Displaying all 8 publications

Abstract:
Sort:
  1. Fareez IM, Lim SM, Mishra RK, Ramasamy K
    Int J Biol Macromol, 2015 Jan;72:1419-28.
    PMID: 25450046 DOI: 10.1016/j.ijbiomac.2014.10.054
    The vulnerability of probiotics at low pH and high temperature has limited their optimal use as nutraceuticals. This study addressed these issues by adopting a physicochemical driven approach of incorporating Lactobacillus plantarum LAB12 into chitosan (Ch) coated alginate-xanthan gum (Alg-XG) beads. Characterisation of Alg-XG-Ch, which elicited little effect on bead size and polydispersity, demonstrated good miscibility with improved bead surface smoothness and L. plantarum LAB12 entrapment when compared to Alg, Alg-Ch and Alg-XG. Sequential incubation of Alg-XG-Ch in simulated gastric juice and intestinal fluid yielded high survival rate of L. plantarum LAB12 (95%) at pH 1.8 which in turn facilitated sufficient release of probiotics (>7 log CFU/g) at pH 6.8 in both time- and pH-dependent manner. Whilst minimising viability loss at 75 and 90 °C, Alg-XG-Ch improved storage durability of L. plantarum LAB12 at 4 °C. The present results implied the possible use of L. plantarum LAB12 incorporated in Alg-XG-Ch as new functional food ingredient with health claims.
  2. Mishra RK, Ramasamy K, Ahmad NA, Eshak Z, Majeed AB
    J Mater Sci Mater Med, 2014 Apr;25(4):999-1012.
    PMID: 24398912 DOI: 10.1007/s10856-013-5132-x
    Stimuli responsive hydrogels have shown enormous potential as a carrier for targeted drug delivery. In this study we have developed novel pH responsive hydrogels for the delivery of 5-fluorouracil (5-FU) in order to alleviate its antitumor activity while reducing its toxicity. We used 2-(methacryloyloxyethyl) trimetylammonium chloride a positively charged monomer and methacrylic acid for fabricating the pH responsive hydrogels. The released 5-FU from all except hydrogel (GEL-5) remained biologically active against human colon cancer cell lines [HT29 (IC50 = 110-190 μg ml(-1)) and HCT116 (IC50 = 210-390 μg ml(-1))] but not human skin fibroblast cells [BJ (CRL2522); IC50 ≥ 1000 μg ml(-1)]. This implies that the copolymer hydrogels (1-4) were able to release 5-FU effectively to colon cancer cells but not normal human skin fibroblast cells. This is probably due to the shorter doubling time that results in reduced pH in colon cancer cells when compared to fibroblast cells. These pH sensitive hydrogels showed well defined cell apoptosis in HCT116 cells through series of events such as chromatin condensation, membrane blebbing, and formation of apoptotic bodies. No cell killing was observed in the case of blank hydrogels. The results showed the potential of these stimuli responsive polymer hydrogels as a carrier for colon cancer delivery.
  3. Rohilla P, Deep A, Kamra M, Narasimhan B, Ramasamy K, Mani V, et al.
    Drug Res (Stuttg), 2014 Oct;64(10):505-9.
    PMID: 24992500 DOI: 10.1055/s-0034-1368720
    A series of N'-(substituted benzylidene)-2-(benzo[d]oxazol-3(2H)-yl)acetohydrazide derivatives was synthesized and evaluated for its in vitro antimicrobial and anticancer activities. Antimicrobial activity results revealed that compound 12 was found to be the most potent antimicrobial agent. Results of anticancer study indicated that the synthesized compounds exhibited average anticancer potential. Compound 7 (IC 50 =3.12 µM) and compound 16 (IC 50 =2.88 µM) were found to be most potent against breast cancer (MCF7) cell lines. In conclusion, compound 12 and 16 have the potential to be selected as lead compound for the developing of novel antimicrobial and anticancer agents respectively.
  4. Mishra RK, Ramasamy K, Lim SM, Ismail MF, Majeed AB
    J Mater Sci Mater Med, 2014 Aug;25(8):1925-39.
    PMID: 24831081 DOI: 10.1007/s10856-014-5228-y
    The present study investigates the development of methyl cellulose (MC)-sodium alginate (SA)-montmorillonite (MMT) clay based bionanocomposite films with interesting wound healing properties. The differential scanning calorimetry analysis of the composite films revealed presence of single glass transition temperature (Tg) confirming the miscible nature of the ternary blended films. The increase in MMT ratio in the composite films reduced the mobility of biopolymer chains (MC/SA) which increased the Tg of the film. Thermogravimetric analysis showed that dispersion of clay (MMT) at nano level significantly delayed the weight loss that correlated with higher thermal stability of the composite films. It was observed that the developed films were able to exhibit antimicrobial activity against four typical pathogenic bacteria found in the presence of wound. The developed films were able to significantly inhibit (10 mg/ml) the growth of Enterococcus faecium and Pseudomonas aeruginosa. In vitro scratch assay indicated potential wound closure activities of MC-2-4 bionanocomposite films at their respective highest subtoxic doses. In conclusion, these ternary bionanocomposite films were found to be promising systems for wound healing applications.
  5. Yussra Y, Sutton PA, Kosai NR, Razman J, Mishra RK, Harunarashid H, et al.
    Clin Ter, 2013;164(5):425-8.
