Displaying publications 81 - 88 of 88 in total

Abstract:
Sort:
  1. Norrrahim MNF, Ariffin H, Yasim-Anuar TAT, Hassan MA, Ibrahim NA, Yunus WMZW, et al.
    Polymers (Basel), 2021 Mar 28;13(7).
    PMID: 33800573 DOI: 10.3390/polym13071064
    Residual hemicellulose could enhance cellulose nanofiber (CNF) processing as it impedes the agglomeration of the nanocellulose fibrils and contributes to complete nanofibrillation within a shorter period of time. Its effect on CNF performance as a reinforcement material is unclear, and hence this study seeks to evaluate the performance of CNF in the presence of amorphous hemicellulose as a reinforcement material in a polypropylene (PP) nanocomposite. Two types of CNF were prepared: SHS-CNF, which contained about 11% hemicellulose, and KOH-CNF, with complete hemicellulose removal. Mechanical properties of the PP/SHS-CNF and PP/KOH-CNF showed an almost similar increment in tensile strength (31% and 32%) and flexural strength (28% and 29%) when 3 wt.% of CNF was incorporated in PP, indicating that hemicellulose in SHS-CNF did not affect the mechanical properties of the PP nanocomposite. The crystallinity of both PP/SHS-CNF and PP/KOH-CNF nanocomposites showed an almost similar value at 55-56%. A slight decrement in thermal stability was seen, whereby the decomposition temperature at 10% weight loss (Td10%) of PP/SHS-CNF was 6 °C lower at 381 °C compared to 387 °C for PP/KOH-CNF, which can be explained by the degradation of thermally unstable hemicellulose. The results from this study showed that the presence of some portion of hemicellulose in CNF did not affect the CNF properties, suggesting that complete hemicellulose removal may not be necessary for the preparation of CNF to be used as a reinforcement material in nanocomposites. This will lead to less harsh pretreatment for CNF preparation and, hence, a more sustainable nanocomposite can be produced.
  2. Abioye KJ, Harun NY, Sufian S, Yusuf M, Kamyab H, Hassan MA, et al.
    Chemosphere, 2023 Mar 23;330:138452.
    PMID: 36965529 DOI: 10.1016/j.chemosphere.2023.138452
    Combustion of palm oil decanter cake (PODC) is a propitious alternative waste to energy means. However, the mono-combustion of PODC prompt severe ash slagging behavior which give rise to reduction in heat transfer and also shorten the lifespan of combustion reactors. In this study, alum sludge (AS) was introduced at different proportion of 30%, 50% and 70% to revamp the slagging characteristics of PODC during combustion. The addition of AS improved ash fusion temperature of PODC during co-combustion as ash fusion temperature increased significantly under high AS dosage. Slagging and fouling indices showed that at 50% AS addition, slagging tendency of the co-combustion ashes can be ignored. The predictive model for PODC-AS combustion showed good correlation coefficient with 0.89. Overall, co-combustion of PODC and AS is an ideal ash related problem-solving route. The proposed PODC slagging preventive method by AS was based on: (1) limited amount of aluminum content in PODC-AS system resulted in development of refractory ash (2) reduction in proportion of basic oxide which act as ash bonding glue played important role in the regulation of slagging (3) reduction of cohesive bond by formation of spongy and porous structure which prevented ash slagging.
  3. Mohd-Nor D, Ramli N, Sharuddin SS, Hassan MA, Mustapha NA, Ariffin H, et al.
    Microbes Environ, 2019 Jun 27;34(2):121-128.
    PMID: 30905894 DOI: 10.1264/jsme2.ME18104
    Despite efforts to address the composition of the microbial community during the anaerobic treatment of palm oil mill effluent (POME), its composition in relation to biodegradation in the full-scale treatment system has not yet been extensively examined. Therefore, a thorough analysis of bacterial and archaeal communities was performed in the present study using MiSeq sequencing at the different stages of the POME treatment, which comprised anaerobic as well as facultative anaerobic and aerobic processes, including the mixed raw effluent (MRE), mixing pond, holding tank, and final discharge phases. Based on the results obtained, the following biodegradation processes were suggested to occur at the different treatment stages: (1) Lactobacillaceae (35.9%) dominated the first