Displaying publications 81 - 100 of 136 in total

Abstract:
Sort:
  1. Mohd Zainudin NAI, Abd Murad NB, Aris A, Hussain NH
    Plant Dis, 2022 Sep 19.
    PMID: 36122197 DOI: 10.1094/PDIS-06-22-1291-PDN
    In July 2019 to November 2021, symptoms of fruit rot of Averrhoa bilimbi (commonly known as bilimbi) fruits were observed in Serdang (3°00'05.8"N 101°42'18.4"E) and Tanjong Karang (3°25'55.3"N 101°12'55.7"E), Selangor, Malaysia. External decay showed some yellowish to brownish-red discoloration and inside the fruit there was black powdery sporulation and a brownish decay that measured between 8 - 15 mm wide. Twenty random symptomatic fruits were collected from each location. Small pieces (5 mm) of infected tissues from the fruit rot were surface sterilized for 1 min in 0.5% NaOCl, washed twice with sterile distilled water and cultured onto potato dextrose agar (PDA) and peptone pentachloronitrobenzene agar (PPA). The plates were incubated at 28 ± 1oC under 12 hours light/dark for 7 days. The fungal colonies growing from the plates were purified using hyphal tip technique (Leyronas et al. 2012). A total of 42 fungal isolates were obtained, and the morphology characteristics of six isolates were matched that of Aspergillus niger. The A. niger isolates were further identified based genus and species-specific Internal Transcribed Spacer (ITS) sequencing. Primers ITS1/ITS4, were used to amplify and subsequently sequenced the ITS1-5.8S-ITS2 region (White et al. 1990). Primer ASAP1 (5'-CAGCGAGTACATCACCTTGG-3'), ASAP2 (5'-CCATTGTTGAAAGTTTTAACTGATT-3') was used for Aspergillus species confirmation, primer ASPU (5'-ACTACCGATTGAATGGCTCG-3') / Ni1r (5'-ACGCTTTCAGACAGTGTTCG-3') for A. niger species-specific, ASPU / Af3r (5'-CATACTTTCAGAACAGCGTTCA-3') for A. fumigatus specific-specific and ASPU / Fl2r (5'-TTCACTAGATCAGACAGAGT-3') for A. flavus specific-specific (Sugita et al. 2004). In general, Aspergillus niger isolates grew rapidly on PDA and were visibly white initially then appearing black and powdery on the second day of incubation (Figure 1A). Some isolates grew rapidly (0.71-0.85 cm/day) and have a cottony appearance. The conidia were appeared brown to black, globose and rough with diameter ranging between 4.1-5.2 µm (Figure 1B). The vesicles were hyaline, globose, and brown in color with measurement of 30-75 µm in diameter with uniseriate sterigmata (Figure 1C). The conidial head was brownish black in color and split into several irregular and regular columns of conidial chains (Figure 1D-E). The conidiophores were hyaline, and brown in color. Phylogenetic trees of ITS (Figure 2A) and ASAP sequences (Figure 2B) were constructed using a Neighbor-Joining method showing isolates Aspergillus niger #11, #15, #32, #33, #41 and #42 were grouped into the same clade as A. niger (accession no. MT446087). To examine virulence of A. niger, pathogenicity tests were performed three times by inoculating an asymptomatic fruit with six isolates of A. niger (isolate #11, #15, #32, #33, #41 and #42) and a single isolate for each species of Aspergillus aculeatus, Lasiodiplodia theobromae and Penicillium gerundense. Ten fruits were inoculated by placing a mycelial disc (6 mm) (Kouame et al. 2010) from a 5-day-old culture of each fungal colony while control fruits were non-inoculated with any fungal colony (10 fruits were inoculated with a sterile agar disc and 10 were non-inoculated, respectively). After 3 days, typical symptoms of Aspergillus fruit rot were observed on A. niger inoculated fruits, whereas the control fruits remained asymptomatic (Figure 1F-P). Aspergillus niger was reisolated and reidentified based on morphological and molecular characterization from the inoculated, symptomatic fruits, thus confirming Koch's postulates. A. niger causing widespread diseases in various plant and it is a common contaminant of food. This study shows A. niger to be highly virulent on bilimbi fruits and leads to reduction of fruit quality and its production. To our knowledge, this is the first report of A. niger causing fruit rot on bilimbi and future work on its pathogenesis may provide strategies for disease control against the pathogen.
  2. Márquez-Licona G, García-León E, Flores-Moctezuma HE, Solano-Báez AR
    Plant Dis, 2023 Sep 27.
    PMID: 37755414 DOI: 10.1094/PDIS-04-23-0797-PDN
    Frangipani (Plumeria rubra L.; Apocynaceae.) is a deciduous ornamental shrub, native to tropical America and widely distributed in tropical and subtropical regions. In Mexico, P. rubra is also used in traditional medicine and religious ceremonies. In November 2018-2022, rust-diseased leaves of P. rubra were found in Yautepec (18°49'29"N; 99°05'46"W), Morelos, Mexico. Symptoms of the disease included small chlorotic spots on the adaxial surface of the infected leaves, which as the disease progressed turned into necrotic areas surrounded by a chlorotic halo. The chlorotic spots observed on the adaxial leaf surface coincided with numerous erumpent uredinia of bright orange color on the abaxial leaf surface. As a result of the infection, foliar necrosis and leaves abscission was observed. Of the 40 sampled trees, 95% showed symptoms of the disease. On microscopic examination of the fungus, bright orange, subepidermal uredinia were observed, which subsequently faded to white. Urediniospores were bright yellow-orange color. They were ellipsoid or globose, sometimes angular, echinulate, (21.5) 26.5 (33.0) × (16.0) 19.0 (23.0) μm in size. Morphological features of the fungus correspond with previous descriptions of Coleosporium plumeriae by Holcomb and Aime (2010) and Soares et al., (2019). A voucher specimen was deposited in the Herbarium of the Departmet of Plant-Insect Interactions at the Biotic Products Development Center of the National Polytechnic Institute under accession no. IPN 10.0113. Species identity was confirmed by amplifying the 5.8S subunit, the ITS 2 region, and part of the 28S region with rust-specific primer Rust2inv (Aime, 2006) and LR6 (Vilgalys and Hester 1990). The sequence was deposited in GenBank (OQ518406) and showed 100% sequence homology (1435/1477bp) with a reference sequence (MG907225) of C. plumeriae from Plumeria spp. (Aime et al. 2018). Pathogenicity was confirmed by spraying a urediniospores suspension of 2×104 spores ml-1 onto ten plants of P. rubra. Six plants were inoculated and sealed in plastic bags, while four noninoculated plants were applied with sterile distilled water. Plants were inoculated at 25°C and held for 48 h in a dew chamber, after this, the plants were transferred to greenhouse conditions (33/span>2°C). The experiment was performed twice. All inoculated plants developed rust symptoms after 14 days, whereas the non-inoculated plants remained symptomless. The recovered fungus was morphologically identical to that observed in the original diseased plants, thus fulfilling Koch's postulates. According to international databases (Crous 2004; Farr and Rossman 2023), C. plumeriae has not been officially reported in Mexico, despite being a prevalent disease. Diseased plants have been collected and deposited in herbaria, unfortunately, these reports lack important information such as geographic location of sampling, pathogenicity tests, or molecular evidence, which are essential for a comprehensive study of the disease in Mexico. To our knowledge, this is the molecular confirmation of Coleosporium plumeriae causing rust of Plumeria rubra in Mexico. Rust of P. rubra caused by C. plumeriae has been previously identified in India, Taiwan, Malaysia, and Indonesia by Baiswar et al. (2008), Chung et al. (2006), Holcomb and Aime (2010) and Soares et al., (2019). This disease causes important economic losses in nurseries, due to the defoliation of infected plants.
  3. Naderali N, Nejat N, Tan YH, Vadamalai G
    Plant Dis, 2013 Nov;97(11):1504.
