Displaying publications 81 - 100 of 1507 in total

Abstract:
Sort:
  1. Yap PSX, Chong CW, Ahmad Kamar A, Yap IKS, Choo YM, Lai NM, et al.
    Sci Rep, 2021 01 14;11(1):1353.
    PMID: 33446779 DOI: 10.1038/s41598-020-80278-1
    Emerging evidence has shown a link between the perturbations and development of the gut microbiota in infants with their immediate and long-term health. To better understand the assembly of the gut microbiota in preterm infants, faecal samples were longitudinally collected from the preterm (n = 19) and term (n = 20) infants from birth until month 12. 16S rRNA gene sequencing (n = 141) and metabolomics profiling (n = 141) using nuclear magnetic resonance spectroscopy identified significant differences between groups in various time points. A panel of amino acid metabolites and central metabolism intermediates significantly correlated with the relative abundances of 8 species of bacteria were identified in the preterm group. In contrast, faecal metabolites of term infants had significantly higher levels of metabolites which are commonly found in milk such as fucose and β-hydroxybutyrate. We demonstrated that the early-life factors such as gestational age, birth weight and NICU exposures, exerted a sustained effect to the dynamics of gut microbial composition and metabolism of the neonates up to one year of age. Thus, our findings suggest that intervention at this early time could provide 'metabolic rescue' to preterm infants from aberrant initial gut microbial colonisation and succession.
  2. Yap LF, Lai SL, Patmanathan SN, Gokulan R, Robinson CM, White JB, et al.
    Sci Rep, 2016 Dec 09;6:38758.
    PMID: 27934959 DOI: 10.1038/srep38758
    Head and neck squamous cell carcinoma (HNSCC) is generalized term that encompasses a diverse group of cancers that includes tumours of the oral cavity (OSCC), oropharynx (OPSCC) and nasopharynx (NPC). Genetic alterations that are common to all HNSCC types are likely to be important for squamous carcinogenesis. In this study, we have investigated the role of the homeodomain-only homeobox gene, HOPX, in the pathogenesis of HNSCC. We show that HOPX mRNA levels are reduced in OSCC and NPC cell lines and tissues and there is a general reduction of HOPX protein expression in these tumours and OPSCCs. HOPX promoter methylation was observed in a subset of HNSCCs and was associated with a worse overall survival in HPV negative tumours. RNAseq analysis of OSCC cells transfected with HOPX revealed a widespread deregulation of the transcription of genes related to epithelial homeostasis and ectopic over-expression of HOPX in OSCC and NPC cells inhibited cell proliferation, plating efficiency and migration, and enhanced sensitivity to UVA-induced apoptosis. Our results demonstrate that HOPX functions as a tumour suppressor in HNSCC and suggest a central role for HOPX in suppressing epithelial carcinogenesis.
  3. Yap HM, Lee YZ, Harith HH, Tham CL, Cheema MS, Shaari K, et al.
    Sci Rep, 2018 11 09;8(1):16640.
    PMID: 30413753 DOI: 10.1038/s41598-018-34847-0
    Increased airway smooth muscle (ASM) mass is a prominent hallmark of airway remodeling in asthma. Inhaled corticosteroids and long-acting beta2-agonists remain the mainstay of asthma therapy, however are not curative and ineffective in attenuating airway remodeling. The geranyl acetophenone 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA), an in-house synthetic non-steroidal compound, attenuates airway hyperresponsiveness and remodeling in murine models of asthma. The effect of tHGA upon human ASM proliferation, migration and survival in response to growth factors was assessed and its molecular target was determined. Following serum starvation and induction with growth factors, proliferation and migration of human bronchial smooth muscle cells (hBSMCs) treated with tHGA were significantly inhibited without any significant effects upon cell survival. tHGA caused arrest of hBSMC proliferation at the G1 phase of the cell cycle with downregulation of cell cycle proteins, cyclin D1 and diminished degradation of cyclin-dependent kinase inhibitor (CKI), p27Kip1. The inhibitory effect of tHGA was demonstrated to be related to its direct inhibition of AKT phosphorylation, as well as inhibition of JNK and STAT3 signal transduction. Our findings highlight the anti-remodeling potential of this drug lead in chronic airway disease.
