Displaying publications 81 - 100 of 306 in total

Abstract:
Sort:
  1. Mojiri A, Ziyang L, Tajuddin RM, Farraji H, Alifar N
    J Environ Manage, 2016 Jan 15;166:124-30.
    PMID: 26496842 DOI: 10.1016/j.jenvman.2015.10.020
    Constructed wetland (CW) is a low-cost alternative technology to treat wastewater. This study was conducted to co-treat landfill leachate and municipal wastewater by using a CW system. Typha domingensis was transplanted to CW, which contains two substrate layers of adsorbents, namely, ZELIAC and zeolite. Response surface methodology and central composite design have been utilized to analyze experimental data. Contact time (h) and leachate-to-wastewater mixing ratio (%; v/v) were considered as independent variables. Colour, COD, ammonia, nickel, and cadmium contents were used as dependent variables. At optimum contact time (50.2 h) and leachate-to-wastewater mixing ratio (20.0%), removal efficiencies of colour, COD, ammonia, nickel, and cadmium contents were 90.3%, 86.7%, 99.2%, 86.0%, and 87.1%, respectively. The accumulation of Ni and Cd in the roots and shoots of T. domingensis was also monitored. Translocation factor (TF) was >1 in several runs; thus, Typha is classified as a hyper-accumulator plant.
  2. Mujeebu MA, Abdullah MZ, Bakar MZ, Mohamad AA, Muhad RM, Abdullah MK
    J Environ Manage, 2009 Jun;90(8):2287-312.
    PMID: 19299066 DOI: 10.1016/j.jenvman.2008.10.009
    The rapid advances in technology and improved living standard of the society necessitate abundant use of fossil fuels which poses two major challenges to any nation. One is fast depletion of fossil fuel resources; the other is environmental pollution. The porous medium combustion (PMC) has proved to be one of the technically and economically feasible options to tackle the aforesaid problems to a remarkable extent. PMC has interesting advantages compared with free flame combustion due to the higher burning rates, the increased power dynamic range, the extension of the lean flammability limits, and the low emissions of pollutants. This article provides a comprehensive picture of the global scenario of research and developments in PMC and its applications that enable a researcher to decide the direction of further investigation. The works published so far in this area are reviewed, classified according to their objectives and presented in an organized manner with general conclusions. A separate section is devoted for the numerical modeling of PMC.
  3. Wan Ahmad WN, Rezaei J, Tavasszy LA, de Brito MP
    J Environ Manage, 2016 Sep 15;180:202-13.
    PMID: 27233046 DOI: 10.1016/j.jenvman.2016.04.056
    Our current dependency on the oil and gas (O&G) industry for economic development and social activities necessitates research into the sustainability of the industry's supply chains. At present, studies on sustainable supply chain management (SSCM) practices in the industry do not include firm-internal factors that affect the sustainability strategies employed by different functional areas of its supply chains. Our study aims to address this gap by identifying the relevant internal factors and exploring their relationship with SSCM strategies. Specifically, we discuss the commitment to and preparedness for sustainable practices of companies that operate in upstream and downstream O&G supply chain. We study the impact of these factors on their sustainability strategies of four key supply chain functions: supplier management, production management, product stewardship and logistics management. The analyses of data collected through a survey among 81 companies show that management preparedness may enhance sustainable supply chain strategies in the O&G industry more than commitment does. Among the preparedness measures, management of supply chain operational risks is found to be vital to the sustainability of all supply chain functions except for production management practices. The findings also highlight the central importance of supplier and logistics management to the achievement of sustainable O&G supply chains. Companies must also develop an organizational culture that encourages, for example, team collaboration and proactive behaviour to finding innovative sustainability solutions in order to translate commitment to sustainable practices into actions that can produce actual difference to their SSCM practices.
  4. Muhamad Khair NK, Lee KE, Mokhtar M
    J Environ Manage, 2021 Jul 01;289:112491.
