Displaying publications 81 - 100 of 137 in total

Abstract:
Sort:
  1. Balakrishnan DD, Kumar SG
    Parasit Vectors, 2014;7:219.
    PMID: 24886677 DOI: 10.1186/1756-3305-7-219
    Biochemical evidence of a caspase-like execution pathway has been demonstrated in a variety of protozoan parasites, including Blastocystis spp. The distinct differences in the phenotypic characterization reported previously have prompted us to compare the rate of apoptosis in Blastocystis spp. isolated from individuals who were symptomatic and asymptomatic. In the current study, we analysed the caspase activation involved in PCD mediated by a cytotoxic drug, (metronidazole) in both symptomatic & asymptomatic isolates.
  2. Kumarasamy V, Roslani AC, Rani KU, Kumar Govind S
    Parasit Vectors, 2014;7:162.
    PMID: 24708637 DOI: 10.1186/1756-3305-7-162
    There have been previous studies associating microorganisms to cancer and with our recent findings of Blastocytsis antigen having a higher in vitro proliferation of cancer cells strengthens the suspicion. Collecting faecal samples alone to associate this parasite with cancer may not be accurate due to the phenomenon of irregular shedding and the possible treatment administrated to the cancer patients. Hence, this become the basis to search for an alternate method of sample collection. Colonic washout is an almost complete washed up material from colon and rectum which includes various microorganisms such as Blastocystis and other lodged material within the villi. The detection of parasite in colonic washouts will give a better reflection on the association between Blastocystis and CRC.
  3. Freeman MA, Kasper JM, Kristmundsson Á
    Parasit Vectors, 2013;6:49.
    PMID: 23445616 DOI: 10.1186/1756-3305-6-49
    Commercial fisheries of lumpfish Cyclopterus lumpus have been carried out in Iceland for centuries. Traditionally the most valuable part is the eggs which are harvested for use as a caviar substitute.Previously reported parasitic infections from lumpfish include an undescribed intranuclear microsporidian associated with abnormal kidneys and mortalities in captive lumpfish in Canada. During Icelandic lumpfish fisheries in spring 2011, extensive enlargements to the kidneys were observed in some fish during processing. The aim of this study was to identify the pathogen responsible for these abnormalities.
  4. Freeman MA, Kristmundsson Á
    Parasit Vectors, 2018 Oct 22;11(1):551.
    PMID: 30348210 DOI: 10.1186/s13071-018-3087-y
    BACKGROUND: The myxosporean Myxidium giardi Cépède, 1906 was described infecting the kidney of the European eel, Anguilla anguilla (L.), having spindle-shaped myxospores and terminal sub-spherical polar capsules. Since then, numerous anguillid eels globally have been documented to have similar Myxidium infections. Many of these have been identified using the morphological features of myxospores or by the location of infection in the host, and some have been subsequently synonymised with M. giardi. Therefore, it is not clear whether M. giardi is a widely distributed parasite, infecting numerous species of eels, in multiple organs, or whether some infections represent other, morphologically similar but different species of myxosporeans. The aim of the present study was to assess the status of M. giardi infections in Icelandic eels, and related fish hosts in Malaysia and to use spore morphology and molecular techniques to evaluate the diversity of myxosporeans present.

    RESULTS: The morphologies of the myxospores from Icelandic eels were very similar but the overall dimensions were significantly different from the various tissue locations. Myxospores from the kidney of the Malaysian tarpon, Megalops cyprinoides (Broussonet), were noticeably smaller. However, the SSU rDNA sequences from the different tissues locations in eels, were all very distinct, with percentage similarities ranging from 92.93% to as low as 89.8%, with the sequence from Malaysia being even more dissimilar. Molecular phylogenies consistently placed these sequences together in a clade that we refer to as the Paramyxidium clade that is strongly associated with the Myxidium clade (sensu stricto). We erect the genus Paramyxidium n. g. (Myxidiidae) to accommodate these histozoic taxa, and transfer Myxidium giardi as Paramyxidium giardi Cépède, 1906 n. comb. as the type-species.