    PMID: 30708488 DOI: 10.1094/PDIS-04-13-0412-PDN
    The foxtail palm (Wodyetia bifurcata), an Australian native species, is an adaptable and fast-growing landscape tree. The foxtail palm is most commonly used in landscaping in Malaysia. Coconut yellow decline (CYD) is the major disease of coconut associated with 16SrXIV phytoplasma group in Malaysia (1). Symptoms consistent with CYD, such as severe chlorosis, stunting, general decline, and death were observed in foxtail palms from the state of Selangor in Malaysia, indicating putative phytoplasma infection. Symptomatic trees loses their green and vivid appearance as a decorative and landscape ornament. To determine the presence of phytoplasma, samples were collected from the fronds of 12 symptomatic and four asymptomatic palms in September 2012, and total DNA was extracted using the CTAB method (3). Phytoplasma DNA was detected in eight symptomatic palms using nested PCR with universal phytoplasma 16S rDNA primer pairs, P1/P7 followed by R16F2n/R16R2 (2). Amplicons (1.2 kb in length) were generated from symptomatic foxtail palms but not from symptomless plants. Phytoplasma 16S rDNAs were cloned using a TOPO TA cloning kit (Invitrogen). Several white colonies from rDNA PCR products amplified from one sample with R16F2n/R16R2 were sequenced. Phytoplasma 16S rDNA gene sequences from single symptomatic foxtail palms showed 99% homology with a phytoplasma that causes Bermuda grass white leaf (AF248961) and coconut yellow decline (EU636906), which are both members of the 16SrXIV 'Candidatus Phytoplasma cynodontis' group. The sequences also showed 99% sequence identity with the onion yellows phytoplasma, OY-M strain, (NR074811), from the 'Candidatus Phytoplasma asteris' 16SrI-B subgroup. Sequences were deposited in the NCBI GenBank database (Accession Nos. KC751560 and KC751561). Restriction fragment length polymorphism (RFLP) analysis was done on nested PCR products produced with the primer pair R16F2n/R16R2. Amplified products were digested separately with AluI, HhaI, RsaI, and EcoRI restriction enzymes based on manufacturer's specifications. RFLP analysis of 16S rRNA gene sequences from symptomatic plants revealed two distinct profiles belonging to groups 16SrXIV and 16SrI with majority of the 16SrXIV group. RFLP results independently corroborated the findings from DNA sequencing. Additional virtual patterns were obtained by iPhyclassifier software (4). Actual and virtual patterns yielded identical profiles, similar to the reference patterns for the 16SrXIV-A and 16SrI-B subgroups. Both the sequence and RFLP results indicated that symptoms in infected foxtail palms were associated with two distinct phytoplasma species in Malaysia. These phytoplasmas, which are members of two different taxonomic groups, were found in symptomatic palms. Our results revealed that popular evergreen foxtail palms are susceptible to and severely affected by phytoplasma. To our knowledge, this is the first report of a mixed infection of a single host, Wodyetia bifurcata, by two different phytoplasma species, Candidatus Phytoplasma cynodontis and Candidatus Phytoplasma asteris, in Malaysia. References: (1) N. Nejat et al. Plant Pathol. 58:1152, 2009. (2) N. Nejat et al. Plant Pathol. J. 9:101, 2010. (3) Y. P. Zhang et al. J. Virol. Meth. 71:45, 1998. (4) Y. Zhao et al. Int. J. Syst. Evol. Microbiol. 59:2582, 2009.
  4. Nasehi A, Kadir JB, Esfahani MN, Mahmodi F, Ghadirian H, Ashtiani FA, et al.
    Plant Dis, 2013 May;97(5):689.
    PMID: 30722190 DOI: 10.1094/PDIS-10-12-0902-PDN
    In June 2011, lettuce (Lactuca sativa) plants cultivated in major lettuce growing areas in Malaysia, including the Pahang and Johor states, had extensive leaf spots. In severe cases, disease incidence was recorded more than 80%. Symptoms on 50 observed plants initially were as water soaked spots (1 to 2 mm in diameter) on leaves, and then became circular spots spreading over much of the leaves. In this research, main lettuce growing areas infected by the pathogen in the mentioned states were investigated and the pathogen was isolated onto potato dextrose agar (PDA). Colonies observed were greyish green to light brown. Single conidia were formed at the terminal end of conidiophores that were 28.8 to 40.8 μm long and 11.0 to 19.2 μm wide, and 2 to 7 transverse and 1 to 4 longitudinal septa. To produce conidia, the fungus was grown on potato carrot agar (PCA) and V8 juice agar media under 8-h/16-h light/dark photoperiod. Fourteen isolates were identified Stemphylium solani based on morphological criteria described by Kim et al. (1). To confirm morphological characterization, DNA of the fungus was extracted from mycelium and PCR was done using universal primers ITS5 (5'-GGAAGTAAAAGTCGTAACAAGG-3') and ITS4 (5'-TCCTCCGCTTATTGATATGC-3'), which amplified the internal transcribed spacer (ITS) region of rDNA (2). The sequencing result was subjected to BLAST analysis which was 99% identical to the other published sequences in the GenBank database (GenBank Accession Nos. AF203451 and HQ840713). The nucleotide sequence was deposited in GenBank under Accession No. JQ736022. Pathogenicity testing of representative isolate was done using 20 μl of conidial suspension with a concentration of 1 × 105/ml in droplets (three drops on each leaf) on four detached 45-day-old lettuce leaves cv. BBS012 (3). Fully expended leaves were placed on moist filter paper in petri dishes and were incubated in humid chambers at 25°C. The leaves inoculated with sterile water served as control. After 7 days, disease symptoms were observed, which were similar to those symptoms collected in infected fields and the fungus was reisolated and confirmed as S. solani based on morphological criteria (1) and molecular characterization (2). Control leaves remained healthy. Pathogenicity testing was completed twice. To our knowledge, this is the first report of S. solani on lettuce in Malaysia and it may become a serious problem because of its broad host range, variability in pathogenic isolates, and prolonged active phase of the disease cycle. Previous research has shown that S. solani is a causal agent of gray leaf spot on lettuce in China (4). References: (1) B. S. Kim et al. Plant Pathol. J. 20:85, 2004. (2) Y. R. Mehta et al. Current Microbiol. 44:323, 2002. (3) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002. (4) F. L. Tai. Sylloge Fungorum Sinicorum, Sci. Press, Acad. Sin., Peking, 1979.
  5. Nasehi A, Kadir JB, Esfahani MN, Mahmodi F, Ghadirian H, Ashtiani FA, et al.
    Plant Dis, 2013 May;97(5):689.
    PMID: 30722195 DOI: 10.1094/PDIS-10-12-0901-PDN
    In 2011, a severe gray leaf spot was observed on eggplant (Solanum melongena) in major eggplant growing areas in Malaysia, including the Pahang, Johor, and Selangor states. Disease incidence was >70% in severely infected areas of about 150 ha of eggplant greenhouses and fields examined. Symptoms initially appeared as small (1 to 5 mm diameter), brownish-black specks with concentric circles on the lower leaves. The specks then coalesced and developed into greyish-brown, necrotic lesions, which also appeared on the upper leaves. Eventually, the leaves senesced and were shed. Tissue cut from the edges of leaf spots were surface-sterilized in 1% NaOCl for 2 min, rinsed in sterilized water, dried, and incubated on potato dextrose agar (PDA). Fungal colonies were greyish green to light brown, and produced a yellow pigment. Single, muriform, brown, oblong conidia formed at the terminal end of each conidiophore, were each 21.6 to 45.6 μm long and 11.5 to 21.6 μm wide, and contained 2 to 7 transverse and 1 to 4 longitudinal septa. The conidiophores were tan to light brown and ≤220 μm long. Based on these morphological criteria, 25 isolates of the fungus were identified as Stemphylium solani (1). To produce conidia in culture, 7-day-old single-conidial cultures were established on potato carrot agar (PCA) and V8 juice agar media under an 8-h/16-h light/dark photoperiod at 25°C (4). Further confirmation of the identification was obtained by molecular characterization in which fungal DNA was extracted and the internal transcribed spacer (ITS) region of ribosomal DNA amplified using primers ITS5 and ITS4 (2), followed by direct sequencing. A BLAST search in the NCBI database revealed that the sequence was 99% identical with published ITS sequences for two isolates of S. solani (Accession Nos. AF203451 and HQ840713). The amplified ITS region was deposited in GenBank (JQ736023). Pathogenicity testing of a representative isolate was performed on detached, 45-day-old eggplant leaves of the cv. 125066-X under laboratory conditions. Four fully expanded leaves (one wounded and two non-wounded leaflets/leaf) were placed on moist filter paper in petri dishes, and each leaflet inoculated with a 20-μl drop of a conidial suspension containing 1 × 105 conidia/ml in sterilized, distilled water (3). The leaves were wounded by applying pressure to leaf blades with the serrated edge of forceps. Four control leaves were inoculated similarly with sterilized, distilled water. Inoculated leaves were incubated in humid chambers at 25°C with 95% RH and a 12-h photoperiod. After 7 days, symptoms similar to those observed in the original fields developed on both wounded and non-wounded inoculated leaves, but not on control leaves, and S. solani was reisolated consistently from the symptoms using the same method as the original isolations. Control leaves remained asymptomatic and the fungus was not isolated from these leaves. The pathogenicity testing was repeated with similar results. To our knowledge, this is the first report of S. solani on eggplant in Malaysia. References: (1) B. S. Kim et al. Plant Pathol. J. 20:85, 2004. (2) Y. R. Mehta et al. Curr. Microbiol. 44:323, 2002. (3) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002. (4) E. G. Simmons. CBS Biodiv. Series 6:775, 2007.