  4. Yap FC, Chen HN, Chan BKK
    Sci Rep, 2023 Jun 14;13(1):9668.
    PMID: 37316644 DOI: 10.1038/s41598-023-33738-3
    Coral-associated organisms often exhibit a continuum of host specificities. We do not know whether the variation in host specificity is related to the settlement organs or preferential settlement behaviours of the larvae. We examined the morphology of attachment discs, the settlement and metamorphosis of coral barnacles-Pyrgoma cancellatum (lives in a single coral species), Nobia grandis (two families of corals), and Armatobalanus allium (six families of corals). Our results revealed that the attachment organ of all three species are spear-shaped with sparse villi, indicating that the morphology of the attachment organs does not vary among species with different host specificities. Larvae of P. cancellatum and N. grandis only settle on their specific hosts, suggesting that chemical cues are involved in the settlement. Cyprids of N. grandis display close searching behaviour before settlement. Cyprids of P. cancellatum settle immediately on their specific host corals, without any exploratory behaviour. The host specificity and exploratory behaviours of coral barnacle cyprids are results of adaptive evolution. We argue that there is a trade-off between exploration and energy conservation for metamorphosis processes. Coral barnacle metamorphosis is longer when compared to free-living species, likely because it involves the development of a tube-shaped base on the coral surface.
  5. Yap FC, Wong WL, Maule AG, Brennan GP, Chong VC, Lim LH
    Sci Rep, 2017 Mar 22;7:44980.
    PMID: 28327603 DOI: 10.1038/srep44980
    Although there have been extensive studies on the larval adhesion of acorn barnacles over the past few decades, little is known about stalked barnacles. For the first time, we describe the larval adhesive systems in the stalked barnacle, Octolasmis angulata and the findings differ from previous reports of the temporary (antennulary) and cement glands in thoracican barnacles. We have found that the temporary adhesives of cyprid are produced by the clustered temporary adhesive glands located within the mantle, instead of the specialised hypodermal glands in the second antennular segment as reported in the acorn barnacles. The temporary adhesive secretory vesicles (TASV) are released from the gland cells into the antennule via the neck extensions of the glands, and surrounded with microtubules in the attachment disc. Cement glands undergo a morphological transition as the cyprid grows. Synthesis of the permanent adhesives only occurs during the early cyprid stage, and is terminated once the cement glands reach maximum size. Evidence of the epithelial invaginations on the cement glands supports the involvement of exocytosis in the secretion of the permanent adhesives. This study provides new insight into the larval adhesives system of thoracican barnacles.
  6. Yang T, Xiao Y, Zhang Z, Liang Y, Li G, Zhang M, et al.
    Sci Rep, 2018 09 28;8(1):14518.
    PMID: 30266999 DOI: 10.1038/s41598-018-32757-9
    Soft robots driven by stimuli-responsive materials have their own unique advantages over traditional rigid robots such as large actuation, light weight, good flexibility and biocompatibility. However, the large actuation of soft robots inherently co-exists with difficulty in control with high precision. This article presents a soft artificial muscle driven robot mimicking cuttlefish with a fully integrated on-board system including power supply and wireless communication system. Without any motors, the movements of the cuttlefish robot are solely actuated by dielectric elastomer which exhibits muscle-like properties including large deformation and high energy density. Reinforcement learning is used to optimize the control strategy of the cuttlefish robot instead of manual adjustment. From scratch, the swimming speed of the robot is enhanced by 91% with reinforcement learning, reaching to 21 mm/s (0.38 body length per second). The design principle behind the structure and the control of the robot can be potentially useful in guiding device designs for demanding applications such as flexible devices and soft robots.
