Displaying publications 81 - 100 of 414 in total

Abstract:
Sort:
  1. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2017;77(12):845.
    PMID: 31985736 DOI: 10.1140/epjc/s10052-017-5317-4
    A search is presented for an excess of events with heavy-flavor quark pairs (

    t

    t
    ¯


    and

    b

    b
    ¯


    ) and a large imbalance in transverse momentum in data from proton-proton collisions at a center-of-mass energy of 13


    TeV

    . The data correspond to an integrated luminosity of 2.2



    fb

    -
    1



    collected with the CMS detector at the CERN LHC. No deviations are observed with respect to standard model predictions. The results are used in the first interpretation of dark matter production in

    t

    t
    ¯


    and

    b

    b
    ¯


    final states in a simplified model. This analysis is also the first to perform a statistical combination of searches for dark matter produced with different heavy-flavor final states. The combination provides exclusions that are stronger than those achieved with individual heavy-flavor final states.
  2. Sirunyan AM, CMS Collaboration, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Eur Phys J C Part Fields, 2021;81(1):13.
    PMID: 33493254 DOI: 10.1140/epjc/s10052-020-08739-5
    A search for dark matter particles is performed using events with a Z boson candidate and large missing transverse momentum. The analysis is based on proton-proton collision data at a center-of-mass energy of 13 Te , collected by the CMS experiment at the LHC in 2016-2018, corresponding to an integrated luminosity of 137 fb - 1 . The search uses the decay channels Z → e e and Z → μ μ . No significant excess of events is observed over the background expected from the standard model. Limits are set on dark matter particle production in the context of simplified models with vector, axial-vector, scalar, and pseudoscalar mediators, as well as on a two-Higgs-doublet model with an additional pseudoscalar mediator. In addition, limits are provided for spin-dependent and spin-independent scattering cross sections and are compared to those from direct-detection experiments. The results are also interpreted in the context of models of invisible Higgs boson decays, unparticles, and large extra dimensions.
  3. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(3):280.
    PMID: 31007587 DOI: 10.1140/epjc/s10052-019-6730-7
    A search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks is performed in proton-proton collisions at a center-of-mass energy of 13 Te collected with the CMS detector at the LHC. The analyzed data sample corresponds to an integrated luminosity of 35.9 fb - 1 . The signal is characterized by a large missing transverse momentum recoiling against a bottom quark-antiquark system that has a large Lorentz boost. The number of events observed in the data is consistent with the standard model background prediction. Results are interpreted in terms of limits both on parameters of the type-2 two-Higgs doublet model extended by an additional light pseudoscalar boson a (2HDM+ a ) and on parameters of a baryonic Z ' simplified model. The 2HDM+ a model is tested experimentally for the first time. For the baryonic Z ' model, the presented results constitute the most stringent constraints to date.
  4. Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, Erö J, et al.
    Eur Phys J C Part Fields, 2021;81(8):688.
    PMID: 34780582 DOI: 10.1140/epjc/s10052-021-09348-6
    A search is presented for a heavy vector resonance decaying into a Z boson and the standard model Higgs boson, where the Z boson is identified through its leptonic decays to electrons, muons, or neutrinos, and the Higgs boson is identified through its hadronic decays. The search is performed in a Lorentz-boosted regime and is based on data collected from 2016 to 2018 at the CERN LHC, corresponding to an integrated luminosity of 137 fb - 1 . Upper limits are derived on the production of a narrow heavy resonance Z ' , and a mass below 3.5 and 3.7 Te is excluded at 95% confidence level in models where the heavy vector boson couples predominantly to fermions and to bosons, respectively. These are the most stringent limits placed on the Heavy Vector Triplet Z ' model to date. If the heavy vector boson couples exclusively to standard model bosons, upper limits on the product of the cross section and branching fraction are set between 23 and 0.3 fb for a Z ' mass between 0.8 and 4.6 Te , respectively. This is the first limit set on a heavy vector boson coupling exclusively to standard model bosons in its production and decay.
  5. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(7):564.
    PMID: 31397444 DOI: 10.1140/epjc/s10052-019-7058-z
    A search is presented for a heavy pseudoscalar boson A decaying to a Z  boson and a Higgs boson with mass of 125 GeV . In the final state considered, the Higgs boson decays to a bottom quark and antiquark, and the Z  boson decays either into a pair of electrons, muons, or neutrinos. The analysis is performed using a data sample corresponding to an integrated luminosity of 35.9 fb - 1 collected in 2016 by the CMS experiment at the LHC from proton-proton collisions at a center-of-mass energy of 13 Te . The data are found to be consistent with the background expectations. Exclusion limits are set in the context of two-Higgs-doublet models in the A boson mass range between 225 and 1000 GeV .