    PMID: 33813302 DOI: 10.1016/j.jenvman.2021.112491
    Community-based monitoring is increasingly recognised as one solution to sustainable environmental management. However, the development of community-based monitoring has led to confusion or misconceptions regarding other similar initiatives. Through a review of the characteristics and synthesising criteria of effective community-based monitoring, this article addresses how to distinguish community-based monitoring from other forms of community engagement research. A review of relevant community-based monitoring literature identifies the characteristics of and knowledge gaps in procedures and governance structures. Additionally, evidence of common benefits, challenges and lessons learned for successful community-based monitoring are deliberated. As an outcome of the review, the article synthesises a set of community-based monitoring criteria as follows: (1) efficacy of initiatives, (2) technicality aspects, (3) feedback mechanisms and (4) sustainability. These synthesised criteria will be instrumental in designing customised community-based monitoring initiatives for environmental sustainability.
  5. Almaamary EAS, Abdullah SRS, Ismail N', Idris M, Kurniawan SB, Imron MF
    J Environ Manage, 2022 Apr 01;307:114534.
    PMID: 35065382 DOI: 10.1016/j.jenvman.2022.114534
    Dye is one of the pollutants found in water bodies because of the increased growth of the textile industry. In this study, Scirpus grossus was planted inside a constructed wetland to treat mixed dye (methylene blue and methyl orange)-containing wastewater under batch and continuous modes. The plants were exposed to various concentrations (0, 50, 75, and 100 mg/L) of mixed dye for 72 days (with hydraulic retention time of 7 days for the continuous system). Biological oxygen demand, chemical oxygen demand, total organic carbon, pH, temperature, ionic content, and plant growth parameters were measured. Results showed that S. grossus can withstand all the tested dye concentrations until the end of the treatment period. Color removal efficiencies of 86, 84, and 75% were obtained in batch mode, whereas 90%, 85%, and 79% were obtained in continuous mode for 50, 75, and 100 mg/L dye concentrations, respectively. Fourier-transform infrared analysis confirmed the transformation of dye compounds after treatment and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy analysis showed that most of the intermediate compounds were not absorbed into plants but adsorbed onto the surface of the root structure.
  6. Al-Baldawi IA, Abdullah SR, Suja F, Anuar N, Mushrifah I
    J Environ Manage, 2013 Nov 30;130:324-30.
    PMID: 24113536 DOI: 10.1016/j.jenvman.2013.09.010
    Two types of flow system, free surface flow (FSF) and sub-surface flow (SSF), were examined to select a better way to remove total petroleum hydrocarbons (TPH) using diesel as a hydrocarbon model in a phytotoxicity test to Scirpus grossus. The removal efficiencies of TPH for the two flow systems were compared. Several wastewater parameters, including temperature (T, °C), dissolved oxygen (DO, mgL(-1)), oxidation-reduction potential (ORP, mV), and pH were recorded during the experimental runs. In addition, overall plant lengths, wet weights, and dry weights were also monitored. The phytotoxicity test using the bulrush plant S. grossus was run for 72 days with different diesel concentrations (1%, 2%, and 3%) (Vdiesel/Vwater). A comparison between the two flow systems showed that the SSF system was more efficient than the FSF system in removing TPH from the synthetic wastewater, with average removal efficiencies of 91.5% and 80.2%, respectively. The SSF system was able to tolerate higher diesel concentrations than was the FSF system.
  7. Tiew KG, Basri NEA, Deng H, Watanabe K, Zain SM, Wang S
    J Environ Manage, 2019 May 01;237:255-263.
