Perak River basin is in Perak state of Peninsular Malaysia. In this research, the river stretch serves as water intake for domestic, agricultural and industrial purposes in Perak Tengah, Hilir Perak and Manjung regions. It is located in mixed use area whilst exposing the river to anthropogenic elements. The sampling locations were conducted at selected points of Perak River namely Tanjung Belanja Bridge (TBB), Water Treatment Plant Parit (WTPP), Parit Town discharge (PTD), Water Treatment Plant Senin (WTPS) and Water Treatment Plant Kepayang (WTPK). The existence of aromatic hydrocarbons in freshwater samples was pre-assessed via qualification analysis; specific ultraviolet absorbance (SUVA254) method at 254 nm of wavelength. The SUVA dataset were 48.38 L/mg-m (TBB), 50.54 L/mg-m (WTPP), 8.05 L/mg-m (PTD), 85.75 L/mg-m (WTPS) and 217.39 L/mg-m (WTPK). The SUVA254 values of fresh water at the river basin have exceeded the water quality standards value equivalent to 2.0 L/mg-m permitted by the Environmental Protection Agency of United States. The exceeding values were an indication of a large portion of aromatic compounds in the water. Qualification analyses evident the existence of water pollutants at treacherous concentrations for public health in freshwater samples of Perak River basin. Thus, this research has presented important findings towards further research and countermeasure for a better alternative of water treatment in Malaysia.
Wheat is an important global staple food crop; however, its productivity is severely hampered by changing climate. Erratic rain patterns cause terminal drought stress, which affect reproductive development and crop yield. This study investigates the potential and zinc (Zn) and silicon (Si) to ameliorate terminal drought stress in wheat and associated mechanisms. Two different drought stress levels, i.e., control [80% water holding capacity (WHC) was maintained] and terminal drought stress (40% WHC maintained from BBCH growth stage 49 to 83) combined with five foliar-applied Zn-Si combinations (i.e., control, water spray, 4 mM Zn, 40 mM Si, 4 mM Zn + 40 mM Si applied 7 days after the initiation of drought stress). Results revealed that application of Zn and Si improved chlorophyll and relative water contents under well-watered conditions and terminal drought stress. Foliar application of Si and Zn had significant effect on antioxidant defense mechanism, proline and soluble protein, which showed that application of Si and Zn ameliorated the effects of terminal drought stress mainly by regulating antioxidant defense mechanism, and production of proline and soluble proteins. Combined application of Zn and Si resulted in the highest improvement in growth and antioxidant defense. The application of Zn and Si improved yield and related traits, both under well-watered conditions and terminal drought stress. The highest yield and related traits were recorded for combined application of Zn and Si. For grain and biological yield differences among sole and combined Zn-Si application were statistically non-significant (p>0.05). In conclusion, combined application of Zn-Si ameliorated the adverse effects of terminal drought stress by improving yield through regulating antioxidant mechanism and production of proline and soluble proteins. Results provide valuable insights for further cross talk between Zn-Si regulatory pathways to enhance grain biofortification.
In the current study, a phase inversion scheme was employed to fabricate hydroxyapatite (HA)/polysulfone (PSF)-based asymmetric membranes using a film applicator with water as a solvent and nonsolvent exchanging medium. Fourier Transform Infrared (FTIR) and X-ray diffraction (XRD) spectroscopic studies were conducted to confirm the bonding chemistry and purity of filler. The inherent thick nature of PSF generated sponge-like shape while the instantaneous demixing process produced finger-like pore networks in HA/PSF-based asymmetric membranes as exhibited by scanning electron microscope (SEM) micrographs. The FTIR spectra confirmed noncovalent weak attractions toward the polymer surface. The leaching ratio was evaluated to observe the dispersion behavior of HA filler in membrane composition. Hydrophilicity, pore profile, pure water permeation (PWP) flux, and molecular weight cutoff (MWCO) values of all formulated membranes were also calculated. Antifouling results revealed that HA modified PSF membranes exhibited 43% less adhesion of bovine serum albumin (BSA) together with >86% recovery of flux. Membrane composition showed 74% total resistance, out of which 60% was reversible resistance. Biocompatibility evaluation revealed that the modified membranes exhibited prothrombin time (PT), and thrombin time (TT) comparable with typical blood plasma, whereas proliferation of living cells over membrane surface proved its nontoxic behavior toward biomedical application. The urea and creatinine showed effective adsorption aptitude toward HA loaded PSF membranes.