  7. Yang SK, Yusoff K, Thomas W, Akseer R, Alhosani MS, Abushelaibi A, et al.
    Sci Rep, 2020 01 21;10(1):819.
    PMID: 31964900 DOI: 10.1038/s41598-019-55601-0
    Misuse of antibiotics in the clinical and agricultural sectors has caused the emergence of multidrug-resistant (MDR) Klebsiella pneumoniae which contributes a threat to human health. In this study, we assessed the feasibility of lavender essential oil (LVO) as an antimicrobial agent in combinatory therapy with meropenem in suppressing the growth of carbapenemase-producing K. pneumoniae (KPC-KP). Synergistic interactions between LVO and meropenem were detected, which significantly reduce the inhibitory concentration of both LVO and meropenem by 15 and 4-fold respectively. Comparative proteomic profiling identified a disruption in the bacterial membrane via oxidative stress that was indicated by loss of membrane and cytoplasmic proteins and the upregulation of oxidative regulators. As a proof of concept, zeta potential measurements showed a change in cell surface charge while outer membrane permeability measurement indicated an increase in membrane permeability following exposure to LVO. This was indicative of a disrupted outer membrane. Ethidium bromide influx/efflux assays demonstrated no significant efflux pump inhibition by LVO, and scanning electron microscopy revealed irregularities on the cell surface after exposure to LVO. Oxidative stress was also detected with increased level of ROS and lipid peroxidation in LVO-treated cells. In conclusion, our data suggest that LVO induced oxidative stress in K. pneumoniae which oxidizes the outer membrane, enabling the influx of generated ROS, LVO and meropenem into the bacterial cells, causing damage to the cells and eventually death.
  8. Yang M, Al Mamun A, Gao J, Rahman MK, Salameh AA, Alam SS
    Sci Rep, 2024 Jan 03;14(1):339.
    PMID: 38172184 DOI: 10.1038/s41598-023-50436-2
    Addressing the growing popularity of mobile health (m-Health) technology in the health industry, the current study examined consumers' intention and behaviour related to the usage of digital applications based on the unified theory of acceptance and use of technology (UTAUT). In particular, this study quantitatively assessed the moderating role of perceived product value and mediating role of intention to use m-Health application among Indonesians. This study adopted a cross-sectional design and collected quantitative data from conveniently selected respondents through an online survey, which involved 2068 Telegram users in Indonesia. All data were subjected to the analysis of partial least square- structural equation modeling (PLS-SEM). The obtained results demonstrated the moderating effect of perceived product value on the relationship between intention to use m-Health application (m-health app) and actual usage of m-Health app and the mediating effects of intention to use m-Health app on the relationships of perceived critical mass, perceived usefulness, perceived convenience, perceived technology accuracy, and perceived privacy protection on actual usage of m-Health app. However, the intention to use m-Health app did not mediate the influence of health consciousness and health motivation on the actual usage of m-Health app. Overall, this study's findings on the significance of intention to use m-Health app and perceived product value based on the UTAUT framework serve as insightful guideline to expand the usage of m-Health app among consumers.
  9. Yanagisawa D, Hamezah HS, Pahrudin Arrozi A, Tooyama I
    Sci Rep, 2021 May 05;11(1):9623.