  6. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2020 Apr 03;124(13):131802.
    PMID: 32302170 DOI: 10.1103/PhysRevLett.124.131802
    A search is presented for a narrow resonance decaying to a pair of oppositely charged muons using sqrt[s]=13  TeV proton-proton collision data recorded at the LHC. In the 45-75 and 110-200 GeV resonance mass ranges, the search is based on conventional triggering and event reconstruction techniques. In the 11.5-45 GeV mass range, the search uses data collected with dimuon triggers with low transverse momentum thresholds, recorded at high rate by storing a reduced amount of trigger-level information. The data correspond to integrated luminosities of 137 and 96.6  fb^{-1} for conventional and high-rate triggering, respectively. No significant resonant peaks are observed in the probed mass ranges. The search sets the most stringent constraints to date on a dark photon in the ∼30-75 and 110-200 GeV mass ranges.
  7. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2019 Sep 27;123(13):131802.
    PMID: 31697516 DOI: 10.1103/PhysRevLett.123.131802
    A search for a light charged Higgs boson (H^{+}) decaying to a W boson and a CP-odd Higgs boson (A) in final states with eμμ or μμμ is performed using data from pp collisions at sqrt[s]=13  TeV, recorded by the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9  fb^{-1}. In this search, it is assumed that the H^{+} boson is produced in decays of top quarks, and the A boson decays to two oppositely charged muons. The presence of signals for H^{+} boson masses between 100 and 160 GeV and A boson masses between 15 and 75 GeV is investigated. No evidence for the production of the H^{+} boson is found. Upper limits at 95% confidence level are obtained on the combined branching fraction for the decay chain, t→bH^{+}→bW^{+}A→bW^{+}μ^{+}μ^{-}, of 1.9×10^{-6} to 8.6×10^{-6}, depending on the masses of the H^{+} and A bosons. These are the first limits for these decay modes of the H^{+} and A bosons.
  8. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2019 Apr 19;122(15):151802.
    PMID: 31050519 DOI: 10.1103/PhysRevLett.122.151802
    For the first time, a search for the rare decay of the W boson to three charged pions has been performed. Proton-proton collision data recorded by the CMS experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 77.3  fb^{-1}, have been analyzed. No significant excess is observed above the background expectation. An upper limit of 1.01×10^{-6} is set at 95% confidence level on the branching fraction of the W boson to three charged pions. This provides a strong motivation for theoretical calculations of this branching fraction.
  9. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2020 Jan 31;124(4):041803.
    PMID: 32058742 DOI: 10.1103/PhysRevLett.124.041803
    The first search for supersymmetry in events with an experimental signature of one soft, hadronically decaying τ lepton, one energetic jet from initial-state radiation, and large transverse momentum imbalance is presented. These event signatures are consistent with direct or indirect production of scalar τ leptons (τ[over ˜]) in supersymmetric models that exhibit coannihilation between the τ[over ˜] and the lightest neutralino (χ[over ˜]_{1}^{0}), and that could generate the observed relic density of dark matter. The data correspond to an integrated luminosity of 77.2  fb^{-1} of proton-proton collisions at sqrt[s]=13  TeV collected with the CMS detector at the LHC in 2016 and 2017. The results are interpreted in a supersymmetric scenario with a small mass difference (Δm) between the chargino (χ[over ˜]_{1}^{±}) or next-to-lightest neutralino (χ[over ˜]_{2}^{0}), and the χ[over ˜]_{1}^{0}. The mass of the τ[over ˜] is assumed to be the average of the χ[over ˜]_{1}^{±} and χ[over ˜]_{1}^{0} masses. The data are consistent with standard model background predictions. Upper limits at 95% confidence level are set on the sum of the χ[over ˜]_{1}^{±}, χ[over ˜]_{2}^{0}, and τ[over ˜] production cross sections for Δm(χ[over ˜]_{1}^{±},χ[over ˜]_{1}^{0})=50  GeV, resulting in a lower limit of 290 GeV on the mass of the χ[over ˜]_{1}^{±}, which is the most stringent to date and surpasses the bounds from the LEP experiments.
  10. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2017 Oct 13;119(15):151802.
    PMID: 29077436 DOI: 10.1103/PhysRevLett.119.151802
    Results are reported from a search for supersymmetric particles in proton-proton collisions in the final state with a single lepton, multiple jets, including at least one b-tagged jet, and large missing transverse momentum. The search uses a sample of proton-proton collision data at sqrt[s]=13  TeV recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9  fb^{-1}. The observed event yields in the signal regions are consistent with those expected from standard model backgrounds. The results are interpreted in the context of simplified models of supersymmetry involving gluino pair production, with gluino decay into either on- or off-mass-shell top squarks. Assuming that the top squarks decay into a top quark plus a stable, weakly interacting neutralino, scenarios with gluino masses up to about 1.9 TeV are excluded at 95% confidence level for neutralino masses up to about 1 TeV.
  11. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2016 Jul 29;117(5):051802.
    PMID: 27517765 DOI: 10.1103/PhysRevLett.117.051802
