Displaying publications 81 - 100 of 447 in total

Abstract:
Sort:
  1. Vijay R, Lenin Singaravelu D, Vinod A, Sanjay MR, Siengchin S, Jawaid M, et al.
    Int J Biol Macromol, 2019 Mar 15;125:99-108.
    PMID: 30528990 DOI: 10.1016/j.ijbiomac.2018.12.056
    The aim of this study is to investigate natural cellulosic fibers extracted from Tridax procumbens plants. The obtained fibers were alkali treated for their effective usage as reinforcement in composites. The physical, chemical, crystallinity, thermal, wettability and surface characteristics were analyzed for raw, and alkali treated Tridax procumbens fibers (TPFs). The test results conclude that there was an increase in cellulose content with a reduction in hemicellulose, lignin, and wax upon alkali treatment. This enhanced the thermal stability, tensile strength, crystallinity, and surface roughness characteristics. The contact angle was also lesser for treated TPFs which prove its better wettability with the liquid phase. The Weibull distribution analysis was adopted for the analysis of the fiber diameter and tensile properties. Thus the considerable improvement in the properties of alkali treated TPFs would be worth for developing high-performance polymer composites.
  2. Sergeeva IA, Klinov DV, Schäffer TE, Dubrovin EV
    Int J Biol Macromol, 2023 Jul 01;242(Pt 2):124835.
    PMID: 37201883 DOI: 10.1016/j.ijbiomac.2023.124835
    Though the capability of chromium treatment to improve the stability and mechanical properties of collagen fibrils is well-known, the influence of different chromium salts on collagen molecules (tropocollagen) is not well characterized. In this study, the effect of Cr3+ treatment on the conformation and hydrodynamic properties of collagen was studied using atomic force microscopy (AFM) and dynamic light scattering (DLS). Statistical analysis of contours of adsorbed tropocollagen molecules using the two-dimensional worm-like chain model revealed a reduction of the persistence length (i.e., the increase of flexibility) from ≈72 nm in water to ≈56-57 nm in chromium (III) salt solutions. DLS studies demonstrated an increase of the hydrodynamic radius from ≈140 nm in water to ≈190 nm in chromium (III) salt solutions, which is associated with protein aggregation. The kinetics of collagen aggregation was shown to be ionic strength dependent. Collagen molecules treated with three different chromium (III) salts demonstrated similar properties such as flexibility, aggregation kinetics, and susceptibility to enzymatic cleavage. The observed effects are explained by a model that considers the formation of chromium-associated intra- and intermolecular crosslinks. The obtained results provide novel insights into the effect of chromium salts on the conformation and properties of tropocollagen molecules.
  3. Elias N, Chandren S, Razak FIA, Jamalis J, Widodo N, Wahab RA
    Int J Biol Macromol, 2018 Jul 15;114:306-316.
    PMID: 29578010 DOI: 10.1016/j.ijbiomac.2018.03.095
    The contribution of chitosan/nanocellulose (CS-NC) to the enzymatic activity of Candida rugosa lipase covalently bound on the surface of CS-NC (CRL/CS-NC) was investigated. Cellulosic material from oil palm frond leaves (OPFL) were bleached, alkaline treated and acid hydrolyzed to obtain the purified NC and used as nano-fillers in CS. XRD, Raman spectroscopy and optical fluorescence microscopic analyses revealed existence of strong hydrogen bonds between CS and the NC nanofillers. The CRLs were successfully conjugated to the surface of the CS-NC supports via imine bonds that occurred through a Schiff's based mechanism. Process parameters for the immobilization of CRL were assessed for factors temperature, concentration of glutaraldehyde and pH, to afford the highest enzyme activity to achieve maximum conversion of butyl butyrate within 3h of incubation. Conversion as high as 88% was reached under an optimized condition of 25°C, 0.3% glutaraldehyde concentration and buffer at pH7. Thermal stability of CRL/CS-NCs was 1.5-fold greater than that of free CRL, with biocatalysts reusability for up to 8 successive esterification cycles. This research provides a promising approach for expanding the use of NC from OPFL for enhancing enzyme activity in favour of an alternative eco-friendly means to synthesize butyl butyrate.
  4. Lee LP, Tan CH, Khomvilai S, Sitprija V, Chaiyabutr N, Tan KY
    Int J Biol Macromol, 2023 May 01;236:123727.