    PMID: 33953293 DOI: 10.1038/s41598-021-89142-2
    Tau, a family of microtubule-associated proteins, forms abnormal intracellular inclusions, so-called tau pathology, in a range of neurodegenerative diseases collectively known as tauopathies. The rTg4510 mouse model is a well-characterized bitransgenic F1 hybrid mouse model of tauopathy, which was obtained by crossing a Camk2α-tTA mouse line (on a C57BL/6 J background) with a tetO-MAPT*P301L mouse line (on a FVB/NJ background). The aim of this study was to investigate the effects of the genetic background and sex on the accumulation of tau pathology in reciprocal F1 hybrids of rTg4510 mice, i.e., rTg4510 on the (C57BL/6 J × FVB/NJ)F1 background (rTg4510_CxF) and on the (FVB/NJ × C57BL/6 J)F1 background (rTg4510_FxC). As compared with rTg4510_CxF mice, the rTg4510_FxC mice showed marked levels of tau pathology in the forebrain. Biochemical analyses indicated that the accumulation of abnormal tau species was accelerated in rTg4510_FxC mice. There were strong effects of the genetic background on the differential accumulation of tau pathology in rTg4510 mice, while sex had no apparent effect. Interestingly, midline-1 (Mid1) was identified as a candidate gene associated with this difference and exhibited significant up/downregulation according to the genetic background. Mid1 silencing with siRNA induced pathological phosphorylation of tau in HEK293T cells that stably expressed human tau with the P301L mutation, suggesting the role of Mid1 in pathological alterations of tau. Elucidation of the underlying mechanisms will provide novel insights into the accumulation of tau pathology and is expected to be especially informative to researchers for the continued development of therapeutic interventions for tauopathies.
  10. Yahya L, Harun R, Abdullah LC
    Sci Rep, 2020 12 18;10(1):22355.
    PMID: 33339883 DOI: 10.1038/s41598-020-79316-9
    Global warming has become a serious issue nowadays as the trend of CO2 emission is increasing by years. In Malaysia, the electricity and energy sector contributed a significant amount to the nation's CO2 emission due to fossil fuel use. Many research works have been carried out to mitigate this issue, including carbon capture and utilization (CCUS) technology and biological carbon fixation by microalgae. This study makes a preliminary effort to screen native microalgae species in the Malaysian coal-fired power plant's surrounding towards carbon fixation ability. Three dominant species, including Nannochloropsis sp., Tetraselmis sp., and Isochrysis sp. were identified and tested in the laboratory under ambient and pure CO2 condition to assess their growth and CO2 fixation ability. The results indicate Isochrysis sp. as the superior carbon fixer against other species. In continuation, the optimization study using Response Surface Methodology (RSM) was carried out to optimize the operating conditions of Isochrysis sp. using a customized lab-scale photobioreactor under simulated flue gas exposure. This species was further acclimatized and tested under actual flue gas generated by the power plant. Isochrysis sp. had shown its capability as a carbon fixer with CO2 fixation rate of 0.35 gCO2/L day under actual coal-fired flue gas exposure after cycles of acclimatization phase. This work is the first to demonstrate indigenous microalgae species' ability as a carbon fixer under Malaysian coal-fired flue gas exposure. Thus, the findings shall be useful in exploring the microalgae potential as a biological agent for carbon emission mitigation from power plants more sustainably.
  11. Yaghoubi A, Mélinon P
    Sci Rep, 2013;3:1083.
    PMID: 23330064 DOI: 10.1038/srep01083
    In recent years, plasma-assisted synthesis has been extensively used in large scale production of functional nano- and micro-scale materials for numerous applications in optoelectronics, photonics, plasmonics, magnetism and drug delivery, however systematic formation of these minuscule structures has remained a challenge. Here we demonstrate a new method to closely manipulate mesostructures in terms of size, composition and morphology by controlling permeability at the boundaries of an impermeable plasma surrounded by a blanket of neutrals. In situ and rapid growth of thin films in the core region due to ion screening is among other benefits of our method. Similarly we can take advantage of exceptional properties of plasma to control the morphology of the as deposited nanostructures. Probing the plasma at boundaries by means of observing the nanostructures, further provides interesting insights into the behaviour of gas-insulated plasmas with possible implications on efficacy of viscous heating and non-magnetic confinement.
  12. Yadav DP, Kumar D, Jalal AS, Kumar A, Singh KU, Shah MA
    Sci Rep, 2023 Oct 09;13(1):16988.