    A search for the resonant production of high-mass photon pairs is presented. The analysis is based on samples of proton-proton collision data collected by the CMS experiment at center-of-mass energies of 8 and 13 TeV, corresponding to integrated luminosities of 19.7 and 3.3  fb^{-1}, respectively. The interpretation of the search results focuses on spin-0 and spin-2 resonances with masses between 0.5 and 4 TeV and with widths, relative to the mass, between 1.4×10^{-4} and 5.6×10^{-2}. Limits are set on scalar resonances produced through gluon-gluon fusion, and on Randall-Sundrum gravitons. A modest excess of events compatible with a narrow resonance with a mass of about 750 GeV is observed. The local significance of the excess is approximately 3.4 standard deviations. The significance is reduced to 1.6 standard deviations once the effect of searching under multiple signal hypotheses is considered. More data are required to determine the origin of this excess.
  12. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2019 Dec 13;123(24):241801.
    PMID: 31922872 DOI: 10.1103/PhysRevLett.123.241801
    Results are reported from a search for new particles that decay into a photon and two gluons, in events with jets. Novel jet substructure techniques are developed that allow photons to be identified in an environment densely populated with hadrons. The analyzed proton-proton collision data were collected by the CMS experiment at the LHC, in 2016 at sqrt[s]=13  TeV, and correspond to an integrated luminosity of 35.9  fb^{-1}. The spectra of total transverse hadronic energy of candidate events are examined for deviations from the standard model predictions. No statistically significant excess is observed over the expected background. The first cross section limits on new physics processes resulting in such events are set. The results are interpreted as upper limits on the rate of gluino pair production, utilizing a simplified stealth supersymmetry model. The excluded gluino masses extend up to 1.7 TeV, for a neutralino mass of 200 GeV and exceed previous mass constraints set by analyses targeting events with isolated photons.
  13. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2018 Jun 15;120(24):241801.
    PMID: 29956995 DOI: 10.1103/PhysRevLett.120.241801
    A search for physics beyond the standard model in events with one or more high-momentum Higgs bosons, H, decaying to pairs of b quarks in association with missing transverse momentum is presented. The data, corresponding to an integrated luminosity of 35.9  fb^{-1}, were collected with the CMS detector at the LHC in proton-proton collisions at the center-of-mass energy sqrt[s]=13  TeV. The analysis utilizes a new b quark tagging technique based on jet substructure to identify jets from H→bb[over ¯]. Events are categorized by the multiplicity of H-tagged jets, jet mass, and the missing transverse momentum. No significant deviation from standard model expectations is observed. In the context of supersymmetry (SUSY), limits on the cross sections of pair-produced gluinos are set, assuming that gluinos decay to quark pairs, H (or Z), and the lightest SUSY particle, LSP, through an intermediate next-to-lightest SUSY particle, NLSP. With large mass splitting between the NLSP and LSP, and 100% NLSP branching fraction to H, the lower limit on the gluino mass is found to be 2010 GeV.
  14. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2018 Oct 05;121(14):141802.
    PMID: 30339442 DOI: 10.1103/PhysRevLett.121.141802
    This Letter presents the results of a search for pair-produced particles of masses above 100 GeV that each decay into at least four quarks. Using data collected by the CMS experiment at the LHC in 2015-2016, corresponding to an integrated luminosity of 38.2  fb^{-1}, reconstructed particles are clustered into two large jets of similar mass, each consistent with four-parton substructure. No statistically significant excess of data over the background prediction is observed in the distribution of average jet mass. Pair-produced squarks with dominant hadronic R-parity-violating decays into four quarks and with masses between 0.10 and 0.72 TeV are excluded at 95% confidence level. Similarly, pair-produced gluinos that decay into five quarks are also excluded with masses between 0.10 and 1.41 TeV at 95% confidence level. These are the first constraints that have been placed on pair-produced particles with masses below 400 GeV that decay into four or five quarks, bridging a significant gap in the coverage of R-parity-violating supersymmetry parameter space.
  15. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2018 May 18;120(20):201801.
    PMID: 29864370 DOI: 10.1103/PhysRevLett.120.201801
    A search for narrow resonances decaying to bottom quark-antiquark pairs is presented, using a data sample of proton-proton collisions at sqrt[s]=8  TeV corresponding to an integrated luminosity of 19.7  fb^{-1}. The search is extended to masses lower than those reached in typical searches for resonances decaying into jet pairs at the LHC, by taking advantage of triggers that identify jets originating from bottom quarks. No significant excess of events is observed above the background predictions. Limits are set on the product of cross section and branching fraction to bottom quarks for spin 0, 1, and 2 resonances in the mass range of 325-1200 GeV. These results improve on the limits for resonances decaying into jet pairs in the 325-500 GeV mass range.
  16. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2016 Jul 15;117(3):031802.
