Displaying publications 81 - 94 of 94 in total

Abstract:
Sort:
  1. Bhidayasiri R, Panyakaew P, Trenkwalder C, Jeon B, Hattori N, Jagota P, et al.
    Parkinsonism Relat Disord, 2020 03;72:82-87.
    PMID: 32146380 DOI: 10.1016/j.parkreldis.2020.02.013
    An international panel of movement disorders specialists explored the views and perceptions of people with Parkinson's disease (PD) about their condition and its treatment, including the potential mismatch between the clinician's view of the patient's condition and their own view of what aspects of the disease most affect their daily lives. The initiative was focused on Asian countries, so participants comprised experts in the management of PD from key centers in Asia, with additional insight provided by European and the North American movement disorders experts. Analysis of peer-reviewed publications on patient perceptions of PD and the factors that they consider important to their wellbeing identified several contributing factors to the mismatch of views, including gaps in knowledge of PD and its treatment, an understanding of the clinical heterogeneity of PD, and the importance of a multidisciplinary approach to patient care. The faculty proposed options to bridge these gaps to ensure that PD patients receive the personalized treatment they need to achieve the best possible outcomes. It was considered essential to improve patient knowledge about PD and its treatment, as well as increasing the awareness of clinicians of PD heterogeneity in presentation and treatment response. A multidisciplinary and shared-care approach to PD was needed alongside the use of patient-centered outcome measures in clinical trials and clinical practice to better capture the patient experience and improve the delivery of individualized therapy.
  2. Lim JL, Ng EY, Lim SY, Tan AH, Abdul-Aziz Z, Ibrahim KA, et al.
    Neurol Sci, 2021 Oct;42(10):4203-4207.
    PMID: 33559030 DOI: 10.1007/s10072-021-05056-x
    BACKGROUND: Genome-wide association studies (GWAS) have shown that variants in the 3-methylcrotonyl-CoA carboxylase (MCCC1)/lysosome-associated membrane protein 3 (LAMP3) loci (rs10513789, rs12637471, rs12493050) reduce the risk of Parkinson's disease (PD) in Caucasians, Chinese and Ashkenazi-Jews while the rs11248060 variant in the diacylglycerol kinase theta (DGKQ) gene increases the risk of PD in Caucasian and Han Chinese cohorts. However, their roles in Malays are unknown. Therefore, this study aims to investigate the association of these variants with the risk of PD in individuals of Malay ancestry.

    METHODS: A total of 1114 subjects comprising of 536 PD patients and 578 healthy controls of Malay ancestry were recruited and genotyped using Taqman® allelic discrimination assays.

    RESULTS: The G allele of rs10513789 (OR = 0.83, p = 0.001) and A allele of rs12637471 (OR = 0.79, p = 0.007) in the MCCC1/LAMP3 locus were associated with a protective effect against developing PD in the Malay population. A recessive model of penetrance showed a protective effect of the GG genotype for rs10513789 and the AA genotype for rs12637471. No association with PD was found with the other MCCC1/LAMP3 rs12493050 variant or with the DGKQ (rs11248060) variant. No significant associations were found between the four variants with the age at PD diagnosis.

    CONCLUSION: MCCC1/LAMP3 variants rs10513789 and rs12637471 protect against PD in the Malay population.