    CONCLUSIONS: There is not a single species of Myxidium (M. giardi) causing systemic infections in eels in Iceland. There are three species, confirmed with a robust phylogeny, one of which represents Paramyxidium giardi n. comb. Additional species probably exist that infect different tissues in the eel and the site of infection in the host fish is an important diagnostic feature for this group (Paramyxidium n. g. clade). Myxospore morphology is generally conserved in the Paramyxidium clade, although actual spore dimensions can vary between some species. Paramyxidium spp. are currently only known to infect fishes from the Elopomorpha.

  5. Freeman MA, Kristmundsson Á
    Parasit Vectors, 2015;8:517.
    PMID: 26453151 DOI: 10.1186/s13071-015-1140-7
    Traditional studies on myxosporeans have used myxospore morphology as the main criterion for identification and taxonomic classification, and it remains important as the fundamental diagnostic feature used to confirm myxosporean infections in fish and other vertebrate taxa. However, its use as the primary feature in systematics has led to numerous genera becoming polyphyletic in subsequent molecular phylogenetic analyses. It is now known that other features, such as the site and type of infection, can offer a higher degree of congruence with molecular data, albeit with its own inconsistencies, than basic myxospore morphology can reliably provide.
  6. Siddiqui R, Roberts SK, Ong TYY, Mungroo MR, Anwar A, Khan NA
    Parasit Vectors, 2019 Nov 14;12(1):538.
    PMID: 31727139 DOI: 10.1186/s13071-019-3785-0
    BACKGROUND: Acanthamoeba is well known to produce a blinding keratitis and serious brain infection known as encephalitis. Effective treatment is problematic, and can continue up to a year, and even then, recurrence can ensue. Partly, this is due to the capability of vegetative amoebae to convert into resistant cysts. Cysts can persist in an inactive form for decades while retaining their pathogenicity. It is not clear how Acanthamoeba cysts monitor environmental changes, and determine favourable conditions leading to their emergence as viable trophozoites.

    METHODS: The role of ion transporters in the encystation and excystation of Acanthamoeba remains unclear. Here, we investigated the role of sodium, potassium and calcium ion transporters as well as proton pump inhibitors on A. castellanii encystation and excystation and their effects on trophozoites.

    RESULTS: Remarkably 3',4'-dichlorobenzamil hydrochloride a sodium-calcium exchange inhibitor, completely abolished excystation of Acanthamoeba. Furthermore, lanthanum oxide and stevioside hydrate, both potassium transport inhibitors, resulted in the partial inhibition of Acanthamoeba excystation. Conversely, none of the ion transport inhibitors affected encystation or had any effects on Acanthamoeba trophozoites viability.

    CONCLUSIONS: The present study indicates that ion transporters are involved in sensory perception of A. castellanii suggesting their value as potential therapeutic targets to block cellular differentiation that presents a significant challenge in the successful prognosis of Acanthamoeba infections.

  7. Anwar A, Numan A, Siddiqui R, Khalid M, Khan NA
    Parasit Vectors, 2019 Jun 03;12(1):280.
    PMID: 31159839 DOI: 10.1186/s13071-019-3528-2
    BACKGROUND: Species of Acanthamoeba are facultative pathogens which can cause sight threatening Acanthamoeba keratitis and a rare but deadly brain infection, granulomatous amoebic encephalitis. Due to conversion of Acanthamoeba trophozoites to resistant cyst stage, most drugs are found to be ineffective at preventing recurrence of infection. This study was designed to test the antiacanthamoebic effects of different cobalt nanoparticles (CoNPs) against trophozoites and cysts, as well as parasite-mediated host cell cytotoxicity.

    METHODS: Three different varieties of CoNPs were synthesized by utilizing hydrothermal and ultrasonication methods and were thoroughly characterized by X-ray diffraction and field emission scanning electron microscopy. Amoebicidal, encystation, excystation, and host cell cytopathogenicity assays were conducted to study the antiacanthamoebic effects of CoNPs.