    PMID: 36863668 DOI: 10.1016/j.ijbiomac.2023.123727
    Snakebite envenoming is a medical emergency requiring urgent and specific treatment. Unfortunately, snakebite diagnostics are scarce, time-consuming and lacking specificity. Hence, this study aimed to develop a simple, quick and specific snakebite diagnostic assay using animal antibodies. Anti-venom horse immunoglobulin G (IgG) and chicken immunoglobulin Y (IgY) were produced against the venoms of four major medically important snake species in Southeast Asia, i.e., the Monocled Cobra (Naja kaouthia), Malayan Krait (Bungarus candidus), Malayan Pit Viper (Calloselasma rhodostoma), and White-lipped Green Pit Viper (Trimeresurus albolabris). Different capture:detection configurations of double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) were constructed using both immunoglobulins, and the horse IgG:IgG-HRP configuration was found to be most selective and sensitive in detecting the corresponding venoms. The method was further streamlined to develop a rapid immunodetection assay, which is able to produce a visual color change within 30 min for discrimination between different snake species. The study shows it is feasible to develop a simple, quick and specific immunodiagnostic assay using horse IgG, which can be derived directly from antisera prepared for antivenom production. The proof-of-concept indicates it is a sustainable and affordable approach in keeping with on-going antivenom manufacturing activities for specific species in the region.
  5. Salleh KM, Zakaria S, Sajab MS, Gan S, Chia CH, Jaafar SNS, et al.
    Int J Biol Macromol, 2018 Oct 15;118(Pt B):1422-1430.
    PMID: 29964115 DOI: 10.1016/j.ijbiomac.2018.06.159
    Dissolved oil palm empty fruit bunch (EFB) cellulose in NaOH/urea solvent was mixed with sodium carboxymethylcellulose (NaCMC) to form a green regenerated superabsorbent hydrogel. The effect of concentration of epichlorohydrin (ECH) as the crosslinker on the formation, physical, and chemical properties of hydrogel was studied. Rapid formation and higher gel content of hydrogel were observed at 10% concentration of ECH. The superabsorbent hydrogel was successfully fabricated in this study with the swelling ability >100,000%. Hydrogel with higher concentration of ECH showed opposite trend by having higher superabsorbent property than that of lower concentration. The covalent bond of COC was observed with Attenuated total reflectance fourier transform infrared (ATR-FT-IR) spectroscopy to confirm the occurrence of crosslinking. The physical and chemical properties of hydrogel were affected by swelling phenomenon. Hydrogel with higher degree of swelling exhibited lower moisture retention and higher transparency. Moreover, the weight of the superabsorbent hydrogel increased with the decrement of pH value of external media (distilled water). This study provided substantial information on the effect of different percentage of ECH as crosslinker on hydrogel basic properties. Furthermore, this study affords correlation of many essential driving forces that affected hydrogel superabsorbent property.
  6. Bera H, Abbasi YF, Gajbhiye V, Ping LL, Salve R, Kumar P, et al.
    Int J Biol Macromol, 2021 Jun 30;181:169-179.
    PMID: 33775757 DOI: 10.1016/j.ijbiomac.2021.03.152
    Curdlan (CN)-doped montmorillonite/poly(N-isopropylacrylamide-co-N,N'-methylene-bis-acrylamide) [CN/MT/P(NIPA-co-MBA)] smart nanocomposites (NCs) were developed for efficient erlotinib HCl (ERL) delivery to lung cancer cells. The placebo NCs demonstrated excellent biodegradability, pH/thermo-responsive swelling profiles and declined molar mass (M¯c) between the crosslinks with increasing temperature. The XRD, FTIR, DSC, TGA, and SEM analyses revealed the architectural chemistry of these NC scaffolds. The NCs loaded with ERL (F-1-F-3) displayed acceptable diameter (734-1120 nm) and zeta potential (+1.16 to -11.17 mV), outstanding drug entrapping capability (DEE, 78-99%) and sustained biphasic ERL elution patterns (Q8h, 53-91%). The ERL release kinetics of the optimal matrices (F-3) obeyed Higuchi model and their transport occurred through anomalous diffusion. The mucin adsorption behaviour of these matrices followed Freudlich isotherms. As compared to pure ERL, the formulation (F-3) displayed an improved anti-proliferative potential and induced apoptosis more effectively on A549 cells. Thus, the CN-doped smart NCs could be utilized as promising drug-cargoes for lung cancer therapy.