  3. Jagota P, Ugawa Y, Aldaajani Z, Ibrahim NM, Ishiura H, Nomura Y, et al.
    J Mov Disord, 2023 Sep;16(3):231-247.
    PMID: 37309109 DOI: 10.14802/jmd.23065
    Clinical case studies and reporting are important to the discovery of new disorders and the advancement of medical sciences. Both clinicians and basic scientists play equally important roles leading to treatment discoveries for both cures and symptoms. In the field of movement disorders, exceptional observation of patients from clinicians is imperative, not just for phenomenology but also for the variable occurrences of these disorders, along with other signs and symptoms, throughout the day and the disease course. The Movement Disorders in Asia Task Force (TF) was formed to help enhance and promote collaboration and research on movement disorders within the region. As a start, the TF has reviewed the original studies of the movement disorders that were preliminarily described in the region. These include nine disorders that were first described in Asia: Segawa disease, PARK-Parkin, X-linked dystonia-parkinsonism, dentatorubral-pallidoluysian atrophy, Woodhouse-Sakati syndrome, benign adult familial myoclonic epilepsy, Kufor-Rakeb disease, tremulous dystonia associated with mutation of the calmodulin-binding transcription activator 2 gene, and paroxysmal kinesigenic dyskinesia. We hope that the information provided will honor the original researchers and help us learn and understand how earlier neurologists and basic scientists together discovered new disorders and made advances in the field, which impact us all to this day.
  4. Lange LM, Avenali M, Ellis M, Illarionova A, Keller Sarmiento IJ, Tan AH, et al.
    NPJ Parkinsons Dis, 2023 Jun 27;9(1):100.
    PMID: 37369645 DOI: 10.1038/s41531-023-00526-9
    The Monogenic Network of the Global Parkinson's Genetics Program (GP2) aims to create an efficient infrastructure to accelerate the identification of novel genetic causes of Parkinson's disease (PD) and to improve our understanding of already identified genetic causes, such as reduced penetrance and variable clinical expressivity of known disease-causing variants. We aim to perform short- and long-read whole-genome sequencing for up to 10,000 patients with parkinsonism. Important features of this project are global involvement and focusing on historically underrepresented populations.
  5. Schumacher-Schuh AF, Bieger A, Okunoye O, Mok KY, Lim SY, Bardien S, et al.
    Mov Disord, 2022 Aug;37(8):1593-1604.
    PMID: 35867623 DOI: 10.1002/mds.29126
    BACKGROUND: Human genetics research lacks diversity; over 80% of genome-wide association studies have been conducted on individuals of European ancestry. In addition to limiting insights regarding disease mechanisms, disproportionate representation can create disparities preventing equitable implementation of personalized medicine.

    OBJECTIVE: This systematic review provides an overview of research involving Parkinson's disease (PD) genetics in underrepresented populations (URP) and sets a baseline to measure the future impact of current efforts in those populations.

    METHODS: We searched PubMed and EMBASE until October 2021 using search strings for "PD," "genetics," the main "URP," and and the countries in Latin America, Caribbean, Africa, Asia, and Oceania (excluding Australia and New Zealand). Inclusion criteria were original studies, written in English, reporting genetic results on PD from non-European populations. Two levels of independent reviewers identified and extracted information.

    RESULTS: We observed imbalances in PD genetic studies among URPs. Asian participants from Greater China were described in the majority of the articles published (57%), but other populations were less well studied; for example, Blacks were represented in just 4.0% of the publications. Also, although idiopathic PD was more studied than monogenic forms of the disease, most studies analyzed a limited number of genetic variants. We identified just nine studies using a genome-wide approach published up to 2021, including URPs.

    CONCLUSION: This review provides insight into the significant lack of population diversity in PD research highlighting the immediate need for better representation. The Global Parkinson's Genetics Program (GP2) and similar initiatives aim to impact research in URPs, and the early metrics presented here can be used to measure progress in the field of PD genetics in the future. © 2022 International Parkinson and Movement Disorder Society.

  6. Tay YW, Tan AH, Lim JL, Lohmann K, Ibrahim KA, Abdul Aziz Z, et al.
    Parkinsonism Relat Disord, 2023 Jun;111:105399.
    PMID: 37209484 DOI: 10.1016/j.parkreldis.2023.105399
    BACKGROUND: About 5-10% of Parkinson's disease (PD) cases are early onset (EOPD), with several genes implicated, including GBA1, PRKN, PINK1, and SNCA. The spectrum and frequency of mutations vary across populations and globally diverse studies are crucial to comprehensively understand the genetic architecture of PD. The ancestral diversity of Southeast Asians offers opportunities to uncover a rich PD genetics landscape, and identify common regional mutations and new pathogenic variants.

    OBJECTIVES: This study aimed to investigate the genetic architecture of EOPD in a multi-ethnic Malaysian cohort.

    METHODS: 161 index patients with PD onset ≤50 years were recruited from multiple centers across Malaysia. A two-step approach to genetic testing was used, combining a next-generation sequencing-based PD gene panel and multiplex ligation-dependent probe amplification (MLPA).