    RESULTS: The results of the antimicrobial evaluation revealed that cobalt phosphate Co3(PO4)2 hexagonal microflakes, and 100 nm large cobalt hydroxide (Co(OH)2) nanoflakes showed potent amoebicidal activity at 100 and 10 µg/ml against Acanthamoeba castellanii as compared to granular cobalt oxide (Co3O4) of size 35-40 nm. Furthermore, encystation and excystation assays also showed consistent inhibition at 100 µg/ml. CoNPs also inhibited amoebae-mediated host cell cytotoxicity as determined by lactate dehydrogenase release without causing significant damage to human cells when treated alone.

    CONCLUSIONS: To our knowledge, these findings determined, for the first time, the effects of composition, size and morphology of CoNPs against A. castellanii. Co3(PO4)2 hexagonal microflakes showed the most promising antiamoebic effects as compared to Co(OH)2 nanoflakes and granular Co3O4. The results reported in the present study hold potential for the development of antiamoebic nanomedicine.

  8. Al-Abd NM, Nor ZM, Ahmed A, Al-Adhroey AH, Mansor M, Kassim M
    Parasit Vectors, 2014;7:545.
    PMID: 25428558 DOI: 10.1186/s13071-014-0545-z
    Lymphatic filariasis (LF) is a major cause of permanent disability in many tropical and sub-tropical countries of the world. Malaysia is one of the countries in which LF is an endemic disease. Five rounds of the mass drug administration (MDA) program have been conducted in Malaysia as part of the Global Program to Eliminate Lymphatic Filariasis (GPELF) by year 2020. This study investigated the level of awareness of LF and the MDA program in a population living in an endemic area of the country.
  9. Khan MB, Sonaimuthu P, Lau YL, Al-Mekhlafi HM, Mahmud R, Kavana N, et al.
    Parasit Vectors, 2014;7:505.
    PMID: 25388913 DOI: 10.1186/s13071-014-0505-7
    The neglected tropical diseases, echinococcosis, schistosomiasis and toxoplasmosis are all globally widespread zoonotic diseases with potentially harmful consequences. There is very limited data available on the prevalence of these infections, except for schistosmiasis, in underdeveloped countries. This study aimed to determine the seroprevalence of Echinococcus multilocularis, Schistosoma mansoni, and Toxoplasma gondii antibodies in populations from the Monduli and Babati districts in Tanzania.
  10. Idris ZM, Chan CW, Mohammed M, Kalkoa M, Taleo G, Junker K, et al.
    Parasit Vectors, 2017 Apr 26;10(1):204.
    PMID: 28441959 DOI: 10.1186/s13071-017-2139-z
    BACKGROUND: Seroepidemiology can provide evidence for temporal changes in malaria transmission and is an important tool to evaluate the effectiveness of control interventions. During the early 2000s, Vanuatu experienced an acute increase in malaria incidence due to a lapse in funding for vector control. After the distribution of subsidised insecticide-treated nets (ITNs) resumed in 2003, malaria incidence decreased in the subsequent years. This study was conducted to find the serological evidence supporting the impact of ITN on exposure to Anopheles vector bites and parasite prevalence.

    METHODS: On Ambae Island, blood samples were collected from 231 and 282 individuals in 2003 and 2007, respectively. Parasite prevalence was determined by microscopy. Antibodies to three Plasmodium falciparum (PfSE, PfMSP-119, and PfAMA-1) and three Plasmodium vivax (PvSE, PvMSP-119, and PvAMA-1) antigens, as well as the Anopheles-specific salivary antigen gSG6, were detected by ELISA. Age-specific seroprevalence was analysed using a reverse catalytic modelling approach to estimate seroconversion rates (SCRs).

    RESULTS: Parasite rate decreased significantly (P 

  11. Qin T, Ortega-Perez P, Wibbelt G, Lakim MB, Ginting S, Khoprasert Y, et al.
    Parasit Vectors, 2024 Mar 15;17(1):135.
    PMID: 38491403 DOI: 10.1186/s13071-024-06230-8
    BACKGROUND: The geographic distribution and host-parasite interaction networks of Sarcocystis spp. in small mammals in eastern Asia remain incompletely known.

    METHODS: Experimental infections, morphological and molecular characterizations were used for discrimination of a new Sarcocystis species isolated from colubrid snakes and small mammals collected in Thailand, Borneo and China.