stage, which contributed to high lactic acid production; (2) the higher population of Clostridiaceae in the mixing pond (47.7%) and Prevotellaceae in the holding tank (49.7%) promoted acetic acid production; (3) the aceticlastic methanogen Methanosaetaceae (0.6-0.8%) played a role in acetic acid degradation in the open digester and closed reactor for methane generation; (4) Syntrophomonas (21.5-29.2%) appeared to be involved in the degradation of fatty acids and acetic acid by syntrophic cooperation with the hydrogenotrophic methanogen, Methanobacteriaceae (0.6-1.3%); and (5) the phenols and alcohols detected in the early phases, but not in the final discharge phase, indicated the successful degradation of lignocellulosic materials. The present results contribute to a better understanding of the biodegradation mechanisms involved in the different stages of the full-scale treatment of POME.
  4. Rosman NH, Nor Anuar A, Othman I, Harun H, Sulong Abdul Razak MZ, Elias SH, et al.
    Bioresour Technol, 2013 Feb;129:620-3.
    PMID: 23317554 DOI: 10.1016/j.biortech.2012.12.113
    Aerobic granular sludge (AGS) was successfully cultivated at 27±1 °C and pH 7.0±1 during the treatment of rubber wastewater using a sequential batch reactor system mode with complete cycle time of 3 h. Results showed aerobic granular sludge had an excellent settling ability and exhibited exceptional performance in the organics and nutrients removal from rubber wastewater. Regular, dense and fast settling granule (average diameter, 1.5 mm; settling velocity, 33 m h(-1); and sludge volume index, 22.3 mL g(-1)) were developed in a single reactor. In addition, 96.5% COD removal efficiency was observed in the system at the end of the granulation period, while its ammonia and total nitrogen removal efficiencies were up to 94.7% and 89.4%, respectively. The study demonstrated the capabilities of AGS development in a single, high and slender column type-bioreactor for the treatment of rubber wastewater.
  5. Lawal AA, Hassan MA, Ahmad Farid MA, Tengku Yasim-Anuar TA, Samsudin MH, Mohd Yusoff MZ, et al.
    Environ Pollut, 2021 Jan 15;269:116197.
    PMID: 33316496 DOI: 10.1016/j.envpol.2020.116197
    In order to meet the growing demand for adsorbents to treat wastewater effectively, there has been increased interest in using sustainable biomass feedstocks. In this present study, the dermal tissue of oil palm frond was pyrolyzed with superheated steam at 500 °C to produce nanoporous biochar as bioadsorbent. The effect of operating conditions was investigated to understand the adsorption mechanism and to enhance the adsorption of phenol and tannic acid. The biochar had a microporous structure with a Brunauer-Emmett-Teller surface area of 422 m2/g containing low polar groups. The adsorption capacity of 62.89 mg/g for phenol and 67.41 mg/g for tannic acid were obtained using 3 g/L biochar dosage after 8 h of treatment at solution pH of 6.5 and temperature of 45 °C. The Freundlich model had the best fit to the isotherm data of phenol (R2 of 0.9863), while the Langmuir model best elucidated the isotherm data of tannic acid (R2 of 0.9632). These indicated that the biochar-phenol interface was associated with a heterogeneous multilayer sorption mechanism, while the biochar-tannic acid interface had a nonspecific monolayer sorption mechanism. The residual concentration of 26.3 mg/L phenol and 23.1 mg/L tannic acid was achieved when treated from 260 mg/L three times consecutively with 1 g/L biochar dosage, compared to a reduction to 72.3 mg/L phenol and 69.9 mg/L tannic acid using 3 g/L biochar dosage in a single treatment. The biochar exhibited effective adsorption of phenol and tannic acid, making it possible to treat effluents that contain varieties of phenolic compounds.
  6. Razali RA, Nik Ahmad Eid NAH, Jayaraman T, Amir Hassan MA, Azlan NQ, Ismail NF, et al.
    BMC Complement Altern Med, 2018 Jun 26;18(1):197.
    PMID: 29940929 DOI: 10.1186/s12906-018-2250-5
    BACKGROUND: One of the molecular mechanisms involved in upper airway-related diseases is epithelial-to-mesenchymal transition (EMT). Olea europaea (OE) has anti-inflammatory properties and thus, great potential to prevent EMT. This study aimed to investigate the effect of OE on EMT in primary nasal human respiratory epithelial cells (RECs).