    PMID: 37813973 DOI: 10.1038/s41598-023-44210-7
    Leukemia is a cancer of white blood cells characterized by immature lymphocytes. Due to blood cancer, many people die every year. Hence, the early detection of these blast cells is necessary for avoiding blood cancer. A novel deep convolutional neural network (CNN) 3SNet that has depth-wise convolution blocks to reduce the computation costs has been developed to aid the diagnosis of leukemia cells. The proposed method includes three inputs to the deep CNN model. These inputs are grayscale and their corresponding histogram of gradient (HOG) and local binary pattern (LBP) images. The HOG image finds the local shape, and the LBP image describes the leukaemia cell's texture pattern. The suggested model was trained and tested with images from the AML-Cytomorphology_LMU dataset. The mean average precision (MAP) for the cell with less than 100 images in the dataset was 84%, whereas for cells with more than 100 images in the dataset was 93.83%. In addition, the ROC curve area for these cells is more than 98%. This confirmed proposed model could be an adjunct tool to provide a second opinion to a doctor.
  13. Yaakop AS, Chan KG, Ee R, Lim YL, Lee SK, Manan FA, et al.
    Sci Rep, 2016 09 19;6:33660.
    PMID: 27641516 DOI: 10.1038/srep33660
    Jeotgalibacillus malaysiensis, a moderate halophilic bacterium isolated from a pelagic area, can endure higher concentrations of sodium chloride (NaCl) than other Jeotgalibacillus type strains. In this study, we therefore chose to sequence and assemble the entire J. malaysiensis genome. This is the first report to provide a detailed analysis of the genomic features of J. malaysiensis, and to perform genetic comparisons between this microorganism and other halophiles. J. malaysiensis encodes a native megaplasmid (pJeoMA), which is greater than 600 kilobases in size, that is absent from other sequenced species of Jeotgalibacillus. Subsequently, RNA-Seq-based transcriptome analysis was utilised to examine adaptations of J. malaysiensis to osmotic stress. Specifically, the eggNOG (evolutionary genealogy of genes: Non-supervised Orthologous Groups) and KEGG (Kyoto Encyclopaedia of Genes and Genomes) databases were used to elucidate the overall effects of osmotic stress on the organism. Generally, saline stress significantly affected carbohydrate, energy, and amino acid metabolism, as well as fatty acid biosynthesis. Our findings also indicate that J. malaysiensis adopted a combination of approaches, including the uptake or synthesis of osmoprotectants, for surviving salt stress. Among these, proline synthesis appeared to be the preferred method for withstanding prolonged osmotic stress in J. malaysiensis.
  14. Xueyun Z, Al Mamun A, Masukujjaman M, Rahman MK, Gao J, Yang Q
    Sci Rep, 2023 Sep 18;13(1):15438.
    PMID: 37723179 DOI: 10.1038/s41598-023-42591-3
    The phenomenon of "quiet quitting" has gained significant attention globally through various platforms, raising concerns about the impact of workplace stress on individuals' personal lives and sparking social movements and investigations. As the number of Generation Z individuals is projected to surpass millennials by 2050, understanding and addressing the quiet quitting behaviour of this generation becomes crucial, considering their negative experiences during the COVID-19 pandemic and their preference for a work-life balance, which has led to a rejection of intense competition and a desire for a more relaxed lifestyle. Thus, this study investigated the factors (work conditions, job security, perceived career development opportunities, affective organizational commitment, and perceived organizational support on job burnout and employee well-being) determining the quiet quitting intention among Chinese Gen Z employees. It used an online survey to obtain cross-sectional data from 683 respondents, which were then tested using partial least squares structural equation modelling. The results showed that work conditions, job security, perceived career progression opportunities, affective organizational commitment, and perceived organizational support had a significant positive effect on employee well-being and that job burnout had a major negative effect. Furthermore, employee well-being had a significant negative impact on China's Gen Z employees' quit quiting decision and job burnout had a significant positive influence on China's Gen Z employees' quit quiting decision. The findings provide valuable insights for organizations and practitioners, enabling them to address these factors and effectively reduce quiet quitting intentions. Moreover, this study aligns with the Social Exchange Theory (SET), which explains how the interactions between employees and their organizations influence expectations and outcomes. By considering the SET framework, organizations can understand the motivations behind employees' behaviours and make informed decisions to foster a positive work environment and enhance employee well-being.