    RESULTS: We identified a new species, Sarcocystis muricoelognathis sp. nov., that features a relatively wide geographic distribution and infects both commensal and forest-inhabiting intermediate hosts. Sarcocystis sporocysts collected from rat snakes (Coelognathus radiatus, C. flavolineatus) in Thailand induced development of sarcocysts in experimental SD rats showing a type 10a cyst wall ultrastructure that was identical with those found in Rattus norvegicus from China and the forest rat Maxomys whiteheadi in Borneo. Its cystozoites had equal sizes in all intermediate hosts and locations, while sporocysts and cystozoites were distinct from other Sarcocystis species. Partial 28S rRNA sequences of S. muricoelognathis from M. whiteheadi were largely identical to those from R. norvegicus in China but distinct from newly sequenced Sarcocystis zuoi. The phylogeny of the nuclear 18S rRNA gene placed S. muricoelognathis within the so-called S. zuoi complex, including Sarcocystis attenuati, S. kani, S. scandentiborneensis and S. zuoi, while the latter clustered with the new species. However, the phylogeny of the ITS1-region confirmed the distinction between S. muricoelognathis and S. zuoi. Moreover, all three gene trees suggested that an isolate previously addressed as S. zuoi from Thailand (KU341120) is conspecific with S. muricoelognathis. Partial mitochondrial cox1 sequences of S. muricoelognathis were almost identical with those from other members of the group suggesting a shared, recent ancestry. Additionally, we isolated two partial 28S rRNA Sarcocystis sequences from Low's squirrel Sundasciurus lowii that clustered with those of S. scandentiborneensis from treeshews.

    CONCLUSIONS: Our results provide strong evidence of broad geographic distributions of rodent-associated Sarcocystis and host shifts between commensal and forest small mammal species, even if the known host associations remain likely only snapshots of the true associations.

  12. Mohd Zain SN, Amdan SA, Braima KA, Abdul-Aziz NM, Wilson JJ, Sithambaran P, et al.
    Parasit Vectors, 2015;8:254.
    PMID: 25924677 DOI: 10.1186/s13071-015-0850-1
    A considerable number of rat-borne ectoparasite studies have been conducted since the early 1930s in the Malayan Peninsula (now known as peninsular Malaysia). The majority of studies were field surveys and collections of specimens across the region, and were conducted primarily to catalogue the ectoparasite host distribution and discover novel species. This has generated a signification amount of information, particularly on the diversity and host distribution; other aspects such as morphology, host distribution and medical significance have also been investigated. Amongst the four main groups (mites, fleas, ticks, lice), rat-borne mites have received the most attention with a particular emphasis on chiggers, due to their medical importance. More recent studies have examined the distribution of ectoparasites in rats from different habitat type simplicating a high prevalence of zoonotic species infesting rat populations. Despite being capable of transmitting dangerous pathogens to human, the health risks of rat-borne ectoparasites appear to be small with no serious outbreaks of diseases recorded. Although an extensive number of works have been published, there remain gaps in knowledge that need to be addressed, such as, the distribution of under studied ectoparasite groups (listrophorids and myobiids), determining factors influencing infestation, and understanding changes to the population distribution over time.
  13. Ong SQ, Jaal Z
    Parasit Vectors, 2015;8:28.
    PMID: 25588346 DOI: 10.1186/s13071-015-0639-2
    The trend in chemical insecticide development has focused on improving the efficacy against mosquitoes while reducing the environmental impact. Lethal lures apply an "attract-and-kill" strategy that draws the insect to the killing agent rather than bringing the killing agent to the insect.
  14. Yin F, Gasser RB, Li F, Bao M, Huang W, Zou F, et al.
    Parasit Vectors, 2013 Sep 25;6(1):279.
    PMID: 24499637 DOI: 10.1186/1756-3305-6-279
    BACKGROUND: Haemonchus contortus (order Strongylida) is a common parasitic nematode infecting small ruminants and causing significant economic losses worldwide. Knowledge of genetic variation within and among H. contortus populations can provide a foundation for understanding transmission patterns, the spread of drug resistance alleles and might assist in the control of haemonchosis.