  6. Nasehi A, Kadir JB, Abidin MAZ, Wong MY, Mahmodi F
    Plant Dis, 2012 Aug;96(8):1226.
    PMID: 30727066 DOI: 10.1094/PDIS-03-12-0223-PDN
    In June 2011, tomatoes (Solanum lycopersicum) in major growing areas of the Cameron Highlands and the Johor state in Malaysia were affected by a leaf spot disease. Disease incidence exceeded 80% in some severely infected regions. Symptoms on 50 observed plants initially appeared on leaves as small, brownish black specks, which later became grayish brown, angular lesions surrounded by a yellow border. As the lesions matured, the affected leaves dried up and became brittle and later developed cracks in the center of the lesions. A survey was performed in these growing areas and 27 isolates of the pathogen were isolated from the tomato leaves on potato carrot agar (PCA). The isolates were purified by the single spore technique and were transferred onto PCA and V8 agar media for conidiophore and conidia production under alternating light (8 hours per day) and darkness (16 hours per day) (4). Colonies on PCA and V8 agar exhibited grey mycelium and numerous conidia were formed at the terminal end of conidiophores. The conidiophores were up to 240 μm long. Conidia were oblong with 2 to 11 transverse and 1 to 6 longitudinal septa and were 24 to 69.6 μm long × 9.6 to 14.4 μm wide. The pathogen was identified as Stemphylium solani on the basis of morphological criteria (2). In addition, DNA was extracted and the internal transcribed spacer region (ITS) was amplified by universal primers ITS5 and ITS4 (1). The PCR product was purified by the commercial PCR purification kit and the purified PCR product sequenced. The resulting sequences were 100% identical to published S. solani sequences (GenBank Accestion Nos. AF203451 and HQ840713). The amplified ITS region was deposited with NCBI GenBank under Accession No. JQ657726. A representative isolate of the pathogen was inoculated on detached 45-day-old tomato leaves of Malaysian cultivar 152177-A for pathogenicity testing. One wounded and two nonwounded leaflets per leaf were used in this experiment. The leaves were wounded by applying pressure to leaf blades with the serrated edge of a forceps. A 20-μl drop of conidial suspension containing 105 conidia/ml was used to inoculate these leaves (3). The inoculated leaves were placed on moist filter paper in petri dishes and incubated for 48 h at 25°C. Control leaves were inoculated with sterilized distilled water. After 7 days, typical symptoms for S. solani similar to those observed in the farmers' fields developed on both wounded and nonwounded inoculated leaves, but not on noninoculated controls, and S. solani was consistently reisolated. To our knowledge, this is the first report of S. solani causing gray leaf spot of tomato in Malaysia. References: (1) M. P. S. Camara et al. Mycologia 94:660, 2002. (2) B. S. Kim et al. Plant Pathol. J. 15:348, 1999. (3) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002. (4) E. G. Simmons. CBS Biodiversity Series 6:775, 2007.
  7. Nasehi A, Kadir JB, Abidin MAZ, Wong MY, Ashtiani FA
    Plant Dis, 2012 Aug;96(8):1227.
    PMID: 30727084 DOI: 10.1094/PDIS-03-12-0262-PDN
    Symptoms of gray leaf spot were first observed in June 2011 on pepper (Capsicum annuum) plants cultivated in the Cameron Highlands and Johor State, the two main regions of pepper production in Malaysia (about 1,000 ha). Disease incidence exceeded 70% in severely infected fields and greenhouses. Symptoms initially appeared as tiny (average 1.3 mm in diameter), round, orange-brown spots on the leaves, with the center of each spot turning gray to white as the disease developed, and the margin of each spot remaining dark brown. A fungus was isolated consistently from the lesions using sections of symptomatic leaf tissue surface-sterilized in 1% NaOCl for 2 min, rinsed in sterile water, dried, and plated onto PDA and V8 agar media (3). After 7 days, the fungal colonies were gray, dematiaceous conidia had formed at the end of long conidiophores (19.2 to 33.6 × 12.0 to 21.6 μm), and the conidia typically had two to six transverse and one to four longitudinal septa. Fifteen isolates were identified as Stemphylium solani on the basis of morphological criteria described by Kim et al. (3). The universal primers ITS5 and ITS4 were used to amplify the internal transcribed spacer region (ITS1, 5.8, and ITS2) of ribosomal DNA (rDNA) of a representative isolate (2). A 570 bp fragment was amplified, purified, sequenced, and identified as S. solani using a BLAST search with 100% identity to the published ITS sequence of an S. solani isolate in GenBank (1). The sequence was deposited in GenBank (Accession No. JQ736024). Pathogenicity of the fungal isolate was tested by inoculating healthy pepper leaves of cv. 152177-A. A 20-μl drop of conidial suspension (105 spores/ml) was used to inoculate each of four detached, 45-day-old pepper leaves placed on moist filter papers in petri dishes (4). Four control leaves were inoculated similarly with sterilized, distilled water. The leaves were incubated at 25°C at 95% relative humidity for 7 days. Gray leaf spot symptoms similar to those observed on the original pepper plants began to develop on leaves inoculated with the fungus after 3 days, and S. solani was consistently reisolated from the leaves. Control leaves did not develop symptoms and the fungus was not reisolated from these leaves. Pathogenicity testing was repeated with the same results. To our knowledge, this is the first report of S. solani causing gray leaf spot on pepper in Malaysia. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) M. P. S. Camara et al. Mycologia 94:660, 2002. (3) B. S. Kim et al. Plant Pathol. J. 15:348, 1999. (4) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002.
  8. Nasehi A, Kadir JB, Abidin MAZ, Wong MY, Mahmodi F
    Plant Dis, 2012 Aug;96(8):1226.
    PMID: 30727083 DOI: 10.1094/PDIS-03-12-0237-PDN
    A leaf spot on eggplant (Solanum melongena) was observed in major eggplant growing regions in Malaysia, including the Cameron Highlands and Johor State, during 2011. Disease incidence averaged approximately 30% in severely infected regions in about 150 ha of eggplant fields and greenhouses examined. Early symptoms consisted of small, circular, brown, necrotic spots uniformly distributed on leaves. The spots gradually enlarged and developed concentric rings. Eventually, the spots coalesced and caused extensive leaf senescence. A fungus was recovered consistently by plating surface-sterilized (1% NaOCl) sections of symptomatic leaf tissue onto potato dextrose agar (PDA). For conidial production, the fungus was grown on potato carrot agar (PCA) and V8 agar media under a 16-h/8-h dark/light photoperiod at 25°C (4). Fungal colonies were a dark olive color with loose, cottony mycelium. Simple conidiophores were ≤120 μm long and produced numerous conidia in long chains. Conidia averaged 20.0 × 7.5 μm and contained two to five transverse septa and the occasional longitudinal septum. Twelve isolates of the fungus were identified as Alternaria tenuissima on the basis of morphological characterization (4). Confirmation of the species identification was obtained by molecular characterization of the internal transcribed spacer (ITS) region of rDNA amplified from DNA extracted from a representative isolate using universal primers ITS4 and ITS5 (2). The 558 bp DNA band amplified was sent for direct sequencing. The sequence (GenBank Accession No. JQ736021) was subjected to BLAST analysis (1) and was 99% identical to published ITS rDNA sequences of isolates of A. tenuissima (GenBank Accession Nos. DQ323692 and AY154712). Pathogenicity tests were performed by inoculating four detached leaves from 45-day-old plants of the eggplant cv. 125066x with 20 μl drops (three drops/leaf) of a conidial suspension containing 105 conidia/ml in sterile distilled water. Four control leaves were inoculated with sterile water. Leaves inoculated with the fungus and those treated with sterile water were incubated in chambers at 25°C and 95% RH with a 12-h photoperiod/day (2). Leaf spot symptoms typical of those caused by A. tenuissima developed on leaves inoculated with the fungus 7 days after inoculation, and the fungus was consistently reisolated from these leaves. The control leaves remained asymptomatic and the pathogen was not reisolated from the leaves. The pathogenicity test was repeated with similar results. To our knowledge, this is the first report of A. tenuissima causing a leaf spot on eggplant in Malaysia. A. tenuissima has been reported to cause leaf spot and fruit rot on eggplant in India (3). References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002. (3) P. Raja et al. New Disease Rep. 12:31, 2005. (4) E. G. Simmons. Page 1 in: Alternaria Biology, Plant Diseases and Metabolites. J. Chelchowski and A. Visconti, eds. Elsevier, Amsterdam, 1992.