  15. Xu J, Zheng X, Cheng KK, Chang X, Shen G, Liu M, et al.
    Sci Rep, 2017 03 30;7:45580.
    PMID: 28358020 DOI: 10.1038/srep45580
    Chronic atrophic gastritis (CAG) is a common gastrointestinal disease which has been considered as precancerous lesions of gastric carcinoma. Previously, electro-acupuncture stimulation has been shown to be effective in ameliorating symptoms of CAG. However the underlying mechanism of this beneficial treatment is yet to be established. In the present study, an integrated histopathological examination along with molecular biological assay, as well as 1H NMR analysis of multiple biological samples (urine, serum, stomach, cortex and medulla) were employed to systematically assess the pathology of CAG and therapeutic effect of electro-acupuncture stimulation at Sibai (ST 2), Liangmen (ST 21), and Zusanli (ST 36) acupoints located in the stomach meridian using a rat model of CAG. The current results showed that CAG caused comprehensive metabolic alterations including the TCA cycle, glycolysis, membrane metabolism and catabolism, gut microbiota-related metabolism. On the other hand, electro-acupuncture treatment was found able to normalize a number of CAG-induced metabolomics changes by alleviating membrane catabolism, restoring function of neurotransmitter in brain and partially reverse the CAG-induced perturbation in gut microbiota metabolism. These findings provided new insights into the biochemistry of CAG and mechanism of the therapeutic effect of electro-acupuncture stimulations.
  16. Xomphoutheb T, Jiao S, Guo X, Mabagala FS, Sui B, Wang H, et al.
    Sci Rep, 2020 04 20;10(1):6574.
    PMID: 32313140 DOI: 10.1038/s41598-020-63567-7
    An appropriate tillage method must be implemented by maize growers to improve phosphorus dynamics in the soil in order to increase phosphorus uptake by plant. The objective of this study was to investigate the effects of tillage systems on phosphorus and its fractions in rhizosphere and non-rhizosphere soils under maize. An experimental field was established, with phosphate fertilizers applied to four treatment plots: continuous rotary tillage (CR), continuous no-tillage (CN), plowing-rotary tillage (PR), and plowing-no tillage (PN). Under the different tillage methods, the available P was increased in the non-rhizosphere region. However, the concentration of available P was reduced in the rhizosphere soil region. The soil available P decreased with the age of the crop until the maize reached physiological maturity. The non-rhizosphere region had 132.9%, 82.5%, 259.8%, and 148.4% more available P than the rhizosphere region under the CR, PR, CN, and PN treatments, respectively. The continuous no-tillage method (CN) improved the uptake of soil phosphate by maize. The concentrations of Ca2-P, Ca8-P, Fe-P, Al-P and O-P at the maturity stage were significantly lower than other seedling stages. However, there was no significant relationship between total P and the P fractions. Therefore, a continuous no-tillage method (CN) can be used by farmers to improve phosphorus availability for spring maize. Soil management practices minimizing soil disturbance can be used to impove phosphorus availability for maize roots, increase alkaline phosphatase activity in the rhizosphere soil and increase the abundance of different phosphorus fractions.
  17. Xie CB, Shaikh LH, Garg S, Tanriver G, Teo AE, Zhou J, et al.
    Sci Rep, 2016 Apr 21;6:24697.
