Displaying publications 81 - 100 of 376 in total

Abstract:
Sort:
  1. Sahibin AR, Shamshuddin J, Fauziah CI, Radziah O, Wan Mohd Razi I, Enio MSK
    Sci Total Environ, 2019 Feb 20;652:573-582.
    PMID: 30368186 DOI: 10.1016/j.scitotenv.2018.10.232
    A study was conducted in an oil palm plantation in Peninsular Malaysia to elucidate the effects of applying Magnesium Rich Synthetic Gypsum (MRSG), a by-product of chemical plant, on the chemical properties of soil, the uptake of heavy metals by the palm trees, the oil quality and its impact on the surrounding environment. The results showed that MRSG application onto soil cropped to oil palm could bring positive impact in terms of soil chemical properties and oil palm production. The quality of the oil was not significantly affected by the continuous MRSG application as shown by the low heavy metals and trace elements of concern content (Cu: 0.062 mg/kg; Fe: 2.10 mg/kg; Mn: 1.93 mg/kg; Pb: 0.006 mg/kg; Zn: 0.103 mg/kg; Cr: 0.354 mg/kg; Ni: 0.037 mg/kg). From the I-geochem index, the soil was found to have values ranging from -3.81 to -1.03 which is considered as uncontaminated. Further, its application did not result in negative impact on the surrounding environment; hence, the quality of the soil and surface water in the plantation and/or the surrounding area remained intact. Phytotoxic elements in the oil palm tissue (As: 0.12 mg/kg; Se: 0.05 mg/kg; Zn: 1.48 mg/kg; Ce: 0.47 mg/kg; La: 0.26 mg/kg; Sr: 3.03 mg/kg) and cytotoxic elements in the oil were below the acceptable limit. Based on the results of the Environmental Monitoring out during the period of the study, it was concluded that application of the by-product of the chemical plant as a source of Mg to enhance soil fertility in the oil palm plantation was considered safe and sustainable. The effects of applying MRSG and Chinese kieserite was almost similar. So, MRSG can be used as a possible source of Mg to replace Chinese kieserite for oil palm production on the Ultisols in Peninsular Malaysia.
  2. Dhandapani S, Evers S
    Sci Total Environ, 2020 Nov 10;742:140648.
    PMID: 32721749 DOI: 10.1016/j.scitotenv.2020.140648
    Fire is one of the major issues facing Southeast Asian peatlands causing socio-economic, human health and climate crises. Many of these fires in the region are associated with land clearing or management practices for oil palm plantations. Here we study the direct post-fire impacts of slash-and-burn oil palm agriculture on greenhouse gas emissions, peat physico-chemical properties and nutrient concentrations. Greenhouse gas (GHG) emissions were measured using Los Gatos ultraportable greenhouse gas analyser one month after a fire in dry season and five months after the fire event, in wet season. Surface soil samples were collected from each individual GHG measurement points, along with 50 cm cores from both burnt and non-burnt control areas for lab analyses. As an immediate post-fire impact, carbon dioxide (CO2) and methane (CH4) emissions, pH, electrical conductivity, and all macronutrient concentrations except nitrogen (N) were increased multi-fold, while the redox potential, carbon (C) and N content were greatly reduced in the burnt region. While some of the properties such as CO2 emissions, and electrical conductivity reverted to normal after five months, other properties such as CH4 emissions, pH and nutrient concentrations remained high in the burnt region. This study also found very high loss of surface peat C content in the burnt region post fire, which is irreversible. The results also show that surface peat layers up to 20 cm depth were affected the most by slash-and-burn activity in oil palm agriculture, however the intensity of fire can vary widely between different oil palm management and needs further research to fully understand the long term and regional impacts of such slash-and-burn activity in tropical peatlands.
  3. Samah AA, Shaffril HAM, Fadzil MF
    Sci Total Environ, 2019 Sep 01;681:524-532.