    PMID: 24217830 DOI: 10.7417/CT.2013.1608
    Inguinal hernia remains the most commonly encountered surgical problem. Various methods of repair have been described, and the most suitable one debated. Single port access (SPA) surgery is a rapidly evolving field, and has the advantage of affording 'scarless' surgery. Single incision laparoscopic surgery (SILS) for inguinal hernia repair is seen to be feasible in both total extraperitoneal (TEP) and transabdominal pre-peritoneal (TAPP) approaches. Data and peri-operative information on both of these however are limited. We aimed to review the clinical experience, feasibility and short term complications related to laparoscopic inguinal hernia repair via single port access. A literature search was performed using Google Scholar, Springerlink Library, Highwire Press, Surgical Endoscopy Journal, World Journal of Surgery and Medscape. The following search terms were used: laparoscopic hernia repair, TAPP, TEP, single incision laparoscopic surgery (SILS). Fourteen articles in English language related to SILS inguinal hernia repair were identified. Nine articles were related to TEP repair and the remaining 5 to TAPP. A total of 340 patients were reported within these studies: 294 patients having a TEP repair and 46 a TAPP. Only two cases of recurrence were reported. Various ports have been utilized, including the SILS port, Tri-Port and a custom- made port using conventional laparoscopic instruments. The duration of surgery was 40-100 minutes and the average length of hospital stay was one day. Early outcomes of this novel technique show it to be feasible, safe and with potentially better cosmetic outcome.
  6. Fareez IM, Lim SM, Zulkefli NAA, Mishra RK, Ramasamy K
    Probiotics Antimicrob Proteins, 2018 09;10(3):543-557.
    PMID: 28493103 DOI: 10.1007/s12602-017-9284-8
    The susceptibility of probiotics to low pH and high temperature has limited their use as nutraceuticals. In this study, enhanced protection of probiotics via microencapsulation was achieved. Lactobacillus plantarum LAB12 were immobilised within polymeric matrix comprised of alginate (Alg) with supplementation of cellulose derivatives (methylcellulose (MC), sodium carboxymethyl cellulose (NaCMC) or hydroxypropyl methylcellulose (HPMC)). L. plantarum LAB12 encapsulated in Alg-HPMC(1.0) and Alg-MC(1.0) elicited improved survivability (91%) in simulated gastric conditions and facilitated maximal release (∼100%) in simulated intestinal condition. Alg-HPMC(1.0) and Alg-MC(1.0) significantly reduced (P 7 log CFU g-1. Alg-MC and Alg-HPMC improved the survival of LAB12 against simulated gastric condition (9.24 and 9.55 log CFU g-1, respectively), temperature up to 90 °C (9.54 and 9.86 log CFU g-1, respectively) and 4-week of storage at 4 °C (8.61 and 9.23 log CFU g-1, respectively) with sustained release of probiotic in intestinal condition (>9 log CFU g-1). These findings strongly suggest the potential of cellulose derivatives supplemented Alg bead as protective micro-transport for probiotic strains. They can be safely incorporated into new functional food or nutraceutical products.
  7. Kumar P, Narasimhan B, Ramasamy K, Mani V, Mishra RK, Majeed ABA, et al.
    Monatsh Chem, 2013;144(6):825-849.
    PMID: 32214480 DOI: 10.1007/s00706-012-0877-3
    ABSTRACT: A variety of N'-[4-[(substituted imino)methyl]benzylidene]-substituted benzohydrazides have been synthesized and evaluated for antimicrobial and anticancer potential. Results from testing of antimicrobial activity indicated the most potent antimicrobial agents had pMIC am = 1.51. The synthesized compounds were bacteriostatic and fungistatic in action. Results from evaluation of antiviral activity indicated that none of the synthesized hydrazide derivatives inhibited viral replication at sub-toxic concentrations. Results from anti-HIV screening against HIV-2 strain ROD indicated that one compound was more potent (IC 50 ≥ 1 μg/cm3) than the standard drug nevirapine (IC 50 ≥ 4 μg/cm3) and another was equipotent (IC 50 ≥ 4 μg/cm3). The most effective anticancer agent against both HCT116 and MCF7 cancer cell lines had IC 50 = 19 and 18 μg/cm3, respectively. QSAR analysis indicated the importance of Wiener index (W) and energy of the lowest unoccupied molecular orbital (LUMO) in describing the antimicrobial activity of the synthesized compounds.
  8. Kumar M, Ramasamy K, Mani V, Mishra RK, Majeed ABA, Clercq E, et al.
    Arab J Chem, 2014 Sep;7(4):396-408.
    PMID: 38620260 DOI: 10.1016/j.arabjc.2012.12.005
    A series of 4-(1-aryl-2-oxo-1,2-dihydro-indol-3-ylideneamino)-N-substituted benzenesulfonamide derivatives (1-32) was synthesized and evaluated for its in vitro antimicrobial, antiviral and cytotoxic activities. Antimicrobial results indicated that compounds (11) and (18) were found to be the most effective ones. In general, the synthesized compounds were bacteriostatic and fungistatic in their action. The cytotoxic screening results indicated that the compounds were less active than the standard drug 5-fluorouracil (5-FU). None of the compounds inhibited viral replication at subtoxic concentrations. In general, the presence of a pyrimidine ring with electron releasing groups and an ortho- and para-substituted benzoyl moiety favored antimicrobial activities. The results of QSAR studies demonstrated the importance of topological parameters, valence zero order molecular connectivity index (0χv) and valence first order molecular connectivity index (1χv) in describing the antimicrobial activity of synthesized compounds.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links