  7. Sadiq NM, Abdulwahid RT, Aziz SB, Woo HJ, Kadir MFZ
    Int J Biol Macromol, 2024 Apr;265(Pt 1):130751.
    PMID: 38471616 DOI: 10.1016/j.ijbiomac.2024.130751
    The challenge in front of EDLC device is their low energy density compared to their battery counter parts. In the current study, a green plasticized nanocomposite sodium ion conducting polymer blend electrolytes (PNSPBE) was developed by incorporating plasticized Chitosan (CS) blended with polyvinyl alcohol (PVA), doped with NaBr salt with various concentration of CaTiO3 nanoparticles. The most optimized PNSPBE film was subsequently utilized in an EDLC device to evaluate its effectiveness both as an electrolyte and a separator. Structural and morphological changes were assessed using XRD and SEM techniques. The PNSPBE film demonstrated a peak ionic conductivity of 9.76×10-5 S/cm, as determined through EIS analysis. The dielectric and AC studies provided further confirmation of structural modifications within the sample. Both TNM and LSV analyses affirmed the suitability of the prepared electrolyte for energy device applications, evidenced by its adequate ion transference number and an electrochemical potential window of 2.86 V. Electrochemical properties were assessed via CV and GCD techniques, confirming non-Faradaic ion storage, indicated by the rectangular CV pattern at low scan rates. The parameters associated with the designed EDLC device including specific capacitance, ESR, power density (1950 W/kg) and energy density (12.3 Wh/kg) were determined over 1000 cycles.
  8. Ahmad U, Sohail M, Ahmad M, Minhas MU, Khan S, Hussain Z, et al.
    Int J Biol Macromol, 2019 May 15;129:233-245.
    PMID: 30738157 DOI: 10.1016/j.ijbiomac.2019.02.031
    Oral drug delivery is natural, most acceptable and desirable route for nearly all drugs, but many drugs like NSAIDs when delivered by this route cause gastrointestinal irritation, gastric bleeding, ulcers, and many undesirable effects which limits their usage by oral delivery. Moreover, it is almost impossible to control the release of a drug in a targeted location in body. We developed thermo-responsive chitosan-co-poly(N-isopropyl-acrylamide) injectable hydrogel as an alternative for the gastro-protective and controlled delivery of loxoprofen sodium as a model drug. A free radical polymerization technique was used to synthesize thermo-responsive hydrogel by cross-linking chitosan HCl with NIPAAM using glutaraldehyde as cross-linker. Confirmation of crosslinked hydrogel structure was done by Fourier transform infrared spectra (FTIR). The thermal stability of hydrogel was confirmed through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The scanning electron microscopy (SEM) was performed to evaluate the structural morphology of cross-linked hydrogel. To evaluate the rheological behavior of hydrogel with increasing temperature, rheological study was performed. Swelling and in vitro drug release studies were carried out under various temperature and pH conditions. The swelling study revealed that maximum swelling was observed at low pH (pH 1.2) and low temperature (25 °C) compared to the high range of pH and temperature and it resulted in quick release of the drug. The high range of pH (7.4) and temperature (37 °C) however caused controlled release of the drug. The in vivo evaluation of the developed hydrogel in rabbits demonstrated the controlled release behavior of fabricated system.
  9. Ibrahim IAA, Alzahrani AR, Alanazi IM, Shahzad N, Shahid I, Falemban AH, et al.
    Int J Biol Macromol, 2023 Dec 31;253(Pt 7):127334.
    PMID: 37820908 DOI: 10.1016/j.ijbiomac.2023.127334
    Our study produced GO-TiO2-chitosan-escin nanocomposites (GTCEnc), characterized them using physical and biological methods, and evaluated their potential as cancer treatment candidates. Standard protocols were used to produce GTCEnc. Nanocomposites are created using XRD, FTIR, UV-Vis, and PL spectroscopy analysis. The morphology and ultrastructure of nanocomposites were investigated using SEM and TEM. Nanocomposites containing TiO2, GO, chitosan, and escin nanostructures were characterized using diffraction, microscopy, and spectroscopy; the antimicrobial activity of GTCEnc was investigated. Various methods were used to test the anticancer activity of GTCEnc against COLO 205 cell lines, including MTT, EtBr/AO, DAPI, JC-1, Annexin-V/FITC, cell cycle analysis, and activation of pro-apoptotic markers, such as caspase-3, -8, and -9. The nanocomposites were cytotoxic to COLO 205 cells, with an IC50 of 22.68 μg/mL, but not to 293T cells. In cells treated with nanomaterials, cytotoxicity, nuclear damage, apoptosis induction, and free radical production were significantly increased. Our finding suggests that GTCEnc has potent anticancer and antibacterial activity in vitro because of its unique nanocomposite properties and antibacterial and anticancer activity in vitro. Additional research is required to understand the clinical efficacy of these nanocomposites.