    RESULTS: Thirty-five patients (21.7%) carried pathogenic or likely pathogenic variants involving (in decreasing order of frequency): GBA1, PRKN, PINK1, DJ-1, LRRK2, and ATP13A2. Pathogenic/likely pathogenic variants in GBA1 were identified in thirteen patients (8.1%), and were also commonly found in PRKN and PINK1 (11/161 = 6.8% and 6/161 = 3.7%, respectively). The overall detection rate was even higher in those with familial history (48.5%) or age of diagnosis ≤40 years (34.8%). PRKN exon 7 deletion and the PINK1 p.Leu347Pro variant appear to be common among Malay patients. Many novel variants were found across the PD-related genes.

    CONCLUSIONS: This study provides novel insights into the genetic architecture of EOPD in Southeast Asians, expands the genetic spectrum in PD-related genes, and highlights the importance of diversifying PD genetic research to include under-represented populations.

  7. Cardoso F, Goetz CG, Mestre TA, Sampaio C, Adler CH, Berg D, et al.
    Mov Disord, 2024 Feb;39(2):259-266.
    PMID: 38093469 DOI: 10.1002/mds.29683
  8. Lim SY, Tan AH, Foo JN, Tan YJ, Chew EG, Annuar AA, et al.
    J Mov Disord, 2024 Apr;17(2):213-217.
    PMID: 38291878 DOI: 10.14802/jmd.24009
    Lysosomal dysfunction plays an important role in neurodegenerative diseases, including Parkinson's disease (PD) and possibly Parkinson-plus syndromes such as progressive supranuclear palsy (PSP). This role is exemplified by the involvement of variants in the GBA1 gene, which results in a deficiency of the lysosomal enzyme glucocerebrosidase and is the most frequently identified genetic factor underlying PD worldwide. Pathogenic variants in the SMPD1 gene are a recessive cause of Niemann-Pick disease types A and B. Here, we provide the first report on an association between a loss-of-function variant in the SMPD1 gene present in a heterozygous state (p.Pro332Arg/p.P332R, which is known to result in reduced lysosomal acid sphingomyelinase activity), with PSP-Richardson syndrome in three unrelated patients of Chinese ancestry.
  9. Junker J, Lange LM, Vollstedt EJ, Roopnarain K, Doquenia MLM, Annuar AA, et al.
    medRxiv, 2024 Apr 09.
    PMID: 38529492 DOI: 10.1101/2024.03.12.24304154
    Until recently, about three-quarters of all monogenic Parkinson's disease (PD) studies were performed in European/White ancestry, thereby severely limiting our insights into genotype-phenotype relationships at global scale. The first systematic approach to embrace monogenic PD worldwide, The Michael J. Fox Foundation Global Monogenic PD (MJFF GMPD) Project, contacted authors of publications reporting individuals carrying pathogenic variants in known PD-causing genes. In contrast, the Global Parkinson's Genetics Program's (GP2) Monogenic Network took a different approach by targeting PD centers not yet represented in the medical literature. Here, we describe combining both efforts in a "merger project" resulting in a global monogenic PD cohort with build-up of a sustainable infrastructure to identify the multi-ancestry spectrum of monogenic PD and enable studies of factors modifying penetrance and expression of monogenic PD. This effort demonstrates the value of future research based on team science approaches to generate comprehensive and globally relevant results.
  10. Ishiura H, Shibata S, Yoshimura J, Suzuki Y, Qu W, Doi K, et al.
    Nat Genet, 2019 08;51(8):1222-1232.
    PMID: 31332380 DOI: 10.1038/s41588-019-0458-z
    Noncoding repeat expansions cause various neuromuscular diseases, including myotonic dystrophies, fragile X tremor/ataxia syndrome, some spinocerebellar ataxias, amyotrophic lateral sclerosis and benign adult familial myoclonic epilepsies. Inspired by the striking similarities in the clinical and neuroimaging findings between neuronal intranuclear inclusion disease (NIID) and fragile X tremor/ataxia syndrome caused by noncoding CGG repeat expansions in FMR1, we directly searched for repeat expansion mutations and identified noncoding CGG repeat expansions in NBPF19 (NOTCH2NLC) as the causative mutations for NIID. Further prompted by the similarities in the clinical and neuroimaging findings with NIID, we identified similar noncoding CGG repeat expansions in two other diseases: oculopharyngeal myopathy with leukoencephalopathy and oculopharyngodistal myopathy, in LOC642361/NUTM2B-AS1 and LRP12, respectively. These findings expand our knowledge of the clinical spectra of diseases caused by expansions of the same repeat motif, and further highlight how directly searching for expanded repeats can help identify mutations underlying diseases.
  11. Junker J, Lange LM, Vollstedt EJ, Roopnarain K, Doquenia MLM, Annuar AA, et al.
    Mov Disord, 2024 Jul 30.
    PMID: 39076159 DOI: 10.1002/mds.29925
    BACKGROUND: Until recently, about three-quarters of all monogenic Parkinson's disease (PD) studies were performed in European/White ancestry, thereby severely limiting our insights into genotype-phenotype relationships at a global scale.