    PMID: 31121402 DOI: 10.1016/j.scitotenv.2019.05.089
    In recent years, a considerable amount of studies published locally which focused on the influence of age on climate change ability. Accordingly, this has driven the present study to achieve its main objective which is to compare the adaptation ability between youth and older fishermen. The current research is quantitative in nature; hence, a survey was conducted on a total of 259 youth and older fishermen residing in different states of Malaysia, namely Pulau Pinang, Terengganu, Johor, and Kedah. The present study managed to conclude a unique and important result which stated that youth and older fishermen within the context of Malaysia have an equally strong adaptation ability. In regard to this matter, a number of recommendations were presented at the end of this paper with the hope that it can act as a basis for future scholars to conduct more climate change related studies.
  4. Pazikadin AR, Rifai D, Ali K, Malik MZ, Abdalla AN, Faraj MA
    Sci Total Environ, 2020 May 01;715:136848.
    PMID: 32040994 DOI: 10.1016/j.scitotenv.2020.136848
    The increased demand for solar renewable energy sources has created recent interest in the economic and technical issues related to the integration of Photovoltaic (PV) into the grid. Solar photovoltaic power generation forecasting is a crucial aspect of ensuring optimum grid control and power solar plant design. Accurate forecasting provides significant information to grid operators and power system designers in generating an optimal solar photovoltaic plant and to manage the power of demand and supply. This paper presents an extensive review on the implementation of Artificial Neural Networks (ANN) on solar power generation forecasting. The instrument used to measure the solar irradiance is analysed and discussed, specifically on studies that were published from February 1st, 2014 to February 1st, 2019. The selected papers were obtained from five major databases, namely, Direct Science, IEEE Xplore, Google Scholar, MDPI, and Scopus. The results of the review demonstrate the increased application of ANN on solar power generation forecasting. The hybrid system of ANN produces accurate results compared to individual models. The review also revealed that improvement forecasting accuracy can be achieved through proper handling and calibration of the solar irradiance instrument. This finding indicates that improvements in solar forecasting accuracy can be increased by reducing instrument errors that measure the weather parameter.
  5. Romero-Güiza MS, Wahid R, Hernández V, Møller H, Fernández B
    Sci Total Environ, 2017 Oct 01;595:651-659.
    PMID: 28402918 DOI: 10.1016/j.scitotenv.2017.04.006
    Lignocellulosic biomasses such as wheat straw are widely used as a feedstock for biogas production. However, these biomasses are mainly composed of a compact fibre structure and therefore, it is recommended to treat them prior to its usage for biogas production in order to improve their bioavailability. The aim of this work is to evaluate, in terms of performance stability, methane yield and economic feasibility, two different scenarios: a mesophilic codigestion of wheat straw and animal manure with or without a low-energy demand alkaline pre-treatment (0.08gKOHgTS-1of wheat straw, for 24h and at 25°C). Besides this, said pre-treatment was also analysed based on the improvement of the bioavailable carbohydrate content in the untreated versus the pre-treated wheat straw. The results pointed out that pre-treated wheat straw prompted a more stable performance (in terms of pH and alkalinity) and an improved methane yield (128% increment) of the mesophilic codigestion process, in comparison to the "untreated" scenario. The pre-treatment increased the content of cellulose, hemicellulose and other compounds (waxes, pectin, oil, etc.) in the liquid fraction, from 5% to 60%, from 11.5% to 39.1% TS and from 57% to 79% of the TS in the liquid fraction for the untreated and pre-treated wheat straws, respectively. Finally, the pre-treated scenario gained an energy surplus of a factor 13.5 and achieved a positive net benefit of 90.4€tVS-WS-1d-1, being a favourable case for an eventual scale-up of the combined process.
  6. Tong WK, Dai C, Hu J, Li J, Gao MT, You X, et al.
    Sci Total Environ, 2024 Jan 10;907:168099.
