Displaying publications 81 - 100 of 524 in total

Abstract:
Sort:
  1. Goh HH, Baharin A, Mohd Salleh F', Ravee R, Wan Zakaria WNA, Mohd Noor N
    Sci Rep, 2020 04 20;10(1):6575.
    PMID: 32313042 DOI: 10.1038/s41598-020-63696-z
    Carnivorous pitcher plants produce specialised pitcher organs containing secretory glands, which secrete acidic fluids with hydrolytic enzymes for prey digestion and nutrient absorption. The content of pitcher fluids has been the focus of many fluid protein profiling studies. These studies suggest an evolutionary convergence of a conserved group of similar enzymes in diverse families of pitcher plants. A recent study showed that endogenous proteins were replenished in the pitcher fluid, which indicates a feedback mechanism in protein secretion. This poses an interesting question on the physiological effect of plant protein loss. However, there is no study to date that describes the pitcher response to endogenous protein depletion. To address this gap of knowledge, we previously performed a comparative RNA-sequencing experiment of newly opened pitchers (D0) against pitchers after 3 days of opening (D3C) and pitchers with filtered endogenous proteins (>10 kDa) upon pitcher opening (D3L). Nepenthes ampullaria was chosen as a model study species due to their abundance and unique feeding behaviour on leaf litters. The analysis of unigenes with top 1% abundance found protein translation and stress response to be overrepresented in D0, compared to cell wall related, transport, and signalling for D3L. Differentially expressed gene (DEG) analysis identified DEGs with functional enrichment in protein regulation, secondary metabolism, intracellular trafficking, secretion, and vesicular transport. The transcriptomic landscape of the pitcher dramatically shifted towards intracellular transport and defence response at the expense of energy metabolism and photosynthesis upon endogenous protein depletion. This is supported by secretome, transportome, and transcription factor analysis with RT-qPCR validation based on independent samples. This study provides the first glimpse into the molecular responses of pitchers to protein loss with implications to future cost/benefit analysis of carnivorous pitcher plant energetics and resource allocation for adaptation in stochastic environments.
    Matched MeSH terms: Amino Acid Sequence/genetics
  2. Roberts R, Yee PTI, Mujawar S, Lahiri C, Poh CL, Gatherer D
    Sci Rep, 2019 04 01;9(1):5427.
    PMID: 30931960 DOI: 10.1038/s41598-019-41662-8
    Enterovirus A71 (EV-A71) is an emerging pathogen in the Enterovirus A species group. EV-A71 causes hand, foot and mouth disease (HFMD), with virulent variants exhibiting polio-like acute flaccid paralysis and other central nervous system manifestations. We analysed all enterovirus A71 complete genomes with collection dates from 2008 to mid-2018. All sub-genotypes exhibit a strong molecular clock with omega (dN/dS) suggesting strong purifying selection. In sub-genotypes B5 and C4, positive selection can be detected at two surface sites on the VP1 protein, also detected in positive selection studies performed prior to 2008. Toggling of a limited repertoire of amino acids at these positively selected residues over the last decade suggests that EV-A71 may be undergoing a sustained frequency-dependent selection process for immune evasion, raising issues for vaccine development. These same sites have also been previously implicated in virus-host binding and strain-associated severity of HFMD, suggesting that immune evasion may be an indirect driver for virulence (154 words).
    Matched MeSH terms: Amino Acid Sequence
  3. Rahumatullah A, Balachandra D, Noordin R, Baharudeen Z, Lim YY, Choong YS, et al.
    Sci Rep, 2021 01 28;11(1):2502.
