Affiliations 

  • 1 Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor, Malaysia; Collaborative Drug Discovery Research (CDDR) Group, Brain and Neuroscience Communities of Research, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
  • 2 Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor, Malaysia; Brain Degeneration and Therapeutics Group, Brain and Neuroscience Communities of Research, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
  • 3 Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor, Malaysia; Collaborative Drug Discovery Research (CDDR) Group, Brain and Neuroscience Communities of Research, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan, Malaysia. Electronic address: kalav922@puncakalam.uitm.edu.my
Int J Biol Macromol, 2015 Jan;72:1419-28.
PMID: 25450046 DOI: 10.1016/j.ijbiomac.2014.10.054

Abstract

The vulnerability of probiotics at low pH and high temperature has limited their optimal use as nutraceuticals. This study addressed these issues by adopting a physicochemical driven approach of incorporating Lactobacillus plantarum LAB12 into chitosan (Ch) coated alginate-xanthan gum (Alg-XG) beads. Characterisation of Alg-XG-Ch, which elicited little effect on bead size and polydispersity, demonstrated good miscibility with improved bead surface smoothness and L. plantarum LAB12 entrapment when compared to Alg, Alg-Ch and Alg-XG. Sequential incubation of Alg-XG-Ch in simulated gastric juice and intestinal fluid yielded high survival rate of L. plantarum LAB12 (95%) at pH 1.8 which in turn facilitated sufficient release of probiotics (>7 log CFU/g) at pH 6.8 in both time- and pH-dependent manner. Whilst minimising viability loss at 75 and 90 °C, Alg-XG-Ch improved storage durability of L. plantarum LAB12 at 4 °C. The present results implied the possible use of L. plantarum LAB12 incorporated in Alg-XG-Ch as new functional food ingredient with health claims.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.