Lumpur, Malaysia during 2002-2007 were identified retrospectively. Clinical data were collected, and predictors of severe disease were identified by multivariate logistic regression. All influenza cases from 1982 to 2007 were also analyzed for seasonal patterns.
    RESULTS: A total of 132 children were included in the study, 48 (36.4%) of whom had underlying medical conditions. The mean age was 2.5 years and 116 (87.9%) were <5 years old. The most common presenting features were fever or history of fever, cough, rhinitis, vomiting, and pharyngitis. Severe influenza was seen in 16 patients (12.1%; nine previously healthy), including 12 (9.1%; eight previously healthy) requiring intensive care. There were three (2.3%) deaths. Severe disease was associated with age <12 months, female sex, and absence of rhinitis on admission. Influenza was seen year-round, with peaks in November-January and May-July.
    CONCLUSIONS: Seasonal influenza has a considerable impact on children hospitalized in Malaysia, in both the healthy and those with underlying medical conditions.

    Study site: University Malaya Medical Centre (UMMC)
  16. Sam IC, Chan YF, Chan SY, Loong SK, Chin HK, Hooi PS, et al.
    J Clin Virol, 2009 Oct;46(2):180-3.
    PMID: 19683467 DOI: 10.1016/j.jcv.2009.07.016
    BACKGROUND: Chikungunya virus (CHIKV) of the Central/East African genotype has caused large outbreaks worldwide in recent years. In Malaysia, limited CHIKV outbreaks of the endemic Asian and imported Central/East African genotypes were reported in 1998 and 2006. Since April 2008, an unprecedented nationwide outbreak has affected Malaysia.
    OBJECTIVE: To study the molecular epidemiology of the current Malaysian CHIKV outbreak, and to evaluate cross-neutralisation activity of serum from infected patients against isolates of Asian and Central/East African genotypes.
    STUDY DESIGN: Serum samples were collected from 83 patients presenting in 2008, and tested with PCR for the E1 gene, virus isolation, and for IgM. Phylogenetic analysis was performed on partial E1 gene sequences of 837bp length. Convalescent serum from the current outbreak and Bagan Panchor outbreak (Asian genotype, 2006) were tested for cross-neutralising activity against representative strains from each outbreak.
    RESULTS: CHIKV was confirmed in 34 patients (41.0%). The current outbreak strain has the A226V mutation in the E1 structural protein, and grouped with Central/East African isolates from recent global outbreaks. Serum cross-neutralisation activity against both Central/East African and Asian genotypes was observed at titres from 40 to 1280.
    CONCLUSIONS: The CHIKV strain causing the largest Malaysian outbreak is of the Central/East African genotype. The presence of the A226V mutation, which enhances transmissibility of CHIKV by Aedes albopictus, may explain the extensive spread especially in rural areas. Serum cross-neutralisation of different genotypes may aid potential vaccines and limit the effect of future outbreaks.
  17. Chan YF, Abubakar S
    Malays J Pathol, 2003 Jun;25(1):29-35.
    PMID: 16196375
    The effects of Enterovirus 71 (HEV71) infection on African green monkey kidney cells (Vero) were investigated. It was found that the infected cells showed progressive cellular morphological changes characteristic in apoptotic cells within 10 hours post-infection. The number of apoptotic cells correlated significantly with the number of HEV71 antigen positive cells when cells were labeled using terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) and stained for HEV71 antigen. Approximately 11, 26, 45 and 50% of the infected cells were apoptotic at 12, 24, 48 and 72 hours post-infection, respectively. Internucleosomal DNA fragmentation, characteristic in the late stage of apoptosis was noted beginning on day 2 post-infection. The DNA fragmentation, however, was absent in cells treated with the heat- and ultraviolet light-inactivated virus inocula. These results demonstrate the capacity of HEV71 to induce apoptosis in the infected cells. The induction, however, requires high level of HEV71 infectivity and the presence of live virus particles, suggesting the need for the presence of specific viral proteins for apoptosis to occur.
  18. Chan YF, AbuBaker S
    Emerg Infect Dis, 2004 Aug;10(8):1468-70.
    PMID: 15496251
    Hand, foot and mouth disease (HFMD) is a common illness of infants and young children <10 years of age. It is characterized by fever, ulcers in the oral cavity, and rashes with blisters that appear on the palm and sole. The most common causal agents of HFMD are coxsackievirus A16 (CV-A16) and human enterovirus 71 (HEV71), but other enteroviruses, including CV-A5 and CV-A10, can also cause it. When caused by CV-A16 infection, it is usually a mild disease, and patients normally recover without requiring any special medical attention.
  19. Chan YF, Sam IC, AbuBakar S
    Infect Genet Evol, 2010 Apr;10(3):404-12.
    PMID: 19465162 DOI: 10.1016/j.meegid.2009.05.010
    Human enterovirus 71 (EV-71) is genotyped for molecular epidemiological investigation mainly using the two structural genes, VP1 and VP4. Based on these, EV-71 is divided into three genotypes, A, B and C, and within the genotypes B and C, there are further subgenotypes, B1-B5 and C1-C5. Classification using these genes is useful but gives incomplete phylogenetic information. In the present study, the phylogenetic relationships amongst all the known EV-71 and human enterovirus A (HEV-A) isolates with complete genome sequences were examined. A different tree topology involving EV-71 isolates of subgenotypes, C4 and B5 was obtained in comparison to that drawn using VP1. The nucleotide sequence divergence of the C4 isolates was 18.11% (17-20%) when compared to other isolates of subgenotype C. However, this positions the C4 isolates within the cut-off divergence value of 17-22% used to designate the virus genotypes. Hence, it is proposed here that C4 should be designated as a new genotype D. In addition, the subgenotype B5 isolates had an average nucleotide divergence of only 6.14% (4-8%) when compared to other subgenotype B4 isolates. This places the B5 isolates within the subgenotype B4. It is proposed here that the B5 isolates to be redesignated as B4. With the newly proposed genotype D and inclusion of subgenotype B5 within B4, the average nucleotide divergence between genotypes was 18.99% (17-22%). Inter- and intra-subgenotype average divergences were 12.02% (10-14%) and 3.92% (1-10%), respectively. A phylogenetic tree built using the full genome sequences is robust as it takes into consideration changes in the sequences of both the structural and non-structural genes. Similar nucleotide similarities, however, were obtained if only VP1 and 3D RNA polymerase genes were used. Furthermore, addition of 3D RNA polymerase sequences will also show recombination events. Hence, in the absence of full genome sequences, it is proposed here that a combination of VP1 and 3D RNA polymerase gene sequences be used for initial genotyping of EV-71 isolates.
  20. Chan YF, AbuBakar S
    Virol J, 2005;2:74.
    PMID: 16122396
    At least three different EV-71 subgenotypes were identified from an outbreak in Malaysia in 1998. The subgenotypes C2 and B4 were associated with the severe and fatal infections, whereas the B3 virus was associated with mild to subclinical infections. The B3 virus genome sequences had >= 85% similarity at the 3' end to CV-A16. This offers opportunities to examine if there are characteristic similarities and differences in virulence between CV-A16, EV-71 B3 and EV-71 B4 and to determine if the presence of the CV-A16-liked genes in EV-71 B3 would also confer the virus with a CV-A16-liked neurovirulence in mice model infection.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links