    PMID: 33510342 DOI: 10.1038/s41598-021-82125-3
    Antibodies have different chemical properties capable of targeting a diverse nature of antigens. Traditionally, immune antibody libraries are perceived to be disease-specific with a skewed repertoire. The complexity during the generation of a combinatorial antibody library allows for a skewed but diverse repertoire to be generated. Strongyloides stercoralis is a parasite that causes strongyloidiasis, a potentially life-threatening disease with a complex diagnosis that impedes effective control and treatment of the disease. This study describes the isolation of monoclonal antibodies against S. stercoralis NIE recombinant protein using an immune antibody phage display library derived from lymphatic filaria-infected individuals. The isolated antibody clones showed both lambda and kappa light chains gene usage, with diverse amino acid distributions. Structural analysis showed that electropositivity and the interface area could determine the binding affinity of the clones with NIE. The successful identification of S. stercoralis antibodies from the filarial immune library highlights the breadth of antibody gene diversification in an immune antibody library that can be applied for closely related infections.
    Matched MeSH terms: Amino Acid Sequence
  4. Barbour A, Tagg J, Abou-Zied OK, Philip K
    Sci Rep, 2016 08 16;6:31749.
    PMID: 27526944 DOI: 10.1038/srep31749
    Salivaricin B is a 25 amino acid polycyclic peptide belonging to the type AII lantibiotics and first shown to be produced by Streptococcus salivarius. In this study we describe the bactericidal mode of action of salivaricin B against susceptible Gram-positive bacteria. The killing action of salivaricin B required micro-molar concentrations of lantibiotic whereas the prototype lantibiotic nisin A was shown to be potent at nano-molar levels. Unlike nisin A, salivaricin B did not induce pore formation or dissipate the membrane potential in susceptible cells. This was established by measuring the fluorescence of the tryptophan residue at position 17 when salivaricin B interacted with bacterial membrane vesicles. The absence of a fluorescence blue shift indicates a failure of salivaricin B to penetrate the membranes. On the other hand, salivaricin B interfered with cell wall biosynthesis, as shown by the accumulation of the final soluble cell wall precursor UDP-MurNAc-pentapeptide which is the backbone of the bacterial peptidoglycan. Transmission electron microscopy of salivaricin B-treated cells showed a reduction in cell wall thickness together with signs of aberrant septum formation in the absence of visible changes to cytoplasmic membrane integrity.
    Matched MeSH terms: Amino Acid Sequence
  5. Gan BK, Yong CY, Ho KL, Omar AR, Alitheen NB, Tan WS
    Sci Rep, 2018 05 31;8(1):8499.
    PMID: 29855618 DOI: 10.1038/s41598-018-26749-y
    Skin cancer or cutaneous carcinoma, is a pre-eminent global public health problem with no signs of plateauing in its incidence. As the most common treatments for skin cancer, surgical resection inevitably damages a patient's appearance, and chemotherapy has many side effects. Thus, the main aim of this study was to screen for a cell penetrating peptide (CPP) for the development of a targeting vector for skin cancer. In this study, we identified a CPP with the sequence NRPDSAQFWLHH from a phage displayed peptide library. This CPP targeted the human squamous carcinoma A431 cells through an interaction with the epidermal growth factor receptor (EGFr). Methyl-β-cyclodextrin (MβCD) and chlorpromazine hydrochloride (CPZ) inhibited the internalisation of the CPP into the A431 cells, suggesting the peptide entered the cells via clathrin-dependent endocytosis. The CPP displayed on hepatitis B virus-like nanoparticles (VLNPs) via the nanoglue successfully delivered the nanoparticles into A431 cells. The present study demonstrated that the novel CPP can serve as a ligand to target and deliver VLNPs into skin cancer cells.
    Matched MeSH terms: Amino Acid Sequence
  6. Pushparajah V, Fatima A, Chong CH, Gambule TZ, Chan CJ, Ng ST, et al.
    Sci Rep, 2016 07 27;6:30010.