    METHODS: Respiratory epithelial cells were isolated and divided into four groups: control (untreated), treated with 0.05% OE (OE group), EMT induced with 5 ng/ml of transforming growth factor beta-1 (TGFβ1 group) and treated with 5 ng/ml TGFβ1 + 0.05% OE (TGFβ1 + OE group). The effects of OE treatment on growth kinetics, morphology and protein expression in RECs were evaluated. Immunocytochemistry analysis was performed to quantitate the total percentage of E-cadherin and vimentin expression from day 1 to day 3.

    RESULTS: There were no significant differences between untreated RECs and OE-treated RECs in terms of their morphology, growth kinetics and protein expression. Induction with TGFβ1 caused RECs to have an elongated spindle shape, a slower proliferation rate, a higher expression of vimentin and a lower expression of E-cadherin compared with the control. Cells in the TGFβ1 + OE group had similar epithelial shape to untreated group however it had no significant differences in their proliferation rate when compared to TGFβ1-induced RECs. Cells treated with TGFβ1 + OE showed significantly reduced expression of vimentin and increased expression of E-cadherin compared with the TGFβ1 group (P 

  7. Yee Foong Ng L, Ariffin H, Tengku Yasim-Anuar TA, Sakata M, Kawarada T, Yoshimura O, et al.
    RSC Adv, 2024 Jul 05;14(30):21971-21981.
    PMID: 39006768 DOI: 10.1039/d3ra08721b
    This study promotes the use of nanobiochar (NBC) as an environmentally friendly substitute to conventional fillers to improve various properties of biopolymers such as their mechanical strength, thermal stability and crystallization properties. TGA analysis showed a slight increase in onset thermal degradation temperature of the composites by up to 5 °C with the addition of 4 wt% NBC. Non-isothermal DSC analysis determined that the addition of NBC into PHBHHx increases the crystallization temperature and degree of crystallinity of PHBHHx while isothermal DSC analysis demonstrated higher crystallization rate in PHBHHx/NBC composited by up to 54%. PHBHHx incorporated with NBC also exhibited superior tensile strength and modulus versus neat PHBHHx. Increase in mechanical strength was further proven via DMA where PHBHHx/NBC composites maintained higher storage modulus at higher temperatures when compared to neat PHBHHx. PHBHHx/NBC also exhibited no cytotoxicity effect against HaCat cells. This study demonstrates the ability of biochar to act as both nucleating agents and reinforcing agents in biodegradable polymers such as PHBHHx, which could be suitable for packaging application.
  8. Mohammed AA, Shantier SW, Mustafa MI, Osman HK, Elmansi HE, Osman IA, et al.
    J Immunol Res, 2020;2020:2567957.
    PMID: 32377531 DOI: 10.1155/2020/2567957
    Background: Nipah belongs to the genus Henipavirus and the Paramyxoviridae family. It is an endemic most commonly found at South Asia and has first emerged in Malaysia in 1998. Bats are found to be the main reservoir for this virus, causing disease in both humans and animals. The last outbreak has occurred in May 2018 in Kerala. It is characterized by high pathogenicity and fatality rates which varies from 40% to 70% depending on the severity of the disease and on the availability of adequate healthcare facilities. Currently, there are no antiviral drugs available for NiV disease and the treatment is just supportive. Clinical presentations for this virus range from asymptomatic infection to fatal encephalitis.

    Objective: This study is aimed at predicting an effective epitope-based vaccine against glycoprotein G of Nipah henipavirus, using immunoinformatics approaches.

    Methods and Materials: Glycoprotein G of the Nipah virus sequence was retrieved from NCBI. Different prediction tools were used to analyze the epitopes, namely, BepiPred-2.0: Sequential B Cell Epitope Predictor for B cell and T cell MHC classes II and I. Then, the proposed peptides were docked using Autodock 4.0 software program. Results and Conclusions. The two peptides TVYHCSAVY and FLIDRINWI have showed a very strong binding affinity to MHC class I and MHC class II alleles. Furthermore, considering the conservancy, the affinity, and the population coverage, the peptide FLIDRINWIT is highly suitable to be utilized to formulate a new vaccine against glycoprotein G of Nipah henipavirus. An in vivo study for the proposed peptides is also highly recommended.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links