    PMID: 30798044 DOI: 10.1016/j.jenvman.2019.02.033
    After twenty-four years of government efforts, the latest national recycling rate in Malaysia rose from 5% in 1993 to approximately 24.6% in 2017. However, the practice of solid waste recycling in developing countries is still challenging compared to developing countries. Especially in Malaysia, a multi-ethnic country where people with different ethics have different living lifestyles. Still, Malaysia faces rapidly increasing solid waste and management costs, lacks appropriate data on solid waste management and recycling, lacks awareness of the 3R's (reduce, reuse and recycle) culture and lacks policies to promote 3R's culture. In addition, prior to the enforcement of ACT 672, information and networks between stakeholders have been limited for more than 20 years. Some scholars believe that the success of recycling practices is mainly influenced by community recycling behaviours. Therefore, in order to improve and evaluate the effectiveness of current national solid waste recycling management systems, research and assessment of community recycling behaviours are essential. This paper aims to evaluate the factors that attract communities to implement recycling in their daily lives and to obtain data through quantitative survey methods. Face-to-face questionnaires are conducted through purposive sampling and collected data is further analysed by PASW statistical tools. The comparison between recyclers and non-recyclers are presented in terms of frequency, means scores and radar chart. The results indicate that policy makers involved in the planning, organisation, and implementation of community recycling programs have to focus on strategies that engage community members and adopt recycling practices to improve environmental impact by changing their attitudes. Based on the results of means scores, the type of age, occupation and place of life must be taken into consideration in order to organize future recycling campaigns or awareness programs. In conclusion, the information will help policymakers make better solid waste recycling management to meet the needs of the public.
  8. Muhamad MH, Sheikh Abdullah SR, Abu Hasan H, Abd Rahim RA
    J Environ Manage, 2015 Nov 1;163:115-24.
    PMID: 26311084 DOI: 10.1016/j.jenvman.2015.08.012
    The complexity of residual toxic organics from biologically treated effluents of pulp and paper mills is a serious concern. To date, it has been difficult to choose the best treatment technique because each of the available options has advantages and drawbacks. In this study, two different treatment techniques using laboratory-scale aerobic sequencing batch reactors (SBRs) were tested with the same real recycled paper mill effluent to evaluate their treatment efficiencies. Two attached-growth SBRs using granular activated carbon (GAC) with and without additional biomass and a suspended-growth SBR were used in the treatment of real recycled paper mill effluent at a chemical oxygen demand (COD) level in the range of 800-1300 mg/L, a fixed hydraulic retention time of 24 h and a COD:N:P ratio of approximately 100:5:1. The efficiency of this biological treatment process was studied over a 300-day period. The six most important wastewater quality parameters, namely, chemical oxygen demand (COD), turbidity, ammonia (expressed as NH3-N), phosphorus (expressed as PO4(3)-P), colour, and suspended solids (SS), were measured to compare the different treatment techniques. It was determined that these processes were able to almost completely and simultaneously eliminate COD (99%) and turbidity (99%); the removals of NH3-N (90-100%), PO4(3)-P (66-78%), colour (63-91%), and SS (97-99%) were also sufficient. The overall performance results confirmed that an attached-growth SBR system using additional biomass on GAC is a promising configuration for wastewater treatment in terms of performance efficiency and process stability under fluctuations of organic load. Hence, this hybrid system is recommended for the treatment of pulp and paper mill effluents.
  9. Naidu Y, Siddiqui Y, Idris AS
    J Environ Manage, 2020 Apr 01;259:110056.
    PMID: 31929034 DOI: 10.1016/j.jenvman.2019.110056
    The disposal of oil palm biomass is a huge challenge in Malaysian oil palm plantations. The aim of this study was to develop efficient solid-state cultivated (SSC) ligno-hemicellulolytic bio-degrader formulations of indigenous white-rot hymenomycetes (Trametes lactinea FBW and Pycnoporus sanguineus FBR) utilizing oil palm empty fruit bunches (EFB), rubber wood sawdust (SD) and vermiculite (V) either alone or in combination as substrates. Based on significant laccase (849.40 U mg-1 protein), xylanase (42.26 U g-1 protein) and amylase (157.49 U g-1 protein) production, SD+V (T5) and V (T3) were the optimum substrates for SSC of T. lactinea FBW. Whereas, utilizing EFB (T1) substrate for SSC of P. sanguineus FBR enhanced the production of MnP (42.51 U mg-1 protein), LiP (103.20 U mg-1 protein) and CMCase (34.39 U g-1 protein), enzymes. Apparently, this is the first study reporting on the protein profiles by T. lactinea FBW, producing two isoforms of un-purified laccase (~55 and 70 kDa) and MnP (~40 and 60 kDa) and a CMCase band (~60 kDa) during SSC on SD+V (T5) substrate. Interestingly, this is also the first report to document a single isoform of un-purified laccase (~50 kDa), MnP (~45 kDa), CMCase (~60 kDa) and xylanase (~55 kDa) by P. sanguineus FBR during SSC on empty fruit bunches substrate. The computed Principal Component Analysis (PCA) Biplot analysis elucidated the relationship between the solid substrate compositions, the hymenomycete strain, ligno-hemicellulolytic enzyme profiles, and cultivation time. Therefore, it is suggested to use PCA as a tool for multivariate analysis method for comprehensive selection and optimization of ligno-hemicellulolytic enzyme cocktails by the indigenous white rot hymenomycetes. These non-toxic (acute oral toxicity) formulations are safe to be used in field applications to efficiently degrade oil palm trunks and root mass that had been felled, chipped or pulverized under zero burning waste management program. This study could also serve as an alternative method for efficient utilization of agro-industrial waste as substrates for the development of cost-effective bio-degraders formulations for agro-waste management.