  9. Nazerian E, Sijam K, Zainal Abidin MA, Vadamalai G
    Plant Dis, 2011 Nov;95(11):1474.
    PMID: 30731752 DOI: 10.1094/PDIS-10-10-0754
    Cucumber (Cucumis sativus L.) is one of the most important vegetable fruits in Malaysia. Cucumber is principally grown in the states of Johor, Kelantan, and Perak. The broad host range Enterobacteriaceae pathogen, Pectobacterium carotovorum, can cause soft rot on stems or cucumber fruit. In Malaysia, cucumber is produced in a warm, humid climate, thus the plant is susceptible to attack by P. carotovorum at any time during production. In 2010, cucumber samples with wilted and chlorotic leaves, water-soaked lesions, and collapsed fruits were found in multiple fields. Small pieces of infected stems and fruit were immersed in 5 ml of saline solution (0.85% NaCl) for 20 min and then 50 μl of this suspension was spread onto nutrient agar (NA) and incubated at 27°C for 24 h. White-to-pale gray colonies with irregular margins were selected for analysis. For pathogenicity tests, cucumber fruits were surface sterilized by ethyl alcohol 70%, washed with sterilized distilled water, cut into small pieces, and inoculated with 20 μl of 108 CFU/ml suspensions of five representative strains. Cucumber plants were grown for 3 weeks in sterilized soil and their stems were inoculated with 20 μl of 108 CFU/ml of bacterial suspension. Inoculated samples and control (noninoculated) plants were placed in a growth chamber with 80 to 90% relative humidity at 27°C. Symptoms occurred on fruit slices and stems after 1 to 3 days and appeared the same as naturally infected samples, but the control samples remained healthy. Koch's postulates were fulfilled with the reisolation of cultures with the same characteristics as described earlier. Hypersensitivity reaction (HR) assays were done by infiltrating 108 CFU/ml of bacterial suspension into tobacco leaf epidermis and HR developed. All strains were subjected to biochemical and morphological assays, as well as molecular assessment. The strains were gram negative, facultative anaerobes, rod shaped, able to macerate potato slices and growth at 37°C; catalase positive; oxidase and phosphatase negative; able to degrade pectate; sensitive to erythromycin; negative for utilization of α-methyl glycoside, indole production, and reduction of sugars from sucrose; acid production from arabitol, sorbitol, and utilization of citrate were negative, but positive for raffinose and melibiose utilization. PCR amplification of the pel gene by Y1 and Y2 primers produced a 434-bp fragment on agarose gel 1% (1). Amplification of intergenic transcribed spacer region by G1 and L1 primers gave two main bands at approximately 535 and 580 bp on agarose gel 1.5%. The ITS-PCR products were digested with RsaI restriction enzyme (3). On the basis of biochemical and morphological characteristics, PCR-based pel gene and characterization of the ITS region, and digestion of the ITS-PCR products with RsaI restriction enzyme, all isolates were identified as P. carotovorum subsp. carotovorum. To our knowledge, this is the first report of soft rot caused by P. carotovorum subsp. carotovorum on cucumber from Malaysia. References: (1) A. Darraas et al. Appl. Environ. Microbiol. 60:1437, 1994. (2) N. W Schaad et al. Laboratory Guide for the Identification of Plant Pathogenic Bacteria. 3rd ed. The American Phytopathological Society Press, St. Paul, 2001. (3) I. K. Toth et al. Appl. Environ. Microbiol. 67:4070, 2001.
  10. Nazerian E, Sijam K, Mior Ahmad ZA, Vadamalai G
    Plant Dis, 2011 Apr;95(4):491.
    PMID: 30743350 DOI: 10.1094/PDIS-09-10-0683
    Cabbage (Brassica oleracea L. var. capitata L.) is one of the most important vegetables cultivated in Pahang and Kelantan, Malaysia. Pectobacterium carotovorum can cause soft rot on a wide range of crops worldwide, especially in countries with warm and humid climates such as Malaysia. Cabbage with symptoms of soft rot from commercial fields were sampled and brought to the laboratory during the winter of 2010. Disease symptoms were a gray to pale brown discoloration and expanding water-soaked lesions on leaves. Several cabbage fields producing white cultivars were investigated and 27 samples were collected. Small pieces of leaf samples were immersed in 5 ml of saline solution (0.80% NaCl) for 20 min to disperse the bacterial cells. Fifty microliters of the resulting suspension was spread on nutrient agar (NA) and King's B medium and incubated at 30°C for 48 h. Purification of cultures was repeated twice on these media. Biochemical and phenotypical tests gave these results: gram negative, rod shaped, ability to grow under liquid paraffin (facultative anaerobe); oxidase negative; phosphatase negative; positive degradation of pectate; sensitive to erythromycin; negative to Keto-methyl glucoside utilization, indole production and reduction sugars from sucrose were negative; acid production from sorbitol and arabitol was negative and from melibiose, citrate, and raffinose was positive. Hypersensitivity reaction on tobacco leaf with the injection of 106 CFU/ml of bacterial suspension for all strains was positive. Four representative strains were able to cause soft rot using cabbage slices (three replications) inoculated with a bacterial suspension at 106 CFU/ml. Inoculated cabbage slices were incubated in a moist chamber at 80% relative humidity and disease symptoms occurred after 24 h. Cabbage slices inoculated with water as a control remained healthy. The bacteria reisolated from rotted cabbage slices on NA had P. carotovorum cultural characteristics and could cause soft rot in subsequent tests. PCR amplification with Y1 and Y2 primers (1), which are specific for P. carotovorum, produced a 434-bp band with 15 strains. PCR amplification of the 16S-23S rRNA intergenic transcribed spacer region (ITS) using G1 and L1 primers gave two main bands approximately 535 and 580 bp and one faint band approximately 740 bp when electrophoresed through a 1.5% agarose gel. The ITS-PCR products were digested with RsaI restriction enzyme. According to biochemical and physiological characterictics (2), PCR-based pel gene (1), and analysis by ITS-PCR and ITS-restriction fragment length polymorphism (3), all isolates were identified as P. carotovorum subsp. carotovorum. This pathogen has been reported from Thailand, Indonesia, and Singapore with whom Malaysia shares its boundaries. To our knowledge, this is the first report of P. carotovorum subsp. carotovorum in cabbage from Malaysia. References: (1) A. Darraas et al. Appl. Environ. Microbiol. 60:1437, 1994. (2) N. W. Schaad et al. Laboratory Guide for the Identification of Plant Pathogenic Bacteria. 3rd ed. The American Phytopathological Society, St. Paul, 2001. (3) I. K. Toth et al. Appl. Environ. Microbiol. 67:4070, 2001.
  11. Nejat N, Vadamalai G, Sijam K, Dickinson M
    Plant Dis, 2011 Oct;95(10):1312.