    PMID: 37884130 DOI: 10.1016/j.scitotenv.2023.168099
    Nanobubbles (NBs), given their unique properties, could theoretically be paired with rhamnolipids (RL) to tackle polycyclic aromatic hydrocarbon contamination in groundwater. This approach may overcome the limitations of traditional surfactants, such as high toxicity and low efficiency. In this study, the remediation efficiency of RL, with or without NBs, was assessed through soil column experiments (soil contaminated with phenanthrene). Through the analysis of the two-site non-equilibrium diffusion model, there was a synergistic effect between NBs and RL. The introduction of NBs led to a reduction of up to 24.3 % in the total removal time of phenanthrene. The direct reason for this was that with NBs, the retardation factor of RL was reduced by 1.9 % to 15.4 %, which accelerated the solute replacement of RL. The reasons for this synergy were multifaceted. Detailed analysis reveals that NBs improve RL's colloidal stability, increase its absolute zeta potential, and reduce its soil adsorption capacity by 13.3 %-19.9 %. Furthermore, NBs and their interaction with RL substantially diminish the surface tension, contact angle, and dynamic viscosity of the leaching solution. These changes in surface thermodynamic and rheological properties significantly enhance the migration efficiency of the eluent. The research outcomes facilitate a thorough comprehension of NBs' attributes and their relevant applications, and propose an eco-friendly method to improve the efficiency of surfactant remediation.
  7. Lau NS, Furusawa G
    Sci Total Environ, 2024 Feb 20;912:169134.
    PMID: 38070563 DOI: 10.1016/j.scitotenv.2023.169134
    In this study, we present the genome characterization of a novel chitin-degrading strain, KSP-S5-2, and comparative genomics of 33 strains of Cellvibrionaceae. Strain KSP-S5-2 was isolated from mangrove sediment collected in Balik Pulau, Penang, Malaysia, and its 16S rRNA gene sequence showed the highest similarity (95.09%) to Teredinibacter franksiae. Genome-wide analyses including 16S rRNA gene sequence similarity, average nucleotide identity, digital DNA-DNA hybridization, and phylogenomics, suggested that KSP-S5-2 represents a novel species in the family Cellvibrionaceae. The Cellvibrionaceae pan-genome exhibited high genomic variability, with only 1.7% representing the core genome, while the flexible genome showed a notable enrichment of genes related to carbohydrate metabolism and transport pathway. This observation sheds light on the genetic plasticity of the Cellvibrionaceae family and the gene pools that form the basis for the evolution of polysaccharide-degrading capabilities. Comparative analysis of the carbohydrate-active enzymes across Cellvibrionaceae strains revealed that the chitinolytic system is not universally present within the family, as only 18 of the 33 genomes encoded chitinases. Strain KSP-S5-2 displayed an expanded repertoire of chitinolytic enzymes (25 GH18, two GH19 chitinases, and five GH20 β-N-acetylhexosaminidases) but lacked genes for agar, xylan, and pectin degradation, indicating specialized enzymatic machinery focused primarily on chitin degradation. Further, the strain degraded 90% of chitin after 10 days of incubation. In summary, our findings provided insights into strain KSP-S5-2's genomic potential, the genetics of its chitinolytic system, genomic diversity within the Cellvibrionaceae family in terms of polysaccharide degradation, and its application for chitin degradation.
  8. Khoshnevisan B, Rajaeifar MA, Clark S, Shamahirband S, Anuar NB, Mohd Shuib NL, et al.
    Sci Total Environ, 2014 May 15;481:242-51.