    PMID: 27460640 DOI: 10.1038/srep30010
    Lignosus rhinocerotis (Tiger milk mushroom) is an important folk medicine for indigenous peoples in Southeast Asia. We previously reported its de novo assembled 34.3 Mb genome encoding a repertoire of proteins including a putative bioactive fungal immunomodulatory protein. Here we report the cDNA of this new member (FIP-Lrh) with a homology range of 54-64% to FIPs from other mushroom species, the closest is with FIP-glu (LZ-8) (64%) from Ganoderma lucidum. The FIP-Lrh of 112 amino acids (12.59 kDa) has a relatively hydrophobic N-terminal. Its predicted 3-dimensional model has identical folding patterns to FIP-fve and contains a partially conserved and more positively charged carbohydrates binding pocket. Docking predictions of FIP-Lrh on 14 glycans commonly found on cellular surfaces showed the best binding energy of -3.98 kcal/mol to N-acetylgalactosamine and N-acetylglucosamine. Overexpression of a 14.9 kDa soluble 6xHisFIP-Lrh was achieved in pET-28a(+)/BL21 and the purified recombinant protein was sequence verified by LC-MS/MS (QTOF) analysis. The ability to haemagglutinate both mouse and human blood at concentration ≥0.34 μM, further demonstrated its lectin nature. In addition, the cytotoxic effect of 6xHisFIP-Lrh on MCF-7, HeLa and A549 cancer cell lines was detected at IC50 of 0.34 μM, 0.58 μM and 0.60 μM, respectively.
    Matched MeSH terms: Amino Acid Sequence/genetics
  7. Reginald K, Tan CL, Chen S, Yuen L, Goh SY, Chew FT
    Sci Rep, 2018 08 06;8(1):11743.
    PMID: 30082894 DOI: 10.1038/s41598-018-30224-z
    We previously identified an expressed sequence tag clone, Der f 22, showing 41% amino acid identity to published Der f 2, and show that both genes are possible paralogues. The objective of this study was to characterize the genomic, proteomic and immunological functions Der f 22 and Der f 2. The full-length sequence of Der f 2 and Der f 22 coded for mature proteins of 129 and 135 amino acids respectively, both containing 6 cysteine residues. Phylogenetic analysis of known group 2 allergens and their homologues from our expressed sequence tag library showed that Der f 22 is a paralogue of Der f 2. Both Der f 2 and Der f 22 were single gene products with one intron. Both allergens showed specific IgE-binding to over 40% of the atopic patients, with limited of cross-reactivity. Both allergens were detected at the gut region of D. farinae by immunostaining. Der f 22 is an important allergen with significant IgE reactivity among the atopic population, and should be considered in the diagnostic panel and evaluated as future hypoallergen vaccine therapeutic target.
    Matched MeSH terms: Amino Acid Sequence
  8. Reginald K, Chew FT
    Sci Rep, 2019 02 07;9(1):1556.
    PMID: 30733527 DOI: 10.1038/s41598-018-38313-9
    Der p 2 is a major dust mite allergen and >80% of mite allergic individuals have specific IgE to this allergen. Although it is well characterized in terms of allergenicity, there is still some ambiguity in terms of its biological function. Three-dimensional structural analysis of Der p 2 and its close homologues indicate the presence of a hydrophobic cavity which can potentially bind to lipid molecules. In this study, we aimed to identify the potential ligand of Der p 2. Using a liposome pulldown assay, we show that recombinant Der p 2 binds to liposomes prepared with exogenous cholesterol in a dose dependent fashion. Next, an ELISA based assay using immobilized lipids was used to study binding specificities of other lipid molecules. Cholesterol was the preferred ligand of Der p 2 among 11 different lipids tested. Two homologues of Der p 2, Der f 2 and Der f 22 also bound to cholesterol. Further, using liquid chromatography-mass spectrometry (LC-MS), we confirmed that cholesterol is the natural ligand of Der p 2. Three amino acid residues of Der p 2, V104, V106 and V110 are possible cholesterol binding sites, as alanine mutations of these residues showed a significant decrease in binding (p 
    Matched MeSH terms: Amino Acid Sequence
  9. Sim PF, Furusawa G, Teh AH
    Sci Rep, 2017 10 20;7(1):13656.