    PMID: 30731679 DOI: 10.1094/PDIS-03-11-0251
    Madagascar periwinkle, Catharanthus roseus (L.) G. Don, is a member of the Apocynaceae plant family that is native to Madagascar and produces dimeric terpenoid indole alkaloids that are used in the treatment of hypertension and cancer. Periwinkle as an indicator plant is highly susceptible to phytoplasmas and spiroplasma infection from different crops, and has been found to be naturally infected with spiroplasmas in Arizona, California, and the Mediterranean countries. In this study, surveys of suspected diseased periwinkles were conducted in various regions of Selangor State, Malaysia. Periwinkles showing rapid decline in the number and size of the flowers, premature abscission of buds and flowers, reduction in leaf size, chlorosis of the leaf tips and margins, general chlorosis, and stunting and dying plants were collected. These symptoms were widespread on periwinkle in this state. Diagnosis of the disease was based on symptomatology, grafting, serology (ELISA), PCR techniques, and cultivation. Tests for transmission by grafting were conducted using symptomatic periwinkle plants. Symptoms were induced on all eight graft-inoculated healthy periwinkles approximately 2 weeks after side grafting. Preliminary examination was performed by ELISA with Spiroplasma citri Saglio polyclonal antibody that was prepared against an Iranian S. citri isolate (H. Rahimian, unpublished data). Leaf extracts of all 24 symptomatic periwinkles gave positive ELISA reactions at OD405 readings ranging from 0.310 to 0.654 to the antibody against S. citri by the indirect ELISA method. Six healthy periwinkle leaves gave OD405 readings around 0.128. Total nucleic acids were extracted from 10 symptomatic and 5 asymptomatic plants (4). PCR using the ScR16F1/ScR16R1 primer pair designed to detect S. citri in carrot and P1/P7 and secA for1/rev3 primer pairs designed for identification of phytoplasmas were used to detect the causal agent (1-3). Amplification failed when the P1/P7 universal phytoplasma primer pair was used for diseased samples. However, the PCR assays resulted in products of 1,833 and 800 bp with ScR16F1/ScR16R1 and secA for1/rev3, respectively. Five of each ScR16F1/ScR16R1 and SecAfor1/SecArev3 products were cloned with the Topo TA cloning kit (Invitrogen, Carlsbad, CA), sequenced, and deposited as GenBank Accession Nos. HM015669 and FJ011099, respectively. Sequences for both genes indicated that S. citri was associated with the disease on periwinkle. ScR16F1/ScR16R1 products cloned from symptomatic periwinkles had 98% sequence identity with S. citri (GenBank Accession No. AM285316), while nucleotide sequences of SecAfor1/SecArev3 products had 88% sequence identity with S. citri GII3-3X (GenBank Accession No. AM285304). S. citri was cultivated from 10 S. citri-infected periwinkles using filtration and SP-4 media. Twenty culture tubes started to change culture medium color from red to yellow 1 month after cultivation. Helical and motile S. citri was observed in the dark-field microscope. To our knowledge, this is the first report on the presence and occurrence of S. citri in Southeast Asia and its association with lethal yellows on periwinkle in Malaysia. References: (1) J. Hodgetts et al. Int. J. Syst. Evol. Microbiol. 58:1826, 2008. (2) I.-M. Lee et al. Phytopathology 85:728, 1995. (3) I.-M. Lee et al. Plant Dis. 90:989, 2006. (4) Y.-P. Zhang et al. J. Virol. Methods. 71:45, 1998.
  12. Nishijima KA, Follett PA, Bushe BC, Nagao MA
    Plant Dis, 2002 Jan;86(1):71.
    PMID: 30823004 DOI: 10.1094/PDIS.2002.86.1.71C
    Rambutan (Nephelium lappaceum L.) is a tropical fruit grown in Hawaii for the exotic fruit market. Fruit rot was observed periodically during 1998 and 1999 from two islands, Hawaii and Kauai, and severe fruit rot was observed during 2000 in orchards in Kurtistown and Papaikou on Hawaii. Symptoms were characterized by brown-to-black, water-soaked lesions on the fruit surface that progressed to blackening and drying of the pericarp, which often split and exposed the aril (flesh). In certain cultivars, immature, small green fruits were totally mummified. Rambutan trees with high incidence of fruit rot also showed symptoms of branch dieback and leaf spot. Lasmenia sp. Speg. sensu Sutton, identified by Centraalbureau voor Schimmelcultures (Baarn, the Netherlands), was isolated from infected fruit and necrotic leaves. Also associated with some of the fruit rot and dieback symptoms were Gliocephalotrichum simplex (J.A. Meyer) B. Wiley & E. Simmons, and G. bulbilium J.J. Ellis & Hesseltine. G. simplex was isolated from infected fruit, and G. bulbilium was isolated from discolored vascular tissues and infected fruit. Identification of species of Gliocephalotrichum was based on characteristics of conidiophores, sterile hairs, and chlamydospores (1,4). Culture characteristics were distinctive on potato dextrose agar (PDA), where the mycelium of G. bulbilium was light orange (peach) without reverse color, while G. simplex was golden-brown to grayish-yellow with dark brown reverse color. Both species produced a fruity odor after 6 days on PDA. In pathogenicity tests, healthy, washed rambutan fruits were wounded, inoculated with 30 μl of sterile distilled water (SDW) or a fungus spore suspension (105 to 106 spores per ml), and incubated in humidity chambers at room temperature (22°C) under continuous fluorescent light. Lasmenia sp. (strain KN-F99-1), G. simplex (strain KN-F2000-1), and G. bulbilium (strains KN-F2001-1 and KN-F2001-2) produced fruit rot symptoms on inoculated fruit and were reisolated from fruit with typical symptoms, fulfilling Koch's postulates. Controls (inoculated with SDW) had lower incidence or developed less severe symptoms than the fungus treatments. Inoculation tests were conducted at least twice. To our knowledge, this is the first report of Lasmenia sp. in Hawaii and the first report of the genus Gliocephalotrichum on rambutan in Hawaii. These pathogens are potentially economically important to rambutan in Hawaii. G. bulbilium has been reported previously on decaying wood of guava (Psidium guajava L.) in Hawaii (2), and the fungus causes field and postharvest rots of rambutan fruit in Thailand (3). References: (1) J. J. Ellis and C. W. Hesseltine. Bull. Torrey Bot. Club 89:21, 1962. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989. (3) N. Visarathanonth and L. L. Ilag. Pages 51-57 in: Rambutan: Fruit Development, Postharvest Physiology and Marketing in ASEAN. ASEAN Food Handling Bureau, Kuala Lumpur, Malaysia, 1987. (4) B. J. Wiley and E. G. Simmons. Mycologia 63:575, 1971.
  13. Okuda S, Prince JP, Davis RE, Dally EL, Lee IM, Mogen B, et al.
    Plant Dis, 1997 Mar;81(3):301-305.
    PMID: 30861775 DOI: 10.1094/PDIS.1997.81.3.301
    Phytoplasmas (mycoplasmalike organisms, MLOs) associated with mitsuba (Japanese hone-wort) witches'-broom (JHW), garland chrysanthemum witches'-broom (GCW), eggplant dwarf (ED), tomato yellows (TY), marguerite yellows (MY), gentian witches'-broom (GW), and tsu-wabuki witches'-broom (TW) in Japan were investigated by polymerase chain reaction (PCR) amplification of DNA and restriction enzyme analysis of PCR products. The phytoplasmas could be separated into two groups, one containing strains JHW, GCW, ED, TY, and MY, and the other containing strains GW and TW, corresponding to two groups previously recognized on the basis of transmission by Macrosteles striifrons and Scleroracus flavopictus, respectively. The strains transmitted by M. striifrons were classified in 16S rRNA gene group 16SrI, which contains aster yellows and related phytoplasma strains. Strains GW and TW were classified in group 16SrIII, which contains phytoplasmas associated with peach X-disease, clover yellow edge, and related phytoplasmas. Digestion of amplified 16S rDNA with HpaII indicated that strains GW and TW were affiliated with subgroup 16SrIII-B, which contains clover yellow edge phytoplasma. All seven strains were distinguished from other phytoplasmas, including those associated with clover proliferation, ash yellows, elm yellows, and beet leafhopper-transmitted virescence in North America, and Malaysian periwinkle yellows and sweet potato witches'-broom in Asia.
  14. Palemon-Alberto F, Reyes-Garcia G, Ortega-Acosta SA, Toledo Hernandez E, Romero-Ramirez Y, Toribio-Jimenez J, et al.
    Plant Dis, 2024 Jan 24.