  10. Fareez IM, Lim SM, Mishra RK, Ramasamy K
    Int J Biol Macromol, 2015 Jan;72:1419-28.
    PMID: 25450046 DOI: 10.1016/j.ijbiomac.2014.10.054
    The vulnerability of probiotics at low pH and high temperature has limited their optimal use as nutraceuticals. This study addressed these issues by adopting a physicochemical driven approach of incorporating Lactobacillus plantarum LAB12 into chitosan (Ch) coated alginate-xanthan gum (Alg-XG) beads. Characterisation of Alg-XG-Ch, which elicited little effect on bead size and polydispersity, demonstrated good miscibility with improved bead surface smoothness and L. plantarum LAB12 entrapment when compared to Alg, Alg-Ch and Alg-XG. Sequential incubation of Alg-XG-Ch in simulated gastric juice and intestinal fluid yielded high survival rate of L. plantarum LAB12 (95%) at pH 1.8 which in turn facilitated sufficient release of probiotics (>7 log CFU/g) at pH 6.8 in both time- and pH-dependent manner. Whilst minimising viability loss at 75 and 90 °C, Alg-XG-Ch improved storage durability of L. plantarum LAB12 at 4 °C. The present results implied the possible use of L. plantarum LAB12 incorporated in Alg-XG-Ch as new functional food ingredient with health claims.
  11. Yusefi M, Shameli K, Lee-Kiun MS, Teow SY, Moeini H, Ali RR, et al.
    Int J Biol Macromol, 2023 Apr 01;233:123388.
    PMID: 36706873 DOI: 10.1016/j.ijbiomac.2023.123388
    Polysaccharide-based magnetic nanocomposites can eminently illuminate several attractive features as anticancer drug carriers. In this study, rice straw-based cellulose nanowhisker (CNW) was used as solid support for Fe3O4 nanofillers to synthesize magnetic CNW. Then, cross-linked chitosan-coated magnetic CNW for 5-fluorouracil carrier abbreviated as CH/MCNW/5FU. Fourier-transform infrared, X-Ray diffraction, and X-ray photoelectron spectroscopy analysis indicated successful fabrication and multifunctional properties of the CH/MCNW/5FU nanocomposites. In addition, CH/MCNW/5FU nanocomposites showed hydrodynamic diameter and zeta potential value of 181.31 ± 3.46 nm and +23 ± 1.8 mV, respectively. Based on images of transmission electron microscopy, magnetic CNW as reinforcement was coated with chitosan to obtain almost spherical CH/MCNW/5FU nanocomposites with an average diameter of 37.16 ± 3.08. The nanocomposites indicated desired saturation magnetization and thermal stability, high drug encapsulation efficiency, and pH-dependent swelling and drug release performance. CH/MCNW/5FU nanocomposites showed potent killing effects against colorectal cancer cells in both 2D monolayer and 3D spheroid models. These findings suggest CH/MCNW as a potential carrier for anticancer drugs with high tumour-penetrating capacity.
  12. Ranjithkumar R, Van Nguyen C, Wong LS, Thiruvengadam Nandagopal JG, Djearamane S, Palanisamy G, et al.
    Int J Biol Macromol, 2023 Jan 15;225:103-111.
    PMID: 36481334 DOI: 10.1016/j.ijbiomac.2022.11.302
    The industrial discharge of dye pollutant contaminated wastewater is the major cause of water and soil pollution. Photocatalysis is a promising and green remediation technology, which has received widespread attention in the remediation of hazardous dyes from aqueous environment and convert them into harmless compounds. Herein, we report the synthesis of chitosan (CS) functionalized bismuth oxychloride/zinc oxide (BiOCl/ZnO) nanocomposite by a modified hydrothermal route. The physiochemical characterization revealed that the synthesized nanocomposite have crystalline, agglomerated spherical along with rod shaped morphology and size range from 35 to 160 nm. FTIR peaks at 825, 727, 662 and 622 cm-1 specified the presence of BiO and ZnO bonds, whereas peak at 1635 cm-1 revealed the existence of amine groups which confirms the presence of CS in the synthesized CS-BiOCl/ZnO nanocomposite. Catalytic property of synthesized nanocomposite was evaluated by the degradation of Congo red (CR) under UV-light irradiation. CR dye degradation percentage was found to be 93 % within a short period of 40 min by utilizing UV-light. Furthermore, reusability of CS-BiOCl/ZnO photocatalyst was also investigated, and it remained significant photocatalytic activity after three consecutive cycles. Hence, the results obtained in this study revealed that CS-BiOCl/ZnO nanocomposite can be used as a potential photocatalyst to remediate organic pollutants in various industries.