  10. Zhang M, Zhang F, Guo L, Dong P, Cheng C, Kumar P, et al.
    J Environ Manage, 2023 Dec 15;348:119465.
    PMID: 37924697 DOI: 10.1016/j.jenvman.2023.119465
    Grassland degradation poses a serious threat to biodiversity, ecosystem services, and human well-being. In this study, we investigated grassland degradation in Zhaosu County, China, between 2001 and 2020, and analyzed the impacts of climate change and human activities using the Miami model. The actual net primary productivity (ANPP) obtained with CASA (Carnegie-Ames-Stanford Approach) modeling, showed a decreasing trend, reflecting the significant degradation that the grasslands in Zhaosu County have experienced in the past 20 years. Grassland degradation was found to be highest in 2018, while the degraded area continuously decreased in the last 3 years (2018-2020). Climatic factors for found to be the dominant factor affecting grassland degradation, particularly the decrease in precipitation. On the other hand, human activities were found to be the main factor affecting improvement of grasslands, especially in recent years. This finding profoundly elucidates the underlying causes of grassland degradation and improvement and helps implement ecological conservation and restoration measures. From a practical perspective, the research results provide an important reference for the formulation of policies and management strategies for sustainable land use.
  11. Kathuria V
    J Environ Manage, 2006 Mar;78(4):405-26.
    PMID: 16171929
    The policy prescription for solving environmental problems of developing countries and countries-in-transition (CIT) is slowly getting polarized into two viewpoints. One group of researchers and policy advocates including multilateral organizations upholds extensive use of market based instruments (MBIs) in these countries. The other group argues that institutions need to be built first or the policy makers should select the incremental or tiered approach taking into account the existing capabilities. The group also insists that the financial, institutional and political constraints make environmental regulation in these countries more problematic than in industrialized countries. In the short-run, the immediate needs of the developing countries can be addressed effectively by learning lessons from the difficulties encountered by a few successful cases and accordingly evolving an appropriate policy instrument. In this paper an attempt has been made to highlight three such cases from three different parts of the world--Malaysia (Asia-pacific), Poland (Eastern Europe) and Colombia (Latin America). The paper looks into what policy instruments led to a fall in water pollution levels in these countries and what role did MBIs play in this pollution mitigation? The case studies suggest that it is a combination of instruments--license fee, standards, charge and subsidies--reinforced by active enforcement that led to an overall improvement in environment compliance.
  12. Liew WL, Kassim MA, Muda K, Loh SK, Affam AC
    J Environ Manage, 2015 Feb 1;149:222-35.
    PMID: 25463585 DOI: 10.1016/j.jenvman.2014.10.016
    The Malaysian palm oil industry is a major revenue earner and the country is ranked as one of the largest producers in the world. However, growth of the industry is synonymous with a massive production of agro-industrial wastewater. As an environmental protection and public health concern, the highly polluting palm oil mill effluent (POME) has become a major attention-grabber. Hence, the industry is targeting for POME pollution abatement in order to promote a greener image of palm oil and to achieve sustainability. At present, most palm oil mills have adopted the ponding system for treatment. Due to the successful POME pollution abatement experiences, Malaysia is currently planning to revise the effluent quality standards towards a more stringent discharge limits. Hence, the current trend of POME research focuses on developing tertiary treatment or polishing systems for better effluent management. Biotechnologically-advanced POME tertiary (polishing) technologies as well as other physicochemical methods are gaining much attention as these processes are the key players to push the industry towards the goal of environmental sustainability. There are still ongoing treatment technologies being researched and the outcomes maybe available in a while. However, the research completed so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the new standards. To this end, the most feasible technology could be the combination of advanced biological processes (bioreactor systems) with extended aeration, followed by solids separation prior to discharge. Chemical dosing is favoured only if effluent of higher quality is anticipated.