    PMID: 38268178 DOI: 10.1094/PDIS-09-23-1830-PDN
    Roselle (Hibiscus sabdariffa L.) is a crop of economic importance, refreshing drinks are prepared from its calyces, it is also attributed to antioxidant, antibacterial, and antihypertensive properties (Da-Costa-Rocha et al. 2014). In November 2022, in municipality of Iguala (18.355592N, 99.548546W, 749 m above sea level), Guerrero, México, roselle plants of approximately 1.5 months of age with basal rot were detected under greenhouse conditions. The symptoms consisted of wilting, yellowing, and root and stem rot with constriction in the base of the stem. The symptoms were detected in approximately 15% of plants at the operation. From symptomatic tissue, cuts were made into approximately 0.5 cm pieces, sterilized with 2% NaClO, washed with sterile distilled water, transferred to PDA medium amended with 50 mg/liter of Chloramphenicol, and incubated in the dark for four days at 28 °C. Rhizoctonia-like colonies were consistently obtained, and nine isolates were selected and purified by the hyphal-tip method. After four days, isolates developed a mycelium was light-white that became brown with age. Right-angled hyphal branching was also observed, in addition to a slight constriction at the base of the branches. In some older cultures, numerous dark brown sclerotia were observed. They were multinucleate cell with three to eight nuclei and measured from 1 to 2 mm in diameter. Together these characteristics were consistent with the description of Rhizoctonia solani Kühn (Parmeter 1970). The anastomosis group (AG) was confirmed by amplifying the ITS region with the primers ITS1 and ITS4 (White et al. 1990) of the RIJAM3 and RIJAM5 strains. The sequences were deposited in GenBank (Nos. OR364496 and OR364497 for RIJAM3 and RIJAM5, respectively). BLAST analysis, both isolates indicated 99.7 identity to R. solani AG-4 HG-I (GenBank: KM013470) strain ICMP 20043 (Ireland et al. 2015). The phylogenetic analysis of AGs sequences allowed assignment of isolates RIJAM3 and RIJAM5 to the AG-4 HG-1 clade. A pathogenicity test was performed on 20 one-month-old roselle plants. Mycelium of RIJAM3 isolate was inserted into the base of the stem with a sterile toothpick. As a control, a sterile toothpick with no mycelium was inserted in ten healthy plants. Additionally, 50 eight-day-old seedlings were inoculated by placing a 5-mm diameter agar plug colonized with mycelium of RIJAM3 at the base of the stem 10 mm below the soil surface. As control treatments, uncolonized PDA plugs were deposited at the base of 25 seedlings. The inoculated plants were incubated in a greenhouse with an average temperature and relative humidity of 28°C and 85%, respectively. Following inoculation, symptoms similar to those observed in the original outbreak were observed in plants after six days and only after four days in seedlings. In both experiments, the control plants and seedlings remained asymptomatic. R. solani was re-isolated from plants and seedlings, complying with Koch's postulates. The pathogenicity testing was repeated twice, with concordant results. In Nigeria and Malaysia R. solani was reported to seedling death to cause seedling dieback in roselle (Adeniji 1970; Eslaminejad and Zakaria 2011). In México R. solani AG-4 has been previously reported in crops of potato, chili and tomato (Montero-Tavera et al. 2013; Ortega-Acosta et al. 2022; Virgen-Calleros et al. 2000). To the best of our knowledge, this is the first report of R. solani AG-4 HG-I as a causing of root and basal stem rot on roselle in Mexico. This research provides information essential for informing the management of this disease, and may help design measures to prevent the spread of the pathogen to other regions.
  15. Ploetz RC, Palmateer AJ, Geiser DM, Juba JH
    Plant Dis, 2007 May;91(5):639.
    PMID: 30780734 DOI: 10.1094/PDIS-91-5-0639A
    Roselle, Hibiscus sabdariffa var. sabdariffa, is an annual that is grown primarily for its inflated calyx, which is used for drinks and jellies. It is native from India to Malaysia, but was taken at an early date to Africa and is now widely grown in the tropics and subtropics (2). In late 2005, dying plants were noted by a producer in South Florida. Plants wilted, became chlorotic, and developed generally unthrifty, sparse canopies. Internally, conspicuous vascular discoloration was evident in these plants from the roots into the canopy. After 5 days on one-half-strength potato dextrose agar (PDA), salmon-colored fungal colonies grew almost exclusively from surface-disinfested 5 mm2 pieces of vascular tissue. On banana leaf agar, single-spored strains produced the following microscopic characters of Fusarium oxysporum: copious microconidia on monophialides, infrequent falcate macroconidia, and terminal and intercalary chlamydospores. Partial, elongation factor 1-α (EF1-α) sequences were generated for two of the strains, O-2424 and O-2425, and compared with previously reported sequences for the gene (3). Maximum parsimony analysis of sequences showed that both strains fell in a large, previously described clade of the F. oxysporum complex (FOC) that contained strains from agricultural hosts, as well as human clinical specimens (2; clade 3 in Fig. 4); many of the strains in this clade have identical EF1-α sequences. Strains of F. oxysporum recovered from wilted roselle in Egypt, O-647 and O-648 in the Fusarium Research Center collection, were distantly related to the Florida strains. We are not aware of other strains of F. oxysporum from roselle in other international culture collections. Roselle seedlings were inoculated with O-2424 and O-2425 by placing a mycelial plug (5 mm2, PDA) over a small incision 5 cm above the soil line and then covering the site with Parafilm. Parafilm was removed after 1 week, and plants were incubated under ambient temperatures (20 to 32°C) in full sun for an additional 5 weeks (experiment 1) or 7 weeks (experiment 2). Compared with mock-inoculated (wound + Parafilm) control plants, both O-2424 and O-2425 caused significant (P < 0.05) vascular disease (linear extension of discolored xylem above and below wound site) and wilting (subjective 1 to 5 scale); both isolates were recovered from affected plants. F. oxysporum-induced wilt of roselle has been reported in Nigeria (1) and Malaysia (4) where the subspecific epithet f. sp. rosellae was used for the pathogen. We are not aware of reports of this disease elsewhere. To our knowledge, this is the first report of F. oxysporum-induced wilt of roselle in the United States. Research to determine whether the closely related strains in clade 3 of the FOC are generalist plant pathogens (i.e., not formae speciales) is warranted. References: (1) N. A. Amusa et al. Plant Pathol. J. 4:122, 2005. (2) J. Morton. Pages 81-286 in: Fruits of Warm Climates. Creative Resource Systems, Inc., Winterville, NC, 1987. (3) K. O'Donnell et al. J. Clin. Microbiol. 42:5109, 2004. (4) K. H. Ooi and B. Salleh. Biotropia 12:31, 1999.
  16. Qin R, Li Q, Huang S, Chen X, Mo J, Guo T, et al.
    Plant Dis, 2023 Mar 27.
    PMID: 36973906 DOI: 10.1094/PDIS-05-22-1168-PDN
    Persimmon (Diospyros kaki Thunb.) is widely cultivated in China. On October 15, 2019, about 10% of persimmon fruits showed fruit rot in the orchards of Guilin, Guangxi, China (24°45' N, 110°24' E), which could cause more than 15% of yield losses. The initial symptoms of fruit rot exhibited irregular brown to black spots (range from 2 to 4 cm in diameter), the areas surrounding the blackened spots would be soft and rotten, and three diseased fruit samples were collected from three orchards, respectively. Tissues (5×5 mm) were cut from infected margins, surface-disinfected in 75% ethanol for 10 s, 2% NaClO for 2 min, rinsed three times in sterilized distilled water, and incubated on potato dextrose agar (PDA) at 25°C under 12/12 h light/darkness for a week. Forty-one tissues yielded morphologically similar cultures, and three representative isolates LPG1-1, LPG1-2, and YSG-1 were selected from three samples for further study, respectively. Their colonies showed wavy edges, white surfaces, and dense aerial hyphae on PDA after two weeks. Conidia were fusiform, straight to slightly curved, and 4-septate; basal cells were conical, hyaline, thin, and verruculose with two or three long and hyaline apical appendages and one short apical appendage; three median cells of LPG1-1 with length 14.06 to 17.69 μm (n=100), and LPG1-2 with length 14.03 to 17.61 μm (n=100) were dark brown to olivaceous, while three median cells of YSG-1 with length 12.54 to 15.58 μm (n=100) were dark brown. The conidial sizes of LPG1-1, LPG1-2, and YSG-1 were 17.41 to 27.68 × 4.63 to 8.55 μm (n=100), 18.06 to 27.41 × 4.33 to 8.21 μm (n=100), and 16.58 to 27.73 × 4.99 to 8.39 μm (n=100), respectively. The morphological characteristics were consistent with Neopestalotiopsis spp. (Maharachchikumbura et al. 2012; Maharachchikumbura et al. 2014). Primer pairs ITS4/ITS5, BT2a/BT2b, and EF1-526F/EF-1567R were used to amplify internal transcribed spacer (ITS), beta-tubulin (TUB2), and translation elongation factor 1 alpha (TEF1-α), respectively (Shu et al., 2020). All DNA fragments were sequenced by Sangon Biotech Co., Ltd. (Shanghai, China). Sequences have been deposited in GenBank (ITS: OM349120 to OM349122, TUB2: OM688188 to OM688190, TEF1-α: OM688191 to OM688193). Based on BLASTn analysis of ITS, TUB2, and TEF1-α sequences, the LPG1-1 and LPG1-2 showed over 99% similarity to N. saprophytica, and YSG-1 showed over 99% similarity to N. ellipsospora. Phylogenetic analysis of the three isolates was performed with MEGA10 (version 10.0) based on sequences of ITS, TUB2, and TEF1-α using maximum parsimony analysis. The results revealed that LPG1-1 and LPG1-2 were clustered with N. saprophytica, and YSG-1 was clustered with N. ellipsospora. Pathogenicity tests of three isolates were conducted on 72 healthy persimmon fruits with and without wounds, and 9 fruits are for each treatment. The wound was made by a sterilized needle. Fruits were pre-processed with 75% ethanol for 10 s, 1% NaClO for 2 min and rinsed three times in sterile water. Conidial suspensions (10 µL, 106 conidia/mL in 0.1% sterile Tween 20) were inoculated on each site (4 sites/fruit). Control group was treated with 0.1% sterile Tween 20. All inoculated sites were covered with wet cotton. The inoculated fruits were placed in a plastic box to maintain humidity at 28℃. After 5 days, all wounded fruits showed fruit rot, whereas unwounded and control fruits remained asymptomatic, there were significant differences (P<0.05) in aggressiveness between N. saprophytica (average lesion diameter 13.1 mm) and N. ellipsospora (average lesion diameter 14.9 mm). Koch's postulates were fulfilled by re-isolating the causal agents from inoculated fruits. N. ellipsospora was previously reported as an endophyte in D. montana in southern India (Reddy et al. 2016). N. saprophytica could cause leaf spot of Erythropalum scandens and Magnolia sp., and fruit rot of Litsea rotundifolia in China and leaf spot of Elaeis guineensis in Malaysia (Yang et al. 2021, Ismail et al. 2017). To our knowledge, this is the first report of N. ellipsospora and N. saprophytica causing fruit rot on persimmon in the world. The results will provide a foundation for controlling fruit rot caused by pestalotioid fungi on persimmon.