    OBJECTIVE: To identify the multi-ancestry spectrum of monogenic PD.

    METHODS: The first systematic approach to embrace monogenic PD worldwide, The Michael J. Fox Foundation Global Monogenic PD Project, contacted authors of publications reporting individuals carrying pathogenic variants in known PD-causing genes. In contrast, the Global Parkinson's Genetics Program's Monogenic Network took a different approach by targeting PD centers underrepresented or not yet represented in the medical literature.

    RESULTS: In this article, we describe combining both efforts in a merger project resulting in a global monogenic PD cohort with the buildup of a sustainable infrastructure to identify the multi-ancestry spectrum of monogenic PD and enable studies of factors modifying penetrance and expressivity of monogenic PD.

    CONCLUSIONS: This effort demonstrates the value of future research based on team science approaches to generate comprehensive and globally relevant results. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

  12. Foo JN, Chew EGY, Chung SJ, Peng R, Blauwendraat C, Nalls MA, et al.
    JAMA Neurol, 2020 06 01;77(6):746-754.
    PMID: 32310270 DOI: 10.1001/jamaneurol.2020.0428
    Importance: Large-scale genome-wide association studies in the European population have identified 90 risk variants associated with Parkinson disease (PD); however, there are limited studies in the largest population worldwide (ie, Asian).

    Objectives: To identify novel genome-wide significant loci for PD in Asian individuals and to compare genetic risk between Asian and European cohorts.

    Design Setting, and Participants: Genome-wide association data generated from PD cases and controls in an Asian population (ie, Singapore/Malaysia, Hong Kong, Taiwan, mainland China, and South Korea) were collected from January 1, 2016, to December 31, 2018, as part of an ongoing study. Results were combined with inverse variance meta-analysis, and replication of top loci in European and Japanese samples was performed. Discovery samples of 31 575 individuals passing quality control of 35 994 recruited were used, with a greater than 90% participation rate. A replication cohort of 1 926 361 European-ancestry and 3509 Japanese samples was analyzed. Parkinson disease was diagnosed using UK Parkinson's Disease Society Brain Bank Criteria.

    Main Outcomes and Measures: Genotypes of common variants, association with disease status, and polygenic risk scores.

    Results: Of 31 575 samples identified, 6724 PD cases (mean [SD] age, 64.3 [10] years; age at onset, 58.8 [10.6] years; 3472 [53.2%] men) and 24 851 controls (age, 59.4 [11.4] years; 11 030 [45.0%] men) were analyzed in the discovery study. Eleven genome-wide significant loci were identified; 2 of these loci were novel (SV2C and WBSCR17) and 9 were previously found in Europeans. Replication in European-ancestry and Japanese samples showed robust association for SV2C (rs246814; odds ratio, 1.16; 95% CI, 1.11-1.21; P = 1.17 × 10-10 in meta-analysis of discovery and replication samples) but showed potential genetic heterogeneity at WBSCR17 (rs9638616; I2=67.1%; P = 3.40 × 10-3 for hetereogeneity). Polygenic risk score models including variants at these 11 loci were associated with a significant improvement in area under the curve over the model based on 78 European loci alone (63.1% vs 60.2%; P = 6.81 × 10-12).