    PMID: 24602908 DOI: 10.1016/j.scitotenv.2014.02.052
    In this study the environmental impact of consolidated rice farms (CF) - farms which have been integrated to increase the mechanization index - and traditional farms (TF) - small farms with lower mechanization index - in Guilan Province, Iran, were evaluated and compared using Life cycle assessment (LCA) methodology and adaptive neuro-fuzzy inference system (ANFIS). Foreground data were collected from farmers using face-to-face questionnaires and background information about production process and inventory data was taken from the EcoInvent®2.0 database. The system boundary was confined to within the farm gate (cradle to farm gate) and two functional units (land and mass based) were chosen. The study also included a comparison of the input-output energy flows of the farms. The results revealed that the average amount of energy consumed by the CFs was 57 GJ compared to 74.2 GJ for the TFs. The energy ratios for CFs and TFs were 1.6 and 0.9, respectively. The LCA results indicated that CFs produced fewer environmental burdens per ton of produced rice. When compared according to the land-based FU the same results were obtained. This indicates that the differences between the two types of farms were not caused by a difference in their production level, but rather by improved management on the CFs. The analysis also showed that electricity accounted for the greatest share of the impact for both types of farms, followed by P-based and N-based chemical fertilizers. These findings suggest that the CFs had superior overall environmental performance compared to the TFs in the study area. The performance metrics of the model based on ANFIS show that it can be used to predict the environmental burdens of rice production with high accuracy and minimal error.
  9. Song C, Xiong Y, Jin P, Sun Y, Zhang Q, Ma Z, et al.
    Sci Total Environ, 2023 Oct 15;895:164986.
    PMID: 37353016 DOI: 10.1016/j.scitotenv.2023.164986
    China is responsible for the biggest shellfish and macroalgae production in the world. In this study, comprehensive methods were used to assess the CO2 release and sequestration by maricultured shellfish and macroalgae in China. Through considering CaCO3 production and CO2 release coefficient (Φ, moles of CO2 released per mole of CaCO3 formed) in different waters, we find that cultured shellfish released 0.741 ± 0.008 Tg C yr-1 through calcification based on the data of 2016-2020. In addition to calcification, maricultured shellfish released 0.580 ± 0.004 Tg C yr-1 by respiration. Meanwhile, shellfish sequestered 0.145 ± 0.001 and 0.0387 ± 0.0004 Tg C yr-1 organic carbon in sediments and shells, respectively. Therefore, the net released CO2 by maricultured shellfish was 1.136 ± 0.011 Tg C yr-1, which is about four times higher than that maricultured macroalgae could sequester (0.280 ± 0.010 Tg C yr-1). To achieve carbon neutrality within the mariculture system, shellfish culture may need to be restricted and meanwhile the expansion of macroalgae cultivation should be carried out. The mean carbon sequestration rate of seven kinds of macroalgae was 174 ± 6 g m-2 yr-1 while some cultivated macroalgae had higher CO2 sequestration rates, e.g. 356 ± 24 g C m-2 yr-1 for Gracilariopsis lemaneiformis and 331 ± 17 g C m-2 yr-1 for Undaria pinnatifida. In scenario 0.5 (CCUS (Carbon Capture, Utilization and Storage) sequesters 0.5 Gt CO2 per year), using macroalgae culture cannot achieve China's carbon neutrality by 2060 but in scenarios 1.0 and 1.5 (CCUS sequesters 1.0 and 1.5 Gt CO2 per year, respectively) it is feasible to achieve carbon neutrality using some macroalgae species with high carbon sequestration rates. This study provides important insights into how to develop mariculture in the context of carbon-neutrality and climate change mitigation.
  10. Yang Y, Zhang Z, Zhang L, Song F, Ren Y, Zhang X, et al.
    Sci Total Environ, 2023 Aug 01;884:163741.