    METHODS: 152 H. contortus individual adult worms were collected from seven different geographical regions in China. The second internal transcribed spacer (ITS-2) of the nuclear ribosomal DNA and mitochondrial nicotinamide dehydrogenase subunit 4 gene (nad4) were amplified by polymerase chain reaction (PCR) and sequenced directly. The sequence variations and population genetic diversities were determined.

    RESULTS: Nucleotide sequence analyses revealed 18 genotypes (ITS-2) and 142 haplotypes (nad4) among the 152 worms, with nucleotide diversities of 2.6% and 0.027, respectively, consistent with previous reports from other countries, including Australia, Brazil, Germany, Italy, Malaysia, Sweden, the USA and Yemen. Population genetic analyses revealed that 92.4% of nucleotide variation was partitioned within populations; there was no genetic differentiation but a high gene flow among Chinese populations; some degree of genetic differentiation was inferred between some specimens from China and those from other countries.

    CONCLUSIONS: This is the first study of genetic variation within H. contortus in China. The results revealed high within-population variations, low genetic differentiation and high gene flow among different populations of H. contortus in China. The present results could have implications for studying the epidemiology and ecology of H. contortus in China.

  15. Endersby-Harshman NM, Ali A, Alhumrani B, Alkuriji MA, Al-Fageeh MB, Al-Malik A, et al.
    Parasit Vectors, 2021 Jul 12;14(1):361.
    PMID: 34247634 DOI: 10.1186/s13071-021-04867-3
    BACKGROUND: Dengue suppression often relies on control of the mosquito vector, Aedes aegypti, through applications of insecticides of which the pyrethroid group has played a dominant role. Insecticide resistance is prevalent in Ae. aegypti around the world, and the resulting reduction of insecticide efficacy is likely to exacerbate the impact of dengue. Dengue has been a public health problem in Saudi Arabia, particularly in Jeddah, since its discovery there in the 1990s, and insecticide use for vector control is widespread throughout the city. An alternative approach to insecticide use, based on blocking dengue transmission in mosquitoes by the endosymbiont Wolbachia, is being trialed in Jeddah following the success of this approach in Australia and Malaysia. Knowledge of insecticide resistance status of mosquito populations in Jeddah is a prerequisite for establishing a Wolbachia-based dengue control program as releases of Wolbachia mosquitoes succeed when resistance status of the release population is similar to that of the wild population.

    METHODS: WHO resistance bioassays of mosquitoes with deltamethrin, permethrin and DDT were used in conjunction with TaqMan® SNP Genotyping Assays to characterize mutation profiles of Ae. aegypti.

    RESULTS: Screening of the voltage-sensitive sodium channel (Vssc), the pyrethroid target site, revealed mutations at codons 989, 1016 and 1534 in Ae. aegypti from two districts of Jeddah. The triple mutant homozygote (1016G/1534C/989P) was confirmed from Al Safa and Al Rawabi. Bioassays with pyrethroids (Type I and II) and DDT showed that mosquitoes were resistant to each of these compounds based on WHO definitions. An association between Vssc mutations and resistance was established for the Type II pyrethroid, deltamethrin, with one genotype (989P/1016G/1534F) conferring a survival advantage over two others (989S/1016V/1534C and the triple heterozygote). An indication of synergism of Type I pyrethroid activity with piperonyl butoxide suggests that detoxification by cytochrome P450s accounts for some of the pyrethroid resistance response in Ae. aegypti populations from Jeddah.

    CONCLUSIONS: The results provide a baseline for monitoring and management of resistance as well as knowledge of Vssc genotype frequencies required in Wolbachia release populations to ensure homogeneity with the target field population. Vssc mutation haplotypes observed show some similarity with those from Ae. aegypti in southeast Asia and the Indo-Pacific, but the presence of the triple mutant haplotype in three genotypes indicates that the species in this region may have a unique population history.