  13. Ooi CH, Cheah WK, Sim YL, Pung SY, Yeoh FY
    J Environ Manage, 2017 Jul 15;197:199-205.
    PMID: 28384613 DOI: 10.1016/j.jenvman.2017.03.083
    Urea removal is an important process in household wastewater purification and hemodialysis treatment. The efficiency of the urea removal can be improved by utilizing activated carbon fiber (ACF) for effective urea adsorption. In this study, ACF was prepared from oil palm empty fruit bunch (EFB) fiber via physicochemical activation using sulfuric acid as an activating reagent. Based on the FESEM result, ACF obtained after the carbonization and activation processes demonstrated uniform macropores with thick channel wall. ACF was found better prepared in 1.5:1 acid-to-EFB fiber ratio; where the pore size of ACF was analyzed as 1.2 nm in diameter with a predominant micropore volume of 0.39 cm(3) g(-1) and a BET surface area of 869 m(2) g(-1). The reaction kinetics of urea adsorption by the ACF was found to follow a pseudo-second order kinetic model. The equilibrium amount of urea adsorbed on ACF decreased from 877.907 to 134.098 mg g(-1) as the acid-to-fiber ratio increased from 0.75 to 4. During the adsorption process, the hydroxyl (OH) groups on ACF surface were ionized and became electronegatively charged due to the weak alkalinity of urea solution, causing ionic repulsion towards partially anionic urea. The ionic repulsion force between the electronegatively charged ACF surface and urea molecules became stronger when more OH functional groups appeared on ACF prepared at higher acid impregnation ratio. The results implied that EFB fiber based ACF can be used as an efficient adsorbent for the urea removal process.
  14. Naganathan S, Razak HA, Hamid SN
    J Environ Manage, 2013 Oct 15;128:637-41.
    PMID: 23845957 DOI: 10.1016/j.jenvman.2013.06.009
    This paper reports the corrosivity and leaching behavior of CLSM made using two different industrial wastes i.e. bottom ash from an incineration facility and quarry dust. The leachate samples were derived from fresh and hardened CLSM mixtures, and studied for leaching and electrical resistivity. The release of various contaminants and the consequent environmental impact caused by the contaminants were studied by the measurement of contaminants in the bleed, in the leachate at 28 days, and on the leachate derived from crushed block and whole block leaching done over a period of 126 days. Results indicated that the CLSM mixtures are non corrosive; diffusion was the leaching mechanism; and the contaminants were found to be moderate to low mobility.
  15. Yang S, Tan ML, Song Q, He J, Yao N, Li X, et al.
    J Environ Manage, 2023 Mar 15;330:117244.
    PMID: 36621311 DOI: 10.1016/j.jenvman.2023.117244
    Global climate change has led to an increase in both the frequency and magnitude of extreme events around the world, the risk of which is especially imminent in tropical regions. Developing hydrological models with better capabilities to simulate streamflow, especially peak flow, is urgently needed to facilitate water resource planning and management as well as climate change mitigation efforts in the tropics. In view of the need, this paper explores the feasibility of improving streamflow simulation performance in the tropical Kelantan River Basin (KRB) of Peninsular Malaysia through coupling a conceptual process-based hydrological model - Soil and Water Assessment Tool (SWAT) with a deep learning model - Bidirectional Long Short-Term Memory (Bi-LSTM) in two ways. All SWAT parameters were set as their default values in one hybrid model (SWAT-D-LSTM), whereas three most sensitive SWAT parameters were calibrated in the other hybrid model (SWAT-T-LSTM). Comparison of daily streamflow simulation results have shown that SWAT-T-LSTM consistently performs better than SWAT-D-LSTM as well as the stand-alone SWAT and Bi-LSTM model throughout the simulation period. Particularly, SWAT-T-LSTM performs considerably better than the other three models in simulating daily peak flow. Based on the latest projection results of five GCMs from the Sixth Phase of the Coupled Model Intercomparison Project (CMIP6) under three emission scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5), the best-performed SWAT-T-LSTM was run to assess the potential impacts of climate change on streamflow in the KRB. Ensemble assessment results have concluded that both average and extreme streamflow is much likely to increase considerably in the already wet northeast monsoon season from November to January, which has surely raised the alarm for more frequent flood occurrence in the KRB.