  17. Qiu R, Zhang L, Hu Z, Du Y, Zheng X, Zhang Z, et al.
    Plant Dis, 2022 Oct 03.
    PMID: 36190300 DOI: 10.1094/PDIS-03-22-0677-PDN
    Anisomeles indica (L.) Kuntze is a perennial erect herb that belongs to the genus Epimeredi, family Labiatae (Hsieh et al., 2008). This herb is distributed in several southern provinces such as Yunnan, Sichuan and Guizhou in China, and it is also exported to Southeast Asian countries such as Singapore and Malaysia (Li., 2010; Yao et al., 2019). Due to its market potential and broad development prospects, the herb has been cultivated in Yunnan. In August 2021, virus-like symptoms on leaves, including shrinking, mosaic, and yellow mottling(Fig S1. A) appeared on approximately 80% of A. indica in the experimental fields of the Kunming Institute of Botany, Chinese Academy of Science, in Kunming, Yunnan. To unveil the possible viral agents associated with the disease symptoms, leaf samples were collected from 5 plants for transmission electron microscopy (TEM) analysis using negative staining (Zhang et al., 2016). Rhabditiform-shaped particles around 300 × 18 nm (Fig S1. C) were observed, which resemble those of tobamoviruses. To identify the exact virus, total RNA was extracted from the 20 leaf samples using the RNA-easy Isolation Reagent (Vazyme, Nanjing, China), followed by reverse transcription (RT)-PCR with a degenerate tobamovirus primer pair (Li et al., 2014). A 480-bp amplicon was obtained from each sample and cloned into the pMD18-T vector for Sanger sequencing (Takara, Dalian, China). BLASTn-analysis revealed that the 20 amplicons were identical and shared 100% nucleotide sequence identity with tobacco mosaic virus (TMV) isolate Bei Cang Zhu from Atractylodes lancea (acc. no. KU198186) One sequence was deposited in the GenBank under the accession number OK489807. ELISA testing with TMV-specific antibody (Agdia, USA) produced positive results for all of the 20 leaf samples. In order to understand the difference between TMV isolates from A. indica and those form other host plants, the sequences of movement protein (MP, 807 bp) and RNA-dependent RNA polymerase (RdRp, 3351 bp) of TMV were also obtained from one of the TMV infected samples using the target gene special primers (Tab. S1), and submitted to GenBank under the accession number OM3662406 (MP) and OM366242 (RdRp). BLASTn-analysis revealed that the amplicon of MP shared 97.75% nucleotide sequence identity with TMV isolate Henan 9-2-2017 from sweet potato (MN186255.1) and RdRp shared 97.43% nucleotide sequence identity with TMV isolate SXFQ from Solanum lycopersicum (JX993906.1). Phylogenetic analysis indicated that the isolate of A. indica grouped with several TMV isolates (e.g., tomato, AF103779.1 and tobacco, HE818449.1) from Northern China. The virus was successfully transmitted onto healthy A.indica plants (n = 5) upon mechanical inoculation as the plants not only developed foliar distortion symptoms but also tested positive for TMV by RT-PCR with the CP-specific primers (Tab. S1). Taken together, our results demonstrated that the diseased A. indica plants were infected with TMV. To our knowledge, this is the first report of TMV infected A. indica (L.) Kuntze in China. Symptomatic phenotype-based field surveys on some plantations in Yunnan Province indicated that the disease incidence ranged from 70% to 90%, resulting in significant loss of production of A. indica. It is necessary to monitor the viruses in the fields and find effective methods to protect TMV in the A. indica (L.) Kuntze industry.
  18. Quimbita-Reyes AM, Cabrera-Asencio I, Serrato-Diaz LM, Rivera-Vargas LI
    Plant Dis, 2022 May 31.
    PMID: 35640955 DOI: 10.1094/PDIS-01-22-0149-PDN
    Mango originated in the Indo-Burmese region (Alphonse de Candolle, 1885). In the Caribbean, Puerto Rico currently produces and exports mangoes to the United States and Europe. Globally, an important disease affecting mango production is dieback, caused by fungi belonging to Botryosphaeriaceae family. During a one-year survey from 2019 to 2020, conducted at the mango germplasm collection of the Agricultural Experiment Station of the University of Puerto Rico, located at Juana Díaz, PR, symptoms of dieback were observed in shoots, descending towards the woody part, and vascular necrosis. We sampled bimonthly, 35 Keitt trees for one year. At the end of the evaluation, we detected that a 74% disease incidence was caused by Botryosphaeriaceae. Lasiodiplodia mahajangana (syn. L. caatinguensis) was associated with 4% disease incidence. In addition, we identified other Botryosphaeriaceae species causing 70% of disease incidence. To identify the causal agent, sections of symptomatic tissue (4mm2) were surface disinfected by immersion in 70% ethanol, 10% sodium hypochlorite and rinsed with sterile-distilled water for 1 minute at each solution. Sections were transferred to petri dishes containing potato dextrose agar acidified with 85% lactic acid (aPDA). Ten fungal isolates were obtained with similar morphological characteristics such as colony color and texture, after 12 days. Of these, one representative (isolate 17) was selected and identified as L. mahajangana (Lm) using morphological parameters and sequences of four nuclear genes (Zhang, W. et al., 2021). In aPDA, Lm colonies showed sparse and slow-growing aerial mycelium with dark gray-greenish color at the center and light gray edges. Black pycnidia were observed after 15 days of incubation at 28°C and dark conditions. Hyaline, ovoid to ellipsoid immature conidia (n=40) with average size of 22 µm long and 12 µm wide were observed. Mature bicellular pigmented conidia (n=40) had longitudinal striate and its average size was 23 µm long and 12 µm wide. Internal transcribed spacer (ITS), β-tubulin (βtub), elongation factor 1-alpha (EF1-α) and large ribosomal subunit (LSU) genetic regions were amplified by PCR from the original and pathogenicity test recovered isolates. Sequences of PCR products were compared with NCBI database BLAST tool with other Lm sequences. Sequence accession numbers of the four genetic regions of Lm are as follows: OL375401 and OL375402 for the ITS region; OL405579 and OL405580 for β-tubulin; OL455922 and OL455923 for EF1-α; and OL375648 and OL375649 for LSU. All the sequences were grouped with the ex-type CMM1325 of Lm (BS=84). Pathogenicity tests were performed on 6-month-old mango trees of cv. Keitt. Three healthy trees were inoculated with 5 mm mycelial disks of Lm, on stems, with and without wounds. Controls were inoculated with aPDA disks only. Inoculated trees were covered for 3 days with plastic bags, keeping them in conditions of high relative humidity with constant irrigation, temperature of 28°C, and 12 hours of light and 12 hours of darkness for 12 days. Twelve days after inoculation, Lm isolates caused stem necrosis and canker, with differences in lesion severity from 2 to 17 mm2 with wound, and 0 to 6 mm2 without wound. Untreated controls showed no symptoms of canker. Lasiodiplodia mahajangana was re-isolated from diseased stems fulfilling Koch's postulates, and a sequence of the recovered isolate from the pathogenicity test was compared and included in the phylogenetic analysis. Lasiodiplodia mahajangana has been reported to cause stem-end rot of mango in Malaysia (Li, L. et. al., 2021). To our knowledge, this is the first report of Lm causing canker of mango in Puerto Rico. Knowing L. mahajangana as a new pathogen that causes canker of mango is important to establish an adequate and effective control management of this disease in mango producing countries worldwide.