  16. Dahmash L, Tatarsky A, Espino FE, Chareonviriyaphap T, Macdonald MB, Prachumsri JS, et al.
    Parasit Vectors, 2021 May 29;14(1):290.
    PMID: 34051831 DOI: 10.1186/s13071-021-04778-3
    The 2018 Asia Pacific Malaria Elimination Network's Vector Control Working Group (APMEN VCWG) annual meeting took place 3-5 September 2018 in Bangkok, Thailand. It was designed to be a forum for entomology and public health specialists from APMEN country programmes (over 90 participants from 30 countries) to discuss current progress and challenges related to planning, implementing, and sustaining effective vector control (VC) strategies for malaria elimination across the region, and to suggest practical and applicable solutions to these moving forward. The meeting was organised as a joint collaboration between the VCWG host institution-Faculty of Tropical Medicine, Mahidol University, Thailand-and leading partner institutions within the VCWG: Malaria Consortium and the Malaria Elimination Initiative at the University of California, San Francisco, Global Health Group (UCSF Global Health Group), under the leadership of the APMEN Director and VCWG Co-Chairs from ministries of health in Malaysia and India. This report provides an introduction to the role and nature of the VCWG, highlights key themes and topics presented and discussed at the meeting, and outlines the future objectives and focal areas for the VCWG and APMEN at large.
  17. Hustedt J, Prasetyo DB, Fiorenzano JM, von Fricken ME, Hertz JC
    Parasit Vectors, 2022 Oct 05;15(1):355.
    PMID: 36199150 DOI: 10.1186/s13071-022-05464-8
    Phlebotomine sand flies are proven or suspected vectors of several pathogens of importance, including leishmaniasis, bartonellosis and sand fly fevers. Although sand flies have a worldwide distribution, there has been limited research published on sand flies and sand fly-borne pathogens throughout the Greater Mekong Sub-region (GMS). This review followed the PRISMA guidelines to determine the biodiversity and presence of phlebotomine sand flies and their associated pathogens in the GMS, specifically Cambodia, Thailand, the Lao People's Democratic Republic (Laos), Malaysia and Vietnam. A total of 1472 records were identified by searching electronic databases, scanning reference lists of articles and consulting experts in the field. After screening of title and abstracts, 178 records remained and were further screened for original data (n = 34), not having regional data (n = 14), duplication of data (n = 4), records not available (n = 4) and no language translation available (n = 2). A total of 120 studies were then included for full review, with 41 studies on sand fly-related disease in humans, 33 studies on sand fly-related disease in animals and 54 entomological studies focused on sand flies (5 papers contained data on > 1 category), with a majority of the overall data from Thailand. There were relatively few studies on each country, with the exception of Thailand, and the studies applied different methods to investigate sand flies and sand fly-borne diseases, impacting the ability to conduct meaningful meta-analysis. The findings suggest that leishmaniasis in humans and the presence of sand fly vectors have been reported across several GMS countries over the past 100 years, with local transmission in humans confirmed in Thailand and Vietnam. Additionally, local Mundinia species are likely transmitted by biting midges. Findings from this study provide a framework for future investigations to determine the geographic distribution and risk profiles of leishmaniasis and other associated sand fly-borne disease throughout the GMS. It is recommended that researchers expand surveillance efforts across the GMS, with an emphasis placed on entomological surveys, syndromic and asymptomatic monitoring in both humans and animals and molecular characterization of sand flies and sand fly-borne pathogens, particularly in the understudied countries of Cambodia, Vietnam and Laos.
  18. Moyes CL, Shearer FM, Huang Z, Wiebe A, Gibson HS, Nijman V, et al.
    Parasit Vectors, 2016 Apr 28;9:242.
    PMID: 27125995 DOI: 10.1186/s13071-016-1527-0
    BACKGROUND: Plasmodium knowlesi is a zoonotic pathogen, transmitted among macaques and to humans by anopheline mosquitoes. Information on P. knowlesi malaria is lacking in most regions so the first step to understand the geographical distribution of disease risk is to define the distributions of the reservoir and vector species.

    METHODS: We used macaque and mosquito species presence data, background data that captured sampling bias in the presence data, a boosted regression tree model and environmental datasets, including annual data for land classes, to predict the distributions of each vector and host species. We then compared the predicted distribution of each species with cover of each land class.