    PMID: 37120025 DOI: 10.1016/j.scitotenv.2023.163741
    Wood-based panels provide efficient alternatives to materials such as plastics derived from traditional petroleum sources and thereby help to mitigate greenhouse gas emissions. Unfortunately, using indoor manufactured panel products also results in significant emissions of volatile organic compounds including olefins, aromatic and ester compounds, which negatively affect human health. This paper highlights recent developments and notable achievements in the field of indoor hazardous air treatment technologies to guide future research toward environmentally friendly and economically feasible directions that may have a significant impact on the improvement of human settlements. Summarizing and synthesizing the principles, advantages, and limitations of different technologies can assist policymakers and engineers in identifying the most appropriate technology for a particular air pollution control program based on criteria such as cost-effectiveness, efficiency, and environmental impact. In addition, insights into the development of indoor air pollution control technologies are provided and potential areas for innovation, improvement of existing technologies, and development of new technologies are identified. Finally, the authors also hope that this sub-paper will raise public awareness of indoor air pollution issues and promote a better understanding of the importance of indoor air pollution control technologies for public health, environmental protection, and sustainable development.
  11. Mathew MJ, Sautter B, Ariffin EH, Menier D, Ramkumar M, Siddiqui NA, et al.
    Sci Total Environ, 2020 Mar 01;706:135963.
    PMID: 31862602 DOI: 10.1016/j.scitotenv.2019.135963
    Current worldwide projections of sea-level rise show a staggering increase in water level of up to 2 m by 2100 owing to global warming exacerbated by anthropogenically induced climate change. While amplified rates of sea-level rise is an immense hazard to coastal communities, storm surges are expected to increase in intensity and frequency making it an equally significant threat to coastal populations. In France, these hazards are not uncommon with records of extreme tempests every thousand years in the Holocene. Despite these recurring devastating events, in the Bay of Saint-Brieuc, Brittany, legislated laws for coastal management do not entirely focus on protecting littoral zones from such calamities. 130,739 people are concentrated in 21 municipalities with major cities located at close proximity to the shoreline with numerous socio-economic activities, which increases the vulnerability of the coastal population and infrastructures; thus, affirming the indispensable need of a thorough vulnerability assessment. Here, we conduct a mechanistic appraisal of the vulnerability of the bay considering thirteen parameters within three governing sub-systems that demonstrate the multidimensional dynamics in these municipalities. In the occasion of an extreme climatic event, our results of total vulnerability show risks in the sub-systems highlighting erosional processes due to augmented hydrodynamics, socio-economic and administrative vulnerabilities associated with anthropogenic development. Eight municipalities of the bay portray moderate to very high vulnerability and the remaining exhibits a lower risk; however, not devoid of high vulnerabilities for certain sub-systems. We posit that a more accurate fit for predicting the total vulnerability of the region can be achieved by exclusively integrating physical-natural and administrative sub-system vulnerabilities. We propose generic but requisite recommendations for Integrated Coastal Zone Management such as surveillance of urban development along the coast, implementation of coastal defense systems and appropriate industrial corridors to attenuate and dispose hazardous refuse.
  12. Song J, Jongmans-Hochschulz E, Mauder N, Imirzalioglu C, Wichels A, Gerdts G
    Sci Total Environ, 2020 Jun 10;720:137603.
    PMID: 32143053 DOI: 10.1016/j.scitotenv.2020.137603
    The prevalence of multidrug-resistant Gram-negative bacteria in aquatic environments has been a long withstanding health concern, namely extended-spectrum beta-lactamase (ESBL) producing Escherichia coli. Given increasing reports on microplastic (MP) pollution in these environments, it has become crucial to better understand the role of MP particles as transport vectors for such multidrug-resistant bacteria. In this study, an incubation experiment was designed where particles of both synthetic and natural material (HDPE, tyre wear, and wood) were sequentially incubated at multiple sites along a salinity gradient from the Lower Weser estuary (Germany) to the offshore island Helgoland (German Bight, North Sea). Following each incubation period, particle biofilms and water samples were assessed for ESBL-producing E. coli, first by the enrichment and detection of E. coli using Fluorocult® LMX Broth followed by cultivation on CHROMAgar™ ESBL media to select for ESBL-producers. Results showed that general E. coli populations were present on the surfaces of wood particles across all sites but none were found to produce ESBLs. Additionally, neither HDPE nor tyre wear particles were found to harbour any E. coli. Conversely, ESBL-producing E. coli were present in surrounding waters from all sites, 64% of which conferred resistances against up to 3 other antibiotic groups, additional to the beta-lactam resistances intrinsic to ESBL-producers. This study provides a first look into the potential of MP to harbour and transport multidrug-resistant E. coli across different environments and the approach serves as an important precursor to further studies on other potentially harmful MP-colonizing species.