  16. Kurniawan TA, Othman MHD, Liang X, Goh HH, Gikas P, Kusworo TD, et al.
    J Environ Manage, 2023 Jul 15;338:117765.
    PMID: 36965421 DOI: 10.1016/j.jenvman.2023.117765
    Digitalization and sustainability have been considered as critical elements in tackling a growing problem of solid waste in the framework of circular economy (CE). Although digitalization can enhance time-efficiency and/or cost-efficiency, their end-results do not always lead to sustainability. So far, the literatures still lack of a holistic view in understanding the development trends and key roles of digitalization in waste recycling industry to benefit stakeholders and to protect the environment. To bridge this knowledge gap, this work systematically investigates how leveraging digitalization in waste recycling industry could address these research questions: (1) What are the key problems of solid waste recycling? (2) How the trends of digitalization in waste management could benefit a CE? (3) How digitalization could strengthen waste recycling industry in a post-pandemic era? While digitalization boosts material flows in a CE, it is evident that utilizing digital solutions to strengthen waste recycling business could reinforce a resource-efficient, low-carbon, and a CE. In the Industry 4.0 era, digitalization can add 15% (about USD 15.7 trillion) to global economy by 2030. As digitalization grows, making the waste sector shift to a CE could save between 30% and 35% of municipalities' waste management budget. With digitalization, a cost reduction of 3.6% and a revenue increase of 4.1% are projected annually. This would contribute to USD 493 billion in an increasing revenue yearly in the next decade. As digitalization enables tasks to be completed shortly with less manpower, this could save USD 421 billion annually for the next decade. With respect to environmental impacts, digitalization in the waste sector could reduce global CO2 emissions by 15% by 2030 through technological solutions. Overall, this work suggests that digitalization in the waste sector contributes net-zero emission to a digital economy, while transitioning to a sustainable world as its social impacts.
  17. Sirimewan D, Bazli M, Raman S, Mohandes SR, Kineber AF, Arashpour M
    J Environ Manage, 2024 Feb;351:119908.
    PMID: 38169254 DOI: 10.1016/j.jenvman.2023.119908
    The construction industry generates a substantial volume of solid waste, often destinated for landfills, causing significant environmental pollution. Waste recycling is decisive in managing waste yet challenging due to labor-intensive sorting processes and the diverse forms of waste. Deep learning (DL) models have made remarkable strides in automating domestic waste recognition and sorting. However, the application of DL models to recognize the waste derived from construction, renovation, and demolition (CRD) activities remains limited due to the context-specific studies conducted in previous research. This paper aims to realistically capture the complexity of waste streams in the CRD context. The study encompasses collecting and annotating CRD waste images in real-world, uncontrolled environments. It then evaluates the performance of state-of-the-art DL models for automatically recognizing CRD waste in-the-wild. Several pre-trained networks are utilized to perform effectual feature extraction and transfer learning during DL model training. The results demonstrated that DL models, whether integrated with larger or lightweight backbone networks can recognize the composition of CRD waste streams in-the-wild which is useful for automated waste sorting. The outcome of the study emphasized the applicability of DL models in recognizing and sorting solid waste across various industrial domains, thereby contributing to resource recovery and encouraging environmental management efforts.
  18. Chai LK, Wong MH, Bruun Hansen HC
    J Environ Manage, 2013 Aug 15;125:28-32.
