METHODS: This study included 344 patients from the Korean Obstructive Lung Disease (KOLD) cohort. External validation was performed on a cohort of 112 patients. In total, 525 chest CT-based radiomics features were semi-automatically extracted. The five most useful features for survival prediction were selected by least absolute shrinkage and selection operation (LASSO) Cox regression analysis and used to generate a RS. The ability of the RS for classifying COPD patients into high or low mortality risk groups was evaluated with the Kaplan-Meier survival analysis and Cox proportional hazards regression analysis.
RESULTS: The five features remaining after the LASSO analysis were %LAA-950, AWT_Pi10_6th, AWT_Pi10_heterogeneity, %WA_heterogeneity, and VA18mm. The RS demonstrated a C-index of 0.774 in the discovery group and 0.805 in the validation group. Patients with a RS greater than 1.053 were classified into the high-risk group and demonstrated worse overall survival than those in the low-risk group in both the discovery (log-rank test, < 0.001; hazard ratio [HR], 5.265) and validation groups (log-rank test, < 0.001; HR, 5.223). For both groups, RS was significantly associated with overall survival after adjustments for patient age and body mass index.
CONCLUSIONS: A radiomics approach for survival prediction and risk stratification in COPD patients is feasible, and the constructed radiomics model demonstrated acceptable performance. The RS derived from chest CT data of COPD patients was able to effectively identify those at increased risk of mortality.
KEY POINTS: • A total of 525 chest CT-based radiomics features were extracted and the five radiomics features of %LAA-950, AWT_Pi10_6th, AWT_Pi10_heterogeneity, %WA_heterogeneity, and VA18mm were selected to generate a radiomics model. • A radiomics model for predicting survival of COPD patients demonstrated reliable performance with a C-index of 0.774 in the discovery group and 0.805 in the validation group. • Radiomics approach was able to effectively identify COPD patients with an increased risk of mortality, and patients assigned to the high-risk group demonstrated worse overall survival in both the discovery and validation groups.
METHODS: In this double-blind, phase 3 trial, we randomly assigned 556 patients with previously untreated, EGFR mutation-positive (exon 19 deletion or L858R) advanced NSCLC in a 1:1 ratio to receive either osimertinib (at a dose of 80 mg once daily) or a standard EGFR-TKI (gefitinib at a dose of 250 mg once daily or erlotinib at a dose of 150 mg once daily). The primary end point was investigator-assessed progression-free survival.
RESULTS: The median progression-free survival was significantly longer with osimertinib than with standard EGFR-TKIs (18.9 months vs. 10.2 months; hazard ratio for disease progression or death, 0.46; 95% confidence interval [CI], 0.37 to 0.57; P<0.001). The objective response rate was similar in the two groups: 80% with osimertinib and 76% with standard EGFR-TKIs (odds ratio, 1.27; 95% CI, 0.85 to 1.90; P=0.24). The median duration of response was 17.2 months (95% CI, 13.8 to 22.0) with osimertinib versus 8.5 months (95% CI, 7.3 to 9.8) with standard EGFR-TKIs. Data on overall survival were immature at the interim analysis (25% maturity). The survival rate at 18 months was 83% (95% CI, 78 to 87) with osimertinib and 71% (95% CI, 65 to 76) with standard EGFR-TKIs (hazard ratio for death, 0.63; 95% CI, 0.45 to 0.88; P=0.007 [nonsignificant in the interim analysis]). Adverse events of grade 3 or higher were less frequent with osimertinib than with standard EGFR-TKIs (34% vs. 45%).
CONCLUSIONS: Osimertinib showed efficacy superior to that of standard EGFR-TKIs in the first-line treatment of EGFR mutation-positive advanced NSCLC, with a similar safety profile and lower rates of serious adverse events. (Funded by AstraZeneca; FLAURA ClinicalTrials.gov number, NCT02296125 .).
METHODS: Research questions were formulated focusing on diagnosis and treatment of adult patients with RMD within the context of the pandemic, including the management of RMD in patients who developed COVID-19. MEDLINE was searched for eligible studies to address the questions, and the APLAR COVID-19 task force convened 2 meetings through video conferencing to discuss its findings and integrate best available evidence with expert opinion. Consensus statements were finalized using the modified Delphi process.
RESULTS: Agreement was obtained around key aspects of screening for or diagnosis of COVID-19; management of patients with RMD without confirmed COVID-19; and management of patients with RMD with confirmed COVID-19. The task force achieved consensus on 25 statements covering the potential risk of acquiring COVID-19 in RMD patients, advice on RMD medication adjustment and continuation, the roles of telemedicine and vaccination, and the impact of the pandemic on quality of life and on treatment adherence.
CONCLUSIONS: Available evidence primarily from descriptive research supported new recommendations for aspects of RMD care not covered in the previous document, particularly with regard to risk factors for complicated COVID-19 in RMD patients, modifications to RMD treatment regimens in the context of the pandemic, and COVID-19 vaccination in patients with RMD.