  13. Zakaria NA, Azamathulla HM, Chang CK, Ghani AA
    Sci Total Environ, 2010 Oct 1;408(21):5078-85.
    PMID: 20708217 DOI: 10.1016/j.scitotenv.2010.07.048
    This paper presents Gene-Expression Programming (GEP), which is an extension to the genetic programming (GP) approach to predict the total bed material load for three Malaysian rivers. The GEP is employed without any restriction to an extensive database compiled from measurements in the Muda, Langat, and Kurau rivers. The GEP approach demonstrated a superior performance compared to other traditional sediment load methods. The coefficient of determination, R(2) (=0.97) and the mean square error, MSE (=0.057) of the GEP method are higher than those of the traditional method. The performance of the GEP method demonstrates its predictive capability and the possibility of the generalization of the model to nonlinear problems for river engineering applications.
  14. Chong XY, Vericat D, Batalla RJ, Teo FY, Lee KSP, Gibbins CN
    Sci Total Environ, 2021 Nov 10;794:148686.
    PMID: 34218154 DOI: 10.1016/j.scitotenv.2021.148686
    A major programme of dam building is underway in many of the world's tropical countries. This raises the question of whether existing research is sufficient to fully understand the impacts of dams on tropical river systems. This paper provides a systematic review of what is known about the impacts of dams on river flows, sediment dynamics and geomorphic processes in tropical rivers. The review was conducted using the SCOPUS® and Web of Science® databases, with papers analysed to look for temporal and geographic patterns in published work, assess the approaches used to help understand dam impacts, and assess the nature and magnitude of impacts on the flow regimes and geomorphology ('hydromorphology') of tropical rivers. As part of the review, a meta-analysis was used to compare key impacts across different climate regions. Although research on tropical rivers remains scarce, existing work is sufficient to allow us to draw some very broad, general conclusions about the nature of hydromorphic change: tropical dams have resulted in reductions in flow variability, lower flood peaks, reductions in sediment supply and loads, and complex geomorphic adjustments that include both channel incision and aggradation at different times and downstream distances. At this general level, impacts are consistent with those observed in other climate regions. However, studies are too few and variable in their focus to determine whether some of the more specific aspects of change observed in tropical rivers (e.g. time to reach a new, adjusted state, and downstream recovery distance) differ consistently from those in other regions. The review helps stress the need for research that incorporates before-after comparisons of flow and geomorphic conditions, and for the wider application of tools available now for assessing hydromorphic change. Very few studies have considered hydromorphic processes when designing flow operational policies for tropical dams.
  15. Mirsadeghi SA, Zakaria MP, Yap CK, Gobas F
    Sci Total Environ, 2013 Jun 1;454-455:584-97.