    PMID: 23632002 DOI: 10.1016/j.jenvman.2013.04.005
    The insecticide chlorpyrifos is extensively used in the humid tropics for insect control on crops and soils. Chlorpyrifos degradation and mineralization was studied under laboratory conditions to characterize the critical factors controlling the degradation and mineralization in three humid tropical soils from Malaysia. The degradation was fastest in moist soils (t1/2 53.3-77.0 days), compared to dry (t1/2 49.5-120 days) and wet soils (t1/2 63.0-124 days). Degradation increased markedly with temperature with activation energies of 29.0-76.5 kJ mol(-1). Abiotic degradation which is important for chlorpyrifos degradation in sub-soils containing less soil microbial populations resulted in t½ of 173-257 days. Higher chlorpyrifos dosages (5-fold) which are often applied in the tropics due to severe insects infestations caused degradation and mineralization rates to decrease by 2-fold. The mineralization rates were more sensitive to the chlorpyrifos application rates reflecting that degradation of metabolites is rate limiting and the toxic effects of some of the metabolites produced. Despite that chlorpyrifos is frequently used and often in larger amounts on tropical soils compared with temperate soils, higher temperature, moderate moisture and high activity of soil microorganisms will stimulate degradation and mineralization.
  19. Xu T, Tang X, Qiu M, Lv X, Shi Y, Zhou Y, et al.
    J Environ Manage, 2023 Oct 15;344:118718.
    PMID: 37541001 DOI: 10.1016/j.jenvman.2023.118718
    Antibiotic-containing wastewater is a typical biochemical refractory organic wastewater and general treatment methods cannot effectively and quickly degrade the antibiotic molecules. In this study, a novel boron-doped diamond (BDD) pulse electrochemical oxidation (PEO) technology was proposed for the efficient removal of levofloxacin (LFXN) from wastewater. The effects of current density (j), initial pH (pH0), frequency (f), electrolyte types and initial concentration (c0(LFXN)) on the degradation of LFXN were systematically investigated. The degradation kinetics under four different processes have also been studied. The possible degradation mechanism of LFXN was proposed by Density functional theory calculation and analysis of degradation intermediates. The results showed that under the optimal parameters, the COD removal efficiency (η(COD)) was 94.4% and the energy consumption (EEC) was 81.43 kWh·m-3 at t = 120 min. The degradation of LFXN at pH = 2.8/c(H2O2) followed pseudo-first-order kinetics. The apparent rate constant was 1.33 × 10-2 min-1, which was much higher than other processes. The degradation rate of LFXN was as follows: pH = 2.8/c(H2O2) > pH = 2.8 > pH = 7/c(H2O2) > pH = 7. Ten aromatic intermediates were formed during the degradation of LFXN, which were further degraded to F-, NH4+, NO3-, CO2 and H2O. This study provides a promising approach for efficiently treating LFXN antibiotic wastewater by pulsed electrochemical oxidation with a BDD electrode without adding H2O2.
  20. Phua MH, Tsuyuki S, Furuya N, Lee JS
    J Environ Manage, 2008 Sep;88(4):784-95.
    PMID: 17629393
    Tropical deforestation is occurring at an alarming rate, threatening the ecological integrity of protected areas. This makes it vital to regularly assess protected areas to confirm the efficacy of measures that protect that area from clearing. Satellite remote sensing offers a systematic and objective means for detecting and monitoring deforestation. This paper examines a spectral change approach to detect deforestation using pattern decomposition (PD) coefficients from multitemporal Landsat data. Our results show that the PD coefficients for soil and vegetation can be used to detect deforestation using change vector analysis (CVA). CVA analysis demonstrates that deforestation in the Kinabalu area, Sabah, Malaysia has significantly slowed from 1.2% in period 1 (1973 and 1991) to 0.1% in period 2 (1991 and 1996). A comparison of deforestation both inside and outside Kinabalu Park has highlighted the effectiveness of the park in protecting the tropical forest against clearing. However, the park is still facing pressure from the area immediately surrounding the park (the 1 km buffer zone) where the deforestation rate has remained unchanged.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links