    PMID: 29057942 DOI: 10.1038/s41598-017-13288-1
    AlyQ from Persicobacter sp. CCB-QB2 is an alginate lyase with three domains - a carbohydrate-binding domain modestly resembling family 16 carbohydrate-binding module (CBM16), a family 32 CBM (CBM32) domain, and an alginate lyase domain belonging to polysaccharide lyase family 7 (PL7). Although AlyQ can also act on polyguluronate (poly-G) and polymannuronate (poly-M), it is most active on alginate. Studies with truncated AlyQ showed that the CBM32 domain did not contribute to enhancing AlyQ's activity under the assayed conditions. Nevertheless, it could bind to cleaved but not intact alginate, indicating that the CBM32 domain recognises alginate termini. The crystal structure containing both CBM32 and catalytic domains show that they do not interact with one another. The CBM32 domain contains a conserved Arg that may bind to the carboxyl group of alginate. The catalytic domain, meanwhile, shares a conserved substrate-binding groove, and the presence of two negatively charged Asp residues may dictate substrate specificity especially at subsite +1. As Persicobacter sp. CCB-QB2 was unable to utilise alginate, AlyQ may function to help the bacterium degrade cell walls more efficiently.
    Matched MeSH terms: Amino Acid Sequence
  10. See-Too WS, Ee R, Lim YL, Convey P, Pearce DA, Yin WF, et al.
    Sci Rep, 2017 02 22;7:42968.
    PMID: 28225085 DOI: 10.1038/srep42968
    Planococcus is a Gram-positive halotolerant bacterial genus in the phylum Firmicutes, commonly found in various habitats in Antarctica. Quorum quenching (QQ) is the disruption of bacterial cell-to-cell communication (known as quorum sensing), which has previously been described in mesophilic bacteria. This study demonstrated the QQ activity of a psychrotolerant strain, Planococcus versutus strain L10.15T, isolated from a soil sample obtained near an elephant seal wallow in Antarctica. Whole genome analysis of this bacterial strain revealed the presence of an N-acyl homoserine lactonase, an enzyme that hydrolyzes the ester bond of the homoserine lactone of N-acyl homoserine lactone (AHLs). Heterologous gene expression in E. coli confirmed its functions for hydrolysis of AHLs, and the gene was designated as aidP (autoinducer degrading gene from Planococcus sp.). The low temperature activity of this enzyme suggested that it is a novel and uncharacterized class of AHL lactonase. This study is the first report on QQ activity of bacteria isolated from the polar regions.
    Matched MeSH terms: Amino Acid Sequence
  11. Charoenkwan P, Chotpatiwetchkul W, Lee VS, Nantasenamat C, Shoombuatong W
    Sci Rep, 2021 Dec 10;11(1):23782.
    PMID: 34893688 DOI: 10.1038/s41598-021-03293-w
    Owing to their ability to maintain a thermodynamically stable fold at extremely high temperatures, thermophilic proteins (TTPs) play a critical role in basic research and a variety of applications in the food industry. As a result, the development of computation models for rapidly and accurately identifying novel TTPs from a large number of uncharacterized protein sequences is desirable. In spite of existing computational models that have already been developed for characterizing thermophilic proteins, their performance and interpretability remain unsatisfactory. We present a novel sequence-based thermophilic protein predictor, termed SCMTPP, for improving model predictability and interpretability. First, an up-to-date and high-quality dataset consisting of 1853 TPPs and 3233 non-TPPs was compiled from published literature. Second, the SCMTPP predictor was created by combining the scoring card method (SCM) with estimated propensity scores of g-gap dipeptides. Benchmarking experiments revealed that SCMTPP had a cross-validation accuracy of 0.883, which was comparable to that of a support vector machine-based predictor (0.906-0.910) and 2-17% higher than that of commonly used machine learning models. Furthermore, SCMTPP outperformed the state-of-the-art approach (ThermoPred) on the independent test dataset, with accuracy and MCC of 0.865 and 0.731, respectively. Finally, the SCMTPP-derived propensity scores were used to elucidate the critical physicochemical properties for protein thermostability enhancement. In terms of interpretability and generalizability, comparative results showed that SCMTPP was effective for identifying and characterizing TPPs. We had implemented the proposed predictor as a user-friendly online web server at http://pmlabstack.pythonanywhere.com/SCMTPP in order to allow easy access to the model. SCMTPP is expected to be a powerful tool for facilitating community-wide efforts to identify TPPs on a large scale and guiding experimental characterization of TPPs.