    PMID: 23583984 DOI: 10.1016/j.scitotenv.2013.03.001
    The spatial distribution of 19 polycyclic aromatic hydrocarbons (tPAHs) was quantified in aquacultures located in intertidal mudflats of the west coast of Peninsular Malaysia in order to investigate bioaccumulation of PAH in blood cockles, Anadara granosa (A. granosa). Fifty-four samples from environmental matrices and A. granosa were collected. The sampling locations were representative of a remote area as well as PAH-polluted areas. The relationship of increased background levels of PAH to anthropogenic PAH sources in the environment and their effects on bioaccumulation levels of A. granosa are investigated in this study. The levels of PAH in the most polluted station were found to be up to ten-fold higher than in remote areas in blood cockle. These high concentrations of PAHs reflected background contamination, which originates from distant airborne and waterborne transportation of contaminated particles. The fraction and source identification of PAHs, based on fate and transport considerations, showed a mix of petrogenic and pyrogenic sources. The relative biota-sediment accumulation factors (RBSAF), relative bioaccumulation factors from filtered water (RBAFw), and from suspended particulate matter (SPM) (RBAFSP) showed higher bioaccumulations of the lower molecular weight of PAHs (LMWs) in all stations, except Kuala Juru, which showed higher bioaccumulation of the higher molecular weight of PAHs (HMWs). Calculations of bioaccumulation factors showed that blood cockle can accumulate PAHs from sediment as well as water samples, based on the physico-chemical characteristics of habitat and behaviour of blood cockles. Correlations among concentrations of PAHs in water, SPM, sediment and A. granosa at the same sites were also found. Identification of PAH levels in different matrices showed that A. granosa can be used as a good biomonitor for LMW of PAHs and tPAHs in mudflats. Considering the toxicity and carcinogenicity of PAHs, the bioaccumulation by blood cockles are a potential hazard for both blood cockles and their consumers.
  16. Omeyer LCM, Duncan EM, Abreo NAS, Acebes JMV, AngSinco-Jimenez LA, Anuar ST, et al.
    Sci Total Environ, 2023 May 20;874:162502.
    PMID: 36868274 DOI: 10.1016/j.scitotenv.2023.162502
    Southeast (SE) Asia is a highly biodiverse region, yet it is also estimated to cumulatively contribute a third of the total global marine plastic pollution. This threat is known to have adverse impacts on marine megafauna, however, understanding of its impacts has recently been highlighted as a priority for research in the region. To address this knowledge gap, a structured literature review was conducted for species of cartilaginous fishes, marine mammals, marine reptiles, and seabirds present in SE Asia, collating cases on a global scale to allow for comparison, coupled with a regional expert elicitation to gather additional published and grey literature cases which would have been omitted during the structured literature review. Of the 380 marine megafauna species present in SE Asia, but also studied elsewhere, we found that 9.1 % and 4.5 % of all publications documenting plastic entanglement (n = 55) and ingestion (n = 291) were conducted in SE Asian countries. At the species level, published cases of entanglement from SE Asian countries were available for 10 % or less of species within each taxonomic group. Additionally, published ingestion cases were available primarily for marine mammals and were lacking entirely for seabirds in the region. The regional expert elicitation led to entanglement and ingestion cases from SE Asian countries being documented in 10 and 15 additional species respectively, highlighting the utility of a broader approach to data synthesis. While the scale of the plastic pollution in SE Asia is of particular concern for marine ecosystems, knowledge of its interactions and impacts on marine megafauna lags behind other areas of the world, even after the inclusion of a regional expert elicitation. Additional funding to help collate baseline data are critically needed to inform policy and solutions towards limiting the interactions of marine megafauna and plastic pollution in SE Asia.
  17. Jayakumar S, Bhuyar P, Pugazhendhi A, Rahim MHA, Maniam GP, Govindan N
    Sci Total Environ, 2021 May 10;768:145471.