    Conclusions and Relevance: This study identified 2 apparently novel gene loci and found 9 previously identified European loci to be associated with PD in this large, meta-genome-wide association study in a worldwide population of Asian individuals and reports similarities and differences in genetic risk factors between Asian and European individuals in the risk for PD. These findings may lead to improved stratification of Asian patients and controls based on polygenic risk scores. Our findings have potential academic and clinical importance for risk stratification and precision medicine in Asia.

  13. Vollstedt EJ, Madoev H, Aasly A, Ahmad-Annuar A, Al-Mubarak B, Alcalay RN, et al.
    PLoS One, 2023;18(10):e0292180.
    PMID: 37788254 DOI: 10.1371/journal.pone.0292180
    Parkinson's disease (PD) is the fastest-growing neurodegenerative disorder, currently affecting ~7 million people worldwide. PD is clinically and genetically heterogeneous, with at least 10% of all cases explained by a monogenic cause or strong genetic risk factor. However, the vast majority of our present data on monogenic PD is based on the investigation of patients of European White ancestry, leaving a large knowledge gap on monogenic PD in underrepresented populations. Gene-targeted therapies are being developed at a fast pace and have started entering clinical trials. In light of these developments, building a global network of centers working on monogenic PD, fostering collaborative research, and establishing a clinical trial-ready cohort is imperative. Based on a systematic review of the English literature on monogenic PD and a successful team science approach, we have built up a network of 59 sites worldwide and have collected information on the availability of data, biomaterials, and facilities. To enable access to this resource and to foster collaboration across centers, as well as between academia and industry, we have developed an interactive map and online tool allowing for a quick overview of available resources, along with an option to filter for specific items of interest. This initiative is currently being merged with the Global Parkinson's Genetics Program (GP2), which will attract additional centers with a focus on underrepresented sites. This growing resource and tool will facilitate collaborative research and impact the development and testing of new therapies for monogenic and potentially for idiopathic PD patients.
  14. Vollstedt EJ, Schaake S, Lohmann K, Padmanabhan S, Brice A, Lesage S, et al.
    Mov Disord, 2023 Feb;38(2):286-303.
    PMID: 36692014 DOI: 10.1002/mds.29288
    BACKGROUND: As gene-targeted therapies are increasingly being developed for Parkinson's disease (PD), identifying and characterizing carriers of specific genetic pathogenic variants is imperative. Only a small fraction of the estimated number of subjects with monogenic PD worldwide are currently represented in the literature and availability of clinical data and clinical trial-ready cohorts is limited.

    OBJECTIVE: The objectives are to (1) establish an international cohort of affected and unaffected individuals with PD-linked variants; (2) provide harmonized and quality-controlled clinical characterization data for each included individual; and (3) further promote collaboration of researchers in the field of monogenic PD.

    METHODS: We conducted a worldwide, systematic online survey to collect individual-level data on individuals with PD-linked variants in SNCA, LRRK2, VPS35, PRKN, PINK1, DJ-1, as well as selected pathogenic and risk variants in GBA and corresponding demographic, clinical, and genetic data. All registered cases underwent thorough quality checks, and pathogenicity scoring of the variants and genotype-phenotype relationships were analyzed.

    RESULTS: We collected 3888 variant carriers for our analyses, reported by 92 centers (42 countries) worldwide. Of the included individuals, 3185 had a diagnosis of PD (ie, 1306 LRRK2, 115 SNCA, 23 VPS35, 429 PRKN, 75 PINK1, 13 DJ-1, and 1224 GBA) and 703 were unaffected (ie, 328 LRRK2, 32 SNCA, 3 VPS35, 1 PRKN, 1 PINK1, and 338 GBA). In total, we identified 269 different pathogenic variants; 1322 individuals in our cohort (34%) were indicated as not previously published.

    CONCLUSIONS: Within the MJFF Global Genetic PD Study Group, we (1) established the largest international cohort of affected and unaffected individuals carrying PD-linked variants; (2) provide harmonized and quality-controlled clinical and genetic data for each included individual; (3) promote collaboration in the field of genetic PD with a view toward clinical and genetic stratification of patients for gene-targeted clinical trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links