    PMID: 27098837 DOI: 10.1038/srep24697
    Aldosterone-producing adenomas (APAs) vary in phenotype and genotype. Zona glomerulosa (ZG)-like APAs frequently have mutations of an L-type calcium channel (LTCC) CaV1.3. Using a novel antagonist of CaV1.3, compound 8, we investigated the role of CaV1.3 on steroidogenesis in the human adrenocortical cell line, H295R, and in primary human adrenal cells. This investigational drug was compared with the common antihypertensive drug nifedipine, which has 4.5-fold selectivity for the vascular LTCC, CaV1.2, over CaV1.3. In H295R cells transfected with wild-type or mutant CaV1.3 channels, the latter produced more aldosterone than wild-type, which was ameliorated by 100 μM of compound 8. In primary adrenal and non-transfected H295R cells, compound 8 decreased aldosterone production similar to high concentration of nifedipine (100 μM). Selective CaV1.3 blockade may offer a novel way of treating primary hyperaldosteronism, which avoids the vascular side effects of CaV1.2-blockade, and provides targeted treatment for ZG-like APAs with mutations of CaV1.3.
  18. Wu M, Al Mamun A, Yang Q, Gao J, Rahman MK, Al Shami SSA
    Sci Rep, 2023 Sep 13;13(1):15106.
    PMID: 37704693 DOI: 10.1038/s41598-023-42437-y
    The culture of fast fashion accelerates the consumption rate of individuals but at the expense of significant environmental stress. With a large amount of discarded clothing accumulating in landfills, it is crucial to encourage people to dispose of second-hand clothing (SHC) as sustainably as possible, especially in an emerging economy with large volume consumption. Through a survey of 619 respondents from China, this study explored the factors affecting people's intentions and actual donation behaviors toward SHC. It extends the theory of interpersonal behavior (TIB) with environmental factors to construct a research framework, which included cognitive factors (attitude towards sustainable consumption), social factors (sense of community) and personal factors (perceived hedonic benefit) under TIB and the environment factors refers to problem awareness and ascription responsibility. Partial least squares structural equation modeling was employed to analyze the data. The findings revealed that attitudes toward sustainable consumption, problem awareness, ascription of responsibility, sense of community, and perceived hedonic benefit significantly and positively influenced people's intentions and practices of SHC donation. This study will aid governments and relevant green environmental protection organizations in formulating more precise strategies for sustainable development, and promote relevant research on the sustainable disposal of SHC.
  19. Woo WK, Dzaki N, Thangadurai S, Azzam G
    Sci Rep, 2019 Apr 15;9(1):6096.
    PMID: 30988367 DOI: 10.1038/s41598-019-42369-6
    CTP synthase (CTPSyn) is an essential metabolic enzyme, synthesizing precursors required for nucleotides and phospholipids production. Previous studies have also shown that CTPSyn is elevated in various cancers. In many organisms, CTPSyn compartmentalizes into filaments called cytoophidia. In Drosophila melanogaster, only its isoform C (CTPSynIsoC) forms cytoophidia. In the fruit fly's testis, cytoophidia are normally seen in the transit amplification regions close to its apical tip, where the stem-cell niche is located, and development is at its most rapid. Here, we report that CTPSynIsoC overexpression causes the lengthening of cytoophidia throughout the entirety of the testicular body. A bulging apical tip is found in approximately 34% of males overexpressing CTPSynIsoC. Immunostaining shows that this bulged phenotype is most likely due to increased numbers of both germline cells and spermatocytes. Through a microRNA (miRNA) overexpression screen, we found that ectopic miR-975 concurrently increases both the expression levels of CTPSyn and the length of its cytoophidia. The bulging testes phenotype was also recovered at a penetration of approximately 20%. However, qPCR assays reveal that CTPSynIsoC and miR-975 overexpression each provokes a differential response in expression of a number of cancer-related genes, indicating that the shared CTPSyn upregulation seen in either case is likely the cause of observed testicular overgrowth. This study presents the first instance of consequences of miRNA-asserted regulation upon CTPSyn in D. melanogaster, and further reaffirms the enzyme's close ties to germline cells overgrowth.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links