  13. Sharma DS, Wadhwa S, Gulati M, Kumar B, Chitranshi N, Gupta VK, et al.
    Int J Biol Macromol, 2023 Jan 01;224:810-830.
    PMID: 36302483 DOI: 10.1016/j.ijbiomac.2022.10.168
    Diabetic retinopathy (DR) is one of the chronic complications of diabetes. It includes retinal blood vessels' damage. If untreated, it leads to loss of vision. The existing treatment strategies for DR are expensive, invasive, and need expertise during administration. Hence, there is a need to develop a non-invasive topical formulation that can penetrate deep to the posterior segment of retina and treat the damaged retinal vessels. In addition, it should also provide sustained release. In recent years, novel drug delivery systems (NDDS) have been explored for treating DR and found successful. In this study, chitosan (CS) modified 5-Fluorouracil Nanostructured Lipid Carriers (CS-5-FU-NLCs) were prepared by modified melt emulsification-ultrasonication method and optimized by Box-Behnken Design. The size, polydispersity index, zeta potential and entrapment efficiency of CS-5-FU-NLCs were 163.2 ± 2.3 nm, 0.28 ± 1.52, 21.4 ± 0.5 mV and 85.0 ± 0.2 %, respectively. The in vitro drug release and ex vivo permeation study confirmed higher and sustained drug release in CS-5-FU-NLCs as compared to 5-FU solution. HET-CAM Model ensured the non-irritant nature of CS-5-FU-NLCs. In vivo ocular studies of CS-5-FU-NLCs confirmed antiangiogenic effect of 5-FU by CAM model and diabetic retinopathy induced rat model, indicating successful delivery of 5-FU to the retina.
  14. Yang Y, Aghbashlo M, Gupta VK, Amiri H, Pan J, Tabatabaei M, et al.
    Int J Biol Macromol, 2023 May 01;236:123954.
    PMID: 36898453 DOI: 10.1016/j.ijbiomac.2023.123954
    Large amounts of agricultural waste, especially marine product waste, are produced annually. These wastes can be used to produce compounds with high-added value. Chitosan is one such valuable product that can be obtained from crustacean wastes. Various biological activities of chitosan and its derivatives, especially antimicrobial, antioxidant, and anticancer properties, have been confirmed by many studies. The unique characteristics of chitosan, especially chitosan nanocarriers, have led to the expansion of using chitosan in various sectors, especially in biomedical sciences and food industries. On the other hand, essential oils, known as volatile and aromatic compounds of plants, have attracted the attention of researchers in recent years. Like chitosan, essential oils have various biological activities, including antimicrobial, antioxidant, and anticancer. In recent years, one of the ways to improve the biological properties of chitosan is to use essential oils encapsulated in chitosan nanocarriers. Among the various biological activities of chitosan nanocarriers containing essential oils, most studies conducted in recent years have been in the field of antimicrobial activity. It was documented that the antimicrobial activity was increased by reducing the size of chitosan particles in the nanoscale. In addition, the antimicrobial activity was intensified when essential oils were in the structure of chitosan nanoparticles. Essential oils can increase the antimicrobial activity of chitosan nanoparticles with synergistic effects. Using essential oils in the structure of chitosan nanocarriers can also improve the other biological properties (antioxidant and anticancer activities) of chitosan and increase the application fields of chitosan. Of course, using essential oils in chitosan nanocarriers for commercial use requires more studies, including stability during storage and effectiveness in real environments. This review aims to overview recent studies on the biological effects of essential oils encapsulated in chitosan nanocarriers, with notes on their biological mechanisms.
  15. Halim ALA, Kamari A, Phillip E
    Int J Biol Macromol, 2018 Dec;120(Pt A):1119-1126.