    PMID: 33736330 DOI: 10.1016/j.scitotenv.2021.145471
    In this research investigation, three microalgal species were screened (Pleurosigma sp., Amphora sp., and Amphiprora sp.) for lipid content before choosing the potential microalgae for biodiesel production. It was found that the lipid content of Amphiprora sp. was 41.48 ± 0.18%, which was higher than the Pleurosigma sp. (27.3 ± 0.8%) and Amphora sp. (22.49 ± 0.21%). The diatom microalga, Amphiprora sp. was isolated and exposed to a controlled environment. Two different media were prepared, and the main research was on the SiO2-NP medium as the cell wall of diatom was made up of silica. Essential growth parameters were studied such as dry cell weight and chlorophyll a content. The results revealed that Amphiprora sp. cultured in the modified medium showed a higher biomass yield and growth rate in all the analyses. In Soxhlet extraction method, biodiesel yield of Amphiprora sp. in modified medium under 24 μmol m-2 s-1 of light intensity was 81.47 ± 1.59% when using 2% of catalyst amount with 1.5:1 volume ratio of methanol/oil in 3 h reaction time at 65 °C. Results reveled that Amphiprora sp. diatom has a higher yield of oil 52.94 ± 0.42% and can be efficiently optimized with further studies with modified nanomaterial culture medium. The present research revealed the series of experiments on microalgal lipid transesterification and in future investigation different types of nanomaterials should be used in culture medium to identify the lipid production in microalgal cells.
  18. Seena S, Bärlocher F, Sobral O, Gessner MO, Dudgeon D, McKie BG, et al.
    Sci Total Environ, 2019 Apr 15;661:306-315.
    PMID: 30677678 DOI: 10.1016/j.scitotenv.2019.01.122
    Global patterns of biodiversity have emerged for soil microorganisms, plants and animals, and the extraordinary significance of microbial functions in ecosystems is also well established. Virtually unknown, however, are large-scale patterns of microbial diversity in freshwaters, although these aquatic ecosystems are hotspots of biodiversity and biogeochemical processes. Here we report on the first large-scale study of biodiversity of leaf-litter fungi in streams along a latitudinal gradient unravelled by Illumina sequencing. The study is based on fungal communities colonizing standardized plant litter in 19 globally distributed stream locations between 69°N and 44°S. Fungal richness suggests a hump-shaped distribution along the latitudinal gradient. Strikingly, community composition of fungi was more clearly related to thermal preferences than to biogeography. Our results suggest that identifying differences in key environmental drivers, such as temperature, among taxa and ecosystem types is critical to unravel the global patterns of aquatic fungal diversity.
  19. Brunton LA, Desbois AP, Garza M, Wieland B, Mohan CV, Häsler B, et al.
    Sci Total Environ, 2019 Oct 15;687:1344-1356.
    PMID: 31412468 DOI: 10.1016/j.scitotenv.2019.06.134
    Aquaculture systems are highly complex, dynamic and interconnected systems influenced by environmental, biological, cultural, socio-economic and human behavioural factors. Intensification of aquaculture production is likely to drive indiscriminate use of antibiotics to treat or prevent disease and increase productivity, often to compensate for management and husbandry deficiencies. Surveillance or monitoring of antibiotic usage (ABU) and antibiotic resistance (ABR) is often lacking or absent. Consequently, there are knowledge gaps for the risk of ABR emergence and human exposure to ABR in these systems and the wider environment. The aim of this study was to use a systems-thinking approach to map two aquaculture systems in Vietnam - striped catfish and white-leg shrimp - to identify hotspots for emergence and selection of resistance, and human exposure to antibiotics and antibiotic-resistant bacteria. System mapping was conducted by stakeholders at an interdisciplinary workshop in Hanoi, Vietnam during January 2018, and the maps generated were refined until consensus. Thereafter, literature was reviewed to complement and cross-reference information and to validate the final maps. The maps and component interactions with the environment revealed the grow-out phase, where juveniles are cultured to harvest size, to be a key hotspot for emergence of ABR in both systems due to direct and indirect ABU, exposure to water contaminated with antibiotics and antibiotic-resistant bacteria, and duration of this stage. The pathways for human exposure to antibiotics and ABR were characterised as: occupational (on-farm and at different handling points along the value chain), through consumption (bacterial contamination and residues) and by environmental routes. By using systems thinking and mapping by stakeholders to identify hotspots we demonstrate the applicability of an integrated, interdisciplinary approach to characterising ABU in aquaculture. This work provides a foundation to quantify risks at different points, understand interactions between components, and identify stakeholders who can lead and implement change.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links