  19. Rahman MZ, Ahmad K, Siddiqui Y, Saad N, Hun TG, Mohd Hata E, et al.
    Plant Dis, 2021 May 27.
    PMID: 34042494 DOI: 10.1094/PDIS-04-21-0780-PDN
    Fusarium wilt disease incited by Fusarium oxysporum f. sp. niveum (FON) is the utmost devastating soil-inhabiting fungal pathogen limiting watermelon (Citrullus lanatus) production in Malaysia and globally. The field disease survey of fusarium wilt was carried out during December 2019 and November 2020, in three major production areas (3 farmer fields per location) in Peninsular Malaysia namely, Mersing, Serdang and Kuantan and disease incidence of 30 and 45%, was recorded for each year, respectively. Infected watermelon plants showed symptoms such as vascular discoloration, brown necrotic lesions to the soil line or the crown, one-sided wilt of a plant, or a runner or the whole plant. Infected root and stem tissues, 1-2 cm pieces were surface sterilized with 0.6% NaOCl for 1 minute followed by double washing with sterile water. The disinfected tissues were air-dried and transferred onto semi-selective Komada's medium (Komada 1975) and incubated for 5 days. The fungal colonies produced were placed on potato dextrose agar (PDA) to attain a pure culture and incubated at 25±2℃ for 15 days. The pure fungal colony was flat, round and light purple in color. Macroconidia were straight to slightly curved, 18.56-42.22 µm in length, 2.69-4.08 µm width, predominantly 3 septate and formed in sporodochia. Microconidia measured 6.16-10.86 µm in length and 2.49-3.83 µm in width, kidney-shaped, aseptate and were formed on short monophialides in false-heads. Chlamydospores were single or in pairs with smooth or rough walls, found both terminally or intercalary. To confirm their pathogenicity, two-week-old watermelon seedlings (cv. NEW BEAUTY) were dipped into spore suspension (1 ˟ 106 spores/ml) of representative isolates of JO20 (Mersing), UPM4 (Serdang) and KU41 (Kuantan) for 30 second and then moved into 10 cm diameter plastic pots containing 300 g sterilized soil mix. Disease symptoms were assessed weekly for one month. Control seedlings were immersed in sterile distilled water before transplanting. The inoculated seedlings showed typical Fusarium wilt symptoms like yellowing, stunted growth, and wilting, which is similar to the farmer field infected plants. However, the seedlings inoculated by sterile distilled water remained asymptomatic. The pathogen was successfully re-isolated from the infected seedlings onto Komada's medium, fulfilling the Koch's postulate. For the PCR amplification, primers EF-1 and EF-2 were used to amplify the tef1-α region. A Blastn analysis of the tef1-α sequences of the isolates JO20 (accession nos. MW315902), UPM4 (MW839560) and KU41 (MW839562) showed 100% similarity; with e-value of zero, to the reference sequences of F. oxysporum isolate FJAT-31690 (MN507110) and F. oxysporum f. sp. niveum isolate FON2 790-2 (MN057702). In Fusarium MLST database, isolates JO20, UPM4 and KU41 revealed 100% identity with the reference isolate of NRRL 22518 (accession no. FJ985265). Though isolate FJ985265 belongs to the f. sp. melonis, earlier findings had revealed Fusarium oxysporum f. sp. are naturally polyphyletic and making clusters with diverse groups of the Fusarium oxysporum species complex (O'Donnell et al. 2015). The isolates JO20, UPM4 and KU41 were identified as F. oxysporum f. sp. niveum based on the aligned sequences of tef1-α and molecular phylogenetic exploration by the maximum likelihood method. To the best of our knowledge, this is the first report of F. oxysporum f. sp. niveum as a causative pathogen of Fusarium wilt disease of watermelon in Malaysia. Malaysia enables to export watermelon all-year-round in different countries like Singapore, Hong-Kong, The United Arab Emirates (UAE), and Netherlands. The outburst of this destructive soil-borne fungal pathogen could cause hindrance to watermelon cultivation in Malaysia. Thus, growers need to choice multiple management tactics such as resistant varieties, cultural practices (soil amendments and solarization), grafting, cover crops and fungicide application to control this new pathogen.
  20. Rahman MZ, Ahmad K, Siddiqui Y, Saad N, Hun TG, Mohd Hata E, et al.
    Plant Dis, 2021 Aug 02.
    PMID: 34340562 DOI: 10.1094/PDIS-05-21-1027-PDN
    Watermelon (Citrullus lanatus) accounts for almost 13% of all tropical fresh fruit production in Malaysia. They are grown, mostly in Johor, Kedah, Kelantan, Pahang, and Terengganu areas of Malaysia on 10,406 ha and yielding 172,722 Mt. In 2019, a new fruit rot disease was observed in two major production areas in Peninsular Malaysia. Disease symptoms included water-soaked brown lesions on the fruit surface in contact with the soil. The lesions enlarged gradually and ultimately covered the whole fruit with white mycelium leading to internal fruit decay. Disease surveys were conducted in December 2019 and November 2020 in fields at Kuantan, Pahang and Serdang, Selangor. Disease incidence was 10% in 2019 and 15% in 2020. Infected fruits were collected and washed under running tap water to wash off adhering soil and debris. Fruit tissue sections 1 to 2 cm in length were surface sanitized with 0.6% sodium hypochlorite (NaOCl) for 3 min. and washed twice with sterile distilled water. The disinfected air-dried tissues were then transferred onto potato dextrose agar (PDA) media and incubated at 25±2℃ for 3 days. Fungal colonies with whitish mycelium and pink pigment isolated using single spore culture. The pure cultures were placed onto carnation leaf agar (CLA), and the culture plates were incubated at 25±2℃ for 15 days for morphological characterization. On CLA, macroconidia were produced from monophialides on branched conidiophores in orange sporodochia. Macroconindia were thick-walled, strong dorsiventral curvature, 5 to 7 septate with a tapered whip-liked pointed apical cell and characteristic foot-shaped basal cell, 21.9 to 50.98 μm long and 2.3 to 3.60 μm wide. Typical verrucose thick chlamydospores with rough walls were profuse in chains or clumps, sub-globose or ellipsoidal. Based on morphological characteristics they were identified as Fusarium equiseti (Leslie and Summerell 2006). Molecular identification of both U4-1 and N9-1 pure culture isolates were carried out using two primer pair sets; internal transcribed spacer (ITS) ITS-1/ ITS-4 and translation elongation factor 1 alpha (TEF1-α) (EF-1/EF-2). A Blastn analysis of the ITS gene sequence of U4-1(MW362286) and N9-1 (MW362287) showed >99% similarity index to the reference gene sequence of F. equiseti isolate 19MSr-B3-4 (LC514690). The TEF1-α sequences of U4-1 (accession no. MW839563) and N9-1 (accession no. MW839564) showed 100% identity; with an e-value of zero, to the reference gene sequence of F. equiseti isolate URM: 7561 (accession no. LS398490). Each isolate also had a >99% identity with isolate NRRL 34070 (accession no. GQ505642) in Fusarium MLST database that belongs to the F. incarnatum-equiseti species complex (O'Donnell et al. 2015). Based on phylogenetic analysis of the aligned sequences (TEF1-α) by the maximum likelihood method, the U4-1 and N9-1 isolates were confirmed to be F. equiseti as was reported in Georgia, USA (Li and Ji 2015) and in Harbin, Heilongjiang Province, China (Li et al. 2018). Finally, the two pure culture isolates of U4-1 and N9-1 were used to fulfill Koch's postulates. Stab inoculations of five healthy watermelon fruits (cv. 345-F1 hybrid seedless round watermelon) were performed with a microconidial suspension of individual isolates (4x106 spores/mL). Five control fruits were stabbed with double distilled water. The inoculated fruits were incubated under 95% relative humidity at a temperature of 25±2℃ for 48 h followed by additional incubation inside an incubator at 25±2℃ for 8 days. Ten days post-inoculation, the control fruits showed no disease symptoms. However, inoculated fruits exhibited typical symptoms of fruit rot disease like water-soaked brown lesions, white mycelium on the fruit surface and internal fruit decay, which is similar to the farmer's field infected fruits. The suspected pathogen was successfully re-isolated from the symptomatic portion of inoculated fruit and morphologically identified for verification. To our knowledge, this is the first report of F. equiseti causing fruit rot of watermelon in Malaysia. Malaysia exports watermelon year-round to many countries around the world. The outbreak of this new fruit rot disease could potentially pose a concern to watermelon cultivation in Malaysia.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links