    PMID: 30176328 DOI: 10.1016/j.ijbiomac.2018.08.169
    In this work, chitosan, gelatin and methylcellulose films incorporated with tannic acid (TA) were synthesised, characterised and applied for the first time to preserve cherry tomatoes (Solanum lycopersicum var. cerasiforme) and grapes (Vitis vinifera). The addition of TA at 15% (w/w) increased the transparency value of biopolymer films. The highest increment of transparency value was obtained for MC-TA film, increased from 0.572 to 4.73 A/mm. Based on antimicrobial study, the addition of TA improved the antibacterial properties of biopolymers against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The ability of films to preserve both fruits was evaluated in a 14-day preservation study. The application of biopolymer films treated with TA has decreased the weight loss and browning index of fruits, as compared to control films. A significant reduction in the weight loss of cherry tomatoes wrapped with chitosan (from 21.3 to 19.6%), gelatin (from 22.1 to 15.5%) and methylcellulose (26.2 to 20.5%) films were obtained following TA treatment. Overall, results obtained from this study highlight the effects of TA on physiochemical properties of biopolymer films and their ability to preserve fruits.
  16. Karimi K, Mojtabavi S, Tehrany PM, Nejad MM, Rezaee A, Mohtashamian S, et al.
    Int J Biol Macromol, 2023 Jul 01;242(Pt 3):124935.
    PMID: 37230442 DOI: 10.1016/j.ijbiomac.2023.124935
    The field of nanomedicine has provided a fresh approach to cancer treatment by addressing the limitations of current therapies and offering new perspectives on enhancing patients' prognoses and chances of survival. Chitosan (CS) is isolated from chitin that has been extensively utilized for surface modification and coating of nanocarriers to improve their biocompatibility, cytotoxicity against tumor cells, and stability. HCC is a prevalent kind of liver tumor that cannot be adequately treated with surgical resection in its advanced stages. Furthermore, the development of resistance to chemotherapy and radiotherapy has caused treatment failure. The targeted delivery of drugs and genes can be mediated by nanostructures in treatment of HCC. The current review focuses on the function of CS-based nanostructures in HCC therapy and discusses the newest advances of nanoparticle-mediated treatment of HCC. Nanostructures based on CS have the capacity to escalate the pharmacokinetic profile of both natural and synthetic drugs, thus improving the effectiveness of HCC therapy. Some experiments have displayed that CS nanoparticles can be deployed to co-deliver drugs to disrupt tumorigenesis in a synergistic way. Moreover, the cationic nature of CS makes it a favorable nanocarrier for delivery of genes and plasmids. The use of CS-based nanostructures can be harnessed for phototherapy. Additionally, the incur poration of ligands including arginylglycylaspartic acid (RGD) into CS can elevate the targeted delivery of drugs to HCC cells. Interestingly, smart CS-based nanostructures, including ROS- and pH-sensitive nanoparticles, have been designed to provide cargo release at the tumor site and enhance the potential for HCC suppression.
  17. Jawad AH, Norrahma SSA, Hameed BH, Ismail K
    Int J Biol Macromol, 2019 Aug 15;135:569-581.
    PMID: 31150675 DOI: 10.1016/j.ijbiomac.2019.05.127
    In this work, chitosan (Chi) was cross-linked with glyoxal (Gly) and deposited onto glass plate to be a superior adsorbent film for two structurally different reactive orange 16 (RO-16) and methyl orange (MO) dyes by using non-conventional adsorption system without filtration process. The characterizations indicate that the cross-linked chitosan-glyoxal (Chi-Gly) film has a low swelling index, high adherence strength on glass plate, amine group (NH2) content was 32.52%, and pHpzc of ∼6.0 indicating a negative surface charge occurs above pHpzc. The adsorption isotherm data of RO-16 and MO by Chi-Gly film were in agreement with Langmuir isotherm, with maximum adsorption capacities of 1554.3 mg/g and 1451.9 mg/g, respectively. The pseudo-first-order kinetic model best described the kinetic data. The adsorption process was spontaneous and exothermic in nature at Chi-Gly film thickness of 8.55 μm, and pH ~3. The mechanism of adsorption included mainly electrostatic attractions, dipole-dipole hydrogen bonding interactions, n-π stacking attractions, and Yoshida H-bonding. This study reveals that immobilized Chi-Gly film as a good candidate for adsorption of reactive and acid dyes as it does not require any filtration process and adsorbent recovery during and post-adsorption process.