    RESULTS: Fine-scale distribution maps were generated for three macaque host species (Macaca fascicularis, M. nemestrina and M. leonina) and two mosquito vector complexes (the Dirus Complex and the Leucosphyrus Complex). The Leucosphyrus Complex was predicted to occur in areas with disturbed, but not intact, forest cover (> 60% tree cover) whereas the Dirus Complex was predicted to occur in areas with 10-100% tree cover as well as vegetation mosaics and cropland. Of the macaque species, M. nemestrina was mainly predicted to occur in forested areas whereas M. fascicularis was predicted to occur in vegetation mosaics, cropland, wetland and urban areas in addition to forested areas.

    CONCLUSIONS: The predicted M. fascicularis distribution encompassed a wide range of habitats where humans are found. This is of most significance in the northern part of its range where members of the Dirus Complex are the main P. knowlesi vectors because these mosquitoes were also predicted to occur in a wider range of habitats. Our results support the hypothesis that conversion of intact forest into disturbed forest (for example plantations or timber concessions), or the creation of vegetation mosaics, will increase the probability that members of the Leucosphyrus Complex occur at these locations, as well as bringing humans into these areas. An explicit analysis of disease risk itself using infection data is required to explore this further. The species distributions generated here can now be included in future analyses of P. knowlesi infection risk.

  19. Young KI, Mundis S, Widen SG, Wood TG, Tesh RB, Cardosa J, et al.
    Parasit Vectors, 2017 Aug 31;10(1):406.
    PMID: 28859676 DOI: 10.1186/s13071-017-2341-z
    BACKGROUND: Mosquito-borne dengue virus (DENV) is maintained in a sylvatic, enzootic cycle of transmission between canopy-dwelling non-human primates and Aedes mosquitoes in Borneo. Sylvatic DENV can spill over into humans living in proximity to forest foci of transmission, in some cases resulting in severe dengue disease. The most likely vectors of such spillover (bridge vectors) in Borneo are Ae. albopictus and Ae. niveus. Borneo is currently experiencing extensive forest clearance. To gauge the effect of this change in forest cover on the likelihood of sylvatic DENV spillover, it is first necessary to characterize the distribution of bridge vectors in different land cover types. In the current study, we hypothesized that Ae. niveus and Ae. albopictus would show significantly different distributions in different land cover types; specifically, we predicted that Ae. niveus would be most abundant in forests whereas Ae. albopictus would have a more even distribution in the landscape.

    RESULTS: Mosquitoes were collected from a total of 15 sites using gravid traps and a backpack aspirator around Kampong Puruh Karu, Sarawak, Malaysian Borneo, where sylvatic DENV spillover has been documented. A total of 2447 mosquitoes comprising 10 genera and 4 species of Aedes, were collected over the three years, 2013, 2014 and 2016, in the three major land cover types in the area, homestead, agriculture and forest. Mosquitoes were identified morphologically, pooled by species and gender, homogenized, and subject to DNA barcoding of each Aedes species and to arbovirus screening. As predicted, Ae. niveus was found almost exclusively in forests whereas Ae. albopictus was collected in all land cover types. Aedes albopictus was significantly (P = 0.04) more abundant in agricultural fields than forests. Sylvatic DENV was not detected in any Aedes mosquito pools, however genomes of 14 viruses were detected using next generation sequencing.

    CONCLUSIONS: Land cover type affects the abundance and distribution of the most likely bridge vectors of sylvatic DENV in Malaysia Borneo. Conversion of forests to agriculture will likely decrease the range and abundance of Ae. niveus but enhance the abundance of Ae. albopictus.

  20. Rajamanikam A, Govind SK
    Parasit Vectors, 2013;6(1):295.
    PMID: 24499467 DOI: 10.1186/1756-3305-6-295
    Blastocystis spp. are one of the most prevalent parasites isolated from patients suffering from diarrhea, flatulence, constipation and vomiting. It's pathogenicity and pathophysiology remains controversial to date. Protease activity and amoebic forms have been reported previously in symptomatic isolates but there has been no conclusive evidence provided to correlate the protease activity and any specific life cycle stage of the parasite thus far.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links