    PMID: 27472109 DOI: 10.1103/PhysRevLett.117.031802
    A search for narrow resonances decaying into dijet final states is performed on data from proton-proton collisions at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 18.8  fb^{-1}. The data were collected with the CMS detector using a novel technique called data scouting, in which the information associated with these selected events is much reduced, permitting collection of larger data samples. This technique enables CMS to record events containing jets at a rate of 1 kHz, by collecting the data from the high-level-trigger system. In this way, the sensitivity to low-mass resonances is increased significantly, allowing previously inaccessible couplings of new resonances to quarks and gluons to be probed. The resulting dijet mass distribution yields no evidence of narrow resonances. Upper limits are presented on the resonance cross sections as a function of mass, and compared with a variety of models predicting narrow resonances. The limits are translated into upper limits on the coupling of a leptophobic resonance Z_{B}^{'} to quarks, improving on the results obtained by previous experiments for the mass range from 500 to 800 GeV.
  17. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2016 Feb 19;116(7):071801.
    PMID: 26943527 DOI: 10.1103/PhysRevLett.116.071801
    A search for narrow resonances in proton-proton collisions at sqrt[s]=13  TeV is presented. The invariant mass distribution of the two leading jets is measured with the CMS detector using a data set corresponding to an integrated luminosity of 2.4  fb^{-1}. The highest observed dijet mass is 6.1 TeV. The distribution is smooth and no evidence for resonant particles is observed. Upper limits at 95% confidence level are set on the production cross section for narrow resonances with masses above 1.5 TeV. When interpreted in the context of specific models, the limits exclude string resonances with masses below 7.0 TeV, scalar diquarks below 6.0 TeV, axigluons and colorons below 5.1 TeV, excited quarks below 5.0 TeV, color-octet scalars below 3.1 TeV, and W^{'} bosons below 2.6 TeV. These results significantly extend previously published limits.
  18. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2019 Mar 01;122(8):081804.
    PMID: 30932612 DOI: 10.1103/PhysRevLett.122.081804
    A search for heavy, narrow resonances decaying to a Higgs boson and a photon (Hγ) has been performed in proton-proton collision data at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9  fb^{-1} collected with the CMS detector at the LHC in 2016. Events containing a photon and a Lorentz-boosted hadronically decaying Higgs boson reconstructed as a single, large-radius jet are considered, and the γ+jet invariant mass spectrum is analyzed for the presence of narrow resonances. To increase the sensitivity of the search, events are categorized depending on whether or not the large-radius jet can be identified as a result of the merging of two jets originating from b quarks. Results in both categories are found to agree with the predictions of the standard model. Upper limits on the production rate of Hγ resonances are set as a function of their mass in the range of 720-3250 GeV, representing the most stringent constraints to date.
  19. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2019 Dec 06;123(23):231803.
    PMID: 31868480 DOI: 10.1103/PhysRevLett.123.231803
    A search for narrow low-mass resonances decaying to quark-antiquark pairs is presented. The search is based on proton-proton collision events collected at 13 TeV by the CMS detector at the CERN LHC. The data sample corresponds to an integrated luminosity of 35.9  fb^{-1}, recorded in 2016. The search considers the case where the resonance has high transverse momentum due to initial-state radiation of a hard photon. To study this process, the decay products of the resonance are reconstructed as a single large-radius jet with two-pronged substructure. The signal would be identified as a localized excess in the jet invariant mass spectrum. No evidence for such a resonance is observed in the mass range 10 to 125 GeV. Upper limits at the 95% confidence level are set on the coupling strength of resonances decaying to quark pairs. The results obtained with this photon trigger strategy provide the first direct constraints on quark-antiquark resonance masses below 50 GeV obtained at a hadron collider.
  20. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2017 Sep 15;119(11):111802.
    PMID: 28949210 DOI: 10.1103/PhysRevLett.119.111802
    A search is reported for a narrow vector resonance decaying to quark-antiquark pairs in proton-proton collisions at sqrt[s]=13  TeV, collected with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 2.7   fb^{-1}. The vector resonance is produced at large transverse momenta, with its decay products merged into a single jet. The resulting signature is a peak over background in the distribution of the invariant mass of the jet. The results are interpreted in the framework of a leptophobic vector resonance and no evidence is found for such particles in the mass range of 100-300 GeV. Upper limits at 95% confidence level on the production cross section are presented in a region of mass-coupling phase space previously unexplored at the LHC. The region below 140 GeV has not been explored by any previous experiments.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links