The rise of artificial intelligence (AI) applications in healthcare provides new possibilities for personalized health management. AI-based fitness applications are becoming more common, facilitating the opportunity for individualised exercise prescription. However, the use of AI carries the risk of inadequate expert supervision, and the efficacy and validity of such applications have not been thoroughly investigated, particularly in the context of diverse health conditions. The aim of the study was to critically assess the efficacy of exercise prescriptions generated by OpenAI's Generative Pre-Trained Transformer 4 (GPT-4) model for five example patient profiles with diverse health conditions and fitness goals. Our focus was to assess the model's ability to generate exercise prescriptions based on a singular, initial interaction, akin to a typical user experience. The evaluation was conducted by leading experts in the field of exercise prescription. Five distinct scenarios were formulated, each representing a hypothetical individual with a specific health condition and fitness objective. Upon receiving details of each individual, the GPT-4 model was tasked with generating a 30-day exercise program. These AI-derived exercise programs were subsequently subjected to a thorough evaluation by experts in exercise prescription. The evaluation encompassed adherence to established principles of frequency, intensity, time, and exercise type; integration of perceived exertion levels; consideration for medication intake and the respective medical condition; and the extent of program individualization tailored to each hypothetical profile. The AI model could create general safety-conscious exercise programs for various scenarios. However, the AI-generated exercise prescriptions lacked precision in addressing individual health conditions and goals, often prioritizing excessive safety over the effectiveness of training. The AI-based approach aimed to ensure patient improvement through gradual increases in training load and intensity, but the model's potential to fine-tune its recommendations through ongoing interaction was not fully satisfying. AI technologies, in their current state, can serve as supplemental tools in exercise prescription, particularly in enhancing accessibility for individuals unable to access, often costly, professional advice. However, AI technologies are not yet recommended as a substitute for personalized, progressive, and health condition-specific prescriptions provided by healthcare and fitness professionals. Further research is needed to explore more interactive use of AI models and integration of real-time physiological feedback.
Background: Diabetes mellitus rates continue to rise, which coupled with increasing costs of associated complications has appreciably increased global expenditure in recent years. The risk of complications are enhanced by poor glycaemic control including hypoglycaemia. Long-acting insulin analogues were developed to reduce hypoglycaemia and improve adherence. Their considerably higher costs though have impacted their funding and use. Biosimilars can help reduce medicine costs. However, their introduction has been affected by a number of factors. These include the originator company dropping its price as well as promoting patented higher strength 300 IU/ml insulin glargine. There can also be concerns with different devices between the manufacturers. Objective: To assess current utilisation rates for insulins, especially long-acting insulin analogues, and the rationale for patterns seen, across multiple countries to inform strategies to enhance future utilisation of long-acting insulin analogue biosimilars to benefit all key stakeholders. Our approach: Multiple approaches including assessing the utilisation, expenditure and prices of insulins, including biosimilar insulin glargine, across multiple continents and countries. Results: There was considerable variation in the use of long-acting insulin analogues as a percentage of all insulins prescribed and dispensed across countries and continents. This ranged from limited use of long-acting insulin analogues among African countries compared to routine funding and use across Europe in view of their perceived benefits. Increasing use was also seen among Asian countries including Bangladesh and India for similar reasons. However, concerns with costs and value limited their use across Africa, Brazil and Pakistan. There was though limited use of biosimilar insulin glargine 100 IU/ml compared with other recent biosimilars especially among European countries and Korea. This was principally driven by small price differences in reality between the originator and biosimilars coupled with increasing use of the patented 300 IU/ml formulation. A number of activities were identified to enhance future biosimilar use. These included only reimbursing biosimilar long-acting insulin analogues, introducing prescribing targets and increasing competition among manufacturers including stimulating local production. Conclusions: There are concerns with the availability and use of insulin glargine biosimilars despite lower costs. This can be addressed by multiple activities.