  18. Sohni S, Hashim R, Nidaullah H, Lamaming J, Sulaiman O
    Int J Biol Macromol, 2019 Jul 01;132:1304-1317.
    PMID: 30922916 DOI: 10.1016/j.ijbiomac.2019.03.151
    The utilization of renewable and functional group enriched nano-lignin as bio-additve in fabricating composite has become the focus of attention worldwide. Herein, lignin nanoparticles in the form of hollow spheres with the diameter of the order of 138 ± 39 nm were directly prepared from agro-industrial waste (palm kernel shell) using recyclable tetrahydrofuran in an acidified aqueous system without any chemical modification steps. We then fabricated a new chitosan/nano-lignin composite material as highly efficient sorbent, as demonstrated by efficient removal (~83%) of methylene blue (MB) dye under natural pH conditions. The adsorption process obeyed pseudo-second-order kinetics and adequate fitting of the adsorption data using Langmuir model suggested a monolayer adsorption with a maximum adsorption capacity of 74.07 mg g-1. Moreover, thermodynamic study of the system revealed spontaneous and endothermic nature of the sorption process. Further studies revealed that chitosan composite with nano-lignin showed better performance in dye decontamination compared to native chitosan and chitosan/bulk lignin composite. This could essentially be attributed to synergistic effects of size particularity (nano-effect) and incorporated functionalities due to lignin nanoparticles. Recyclability study performed in four repeated adsorption/regeneration cycles revealed recyclable nature of as-prepared composite, whilst adsorption experiments using spiked real water samples indicated recoveries as high as 89%. Based on this study, as-prepared bio-nanocomposite may thus be considered as an efficient and reusable adsorptive platform for the decontamination of water supplies.
  19. Raees S, Ullah F, Javed F, Akil HM, Jadoon Khan M, Safdar M, et al.
    Int J Biol Macromol, 2023 Mar 31;232:123476.
    PMID: 36731696 DOI: 10.1016/j.ijbiomac.2023.123476
    With the advancement in 3D bioprinting technology, cell culture methods can design 3D environments which are both, complex and physiologically relevant. The main component in 3D bioprinting, bioink, can be split into various categories depending on the criterion of categorization. Although the choice of bioink and bioprinting process will vary greatly depending on the application, general features such as material properties, biological interaction, gelation, and viscosity are always important to consider. The foundation of 3D bioprinting is the exact layer-by-layer implantation of biological elements, biochemicals, and living cells with the spatial control of the implantation of functional elements onto the biofabricated 3D structure. Three basic strategies underlie the 3D bioprinting process: autonomous self-assembly, micro tissue building blocks, and biomimicry or biomimetics. Tissue engineering can benefit from 3D bioprinting in many ways, but there are still numerous obstacles to overcome before functional tissues can be produced and used in clinical settings. A better comprehension of the physiological characteristics of bioink materials and a higher level of ability to reproduce the intricate biologically mimicked and physiologically relevant 3D structures would be a significant improvement for 3D bioprinting to overcome the limitations.
  20. Ganasen M, Yaacob N, Rahman RN, Leow AT, Basri M, Salleh AB, et al.
    Int J Biol Macromol, 2016 Nov;92:1266-1276.
    PMID: 27506122 DOI: 10.1016/j.ijbiomac.2016.06.095
    Lipolytic enzymes with cold adaptation are gaining increasing interest due to their biotechnological prospective. Previously, a cold adapted family I.3 lipase (AMS8 lipase) was isolated from an Antarctic Pseudomonas. AMS8 lipase was largely expressed in insoluble form. The refolded His-tagged recombinant AMS8 lipase was purified with 23.0% total recovery and purification factor of 9.7. The purified AMS8 lipase migrated as a single band with a molecular weight approximately 65kDa via electrophoresis. AMS8 lipase was highly active at 30°C at pH 10. The half-life of AMS8 lipase was reported at 4 and 2h under the incubation of 30 and 40°C, respectively. The lipase was stable over a broad range of pH. It showed enhancement effect in its relative activity under the presence of Li(+), Na(+), K(+), Rb(+) and Cs(+) after 30min treatment. Heavy metal ions such as Cu(2+), Fe(3+) and Zn(2+) inhibited AMS8 activity. This cold adapted alkalophilic AMS lipase was also active in various organic solvent of different polarity. These unique properties of this biological macromolecule will provide considerable potential for many biotechnological applications and organic synthesis at low temperature.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links