    Matched MeSH terms: Amino Acid Sequence*
  12. Reginald K, Pang SL, Chew FT
    Sci Rep, 2019 Aug 22;9(1):12239.
    PMID: 31439916 DOI: 10.1038/s41598-019-48688-y
    Blomia tropicalis has been recognized as a cause of allergic diseases in the tropical and subtropical regions. Here we report the immuno-characterization of its group 2 allergen, Blo t 2. Allergen Blo t 2 was amplified from the cDNA of B. tropicalis using degenerate primers, expressed in Escherichia coli as a recombinant protein and purified to homogeneity. The mature protein of Blo t 2 was 126 amino acids long with 52% sequence identity to Der p 2 and apparent molecular mass of 15 kDa. Circular dichroism spectroscopy showed that Blo t 2 is mainly a beta-sheeted protein. We confirmed the presence of three disulfide bonds in recombinant (r) Blo t 2 protein using electrospray mass spectrometry. Thirty-four percent of dust-mite allergic individuals from the Singapore showed specific IgE binding to rBlo t 2 as tested using immuno dot-blots. IgE-cross reactivity assays showed that Blo t 2 had between 20-50% of unique IgE-epitopes compared to Der p 2. IgE binding of native and recombinant forms of Blo t 2 were highly concordant (r2 = 0.77, p amino acid variations compared to the reference clone. Blo t 2 is a clinically relevant allergen of B. tropicalis as it has unique IgE epitopes compared to major group 2 allergens from Dermatophagoides spp.
    Matched MeSH terms: Amino Acid Sequence
  13. Alassiri M, Lai JY, Ch'ng ACW, Choong YS, Alanazi A, Lim TS
    Sci Rep, 2023 Aug 21;13(1):13627.
    PMID: 37604859 DOI: 10.1038/s41598-023-40630-7
    Antibody phage display is a key tool for the development of monoclonal antibodies against various targets. However, the development of anti-peptide antibodies is a challenging process due to the small size of peptides for binding. This makes anchoring of peptides a preferred approach for panning experiments. A common approach is by using streptavidin as the anchor protein to present biotinylated peptides for panning. Here, we propose the use of recombinant expression of the target peptide and an immunogenic protein as a fusion for panning. The peptide inhibitor of trans-endothelial migration (PEPITEM) peptide sequence was fused to the Mycobacterium tuberculosis (Mtb) α-crystalline (AC) as an anchor protein. The panning process was carried out by subtractive selection of the antibody library against the AC protein first, followed by binding to the library to PEPITEM fused AC (PEPI-AC). A unique monoclonal scFv antibodies with good specificity were identified. In conclusion, the use of an alternative anchor protein to present the peptide sequence coupled with subtractive panning allows for the identification of unique monoclonal antibodies against a peptide target.
    Matched MeSH terms: Amino Acid Sequence
  14. Naseer S, Ali RF, Fati SM, Muneer A
    Sci Rep, 2022 01 07;12(1):128.
    PMID: 34996975 DOI: 10.1038/s41598-021-03895-4
    In biological systems, Glutamic acid is a crucial amino acid which is used in protein biosynthesis. Carboxylation of glutamic acid is a significant post-translational modification which plays important role in blood coagulation by activating prothrombin to thrombin. Contrariwise, 4-carboxy-glutamate is also found to be involved in diseases including plaque atherosclerosis, osteoporosis, mineralized heart valves, bone resorption and serves as biomarker for onset of these diseases. Owing to the pathophysiological significance of 4-carboxyglutamate, its identification is important to better understand pathophysiological systems. The wet lab identification of prospective 4-carboxyglutamate sites is costly, laborious and time consuming due to inherent difficulties of in-vivo, ex-vivo and in vitro experiments. To supplement these experiments, we proposed, implemented, and evaluated a different approach to develop 4-carboxyglutamate site predictors using pseudo amino acid compositions (PseAAC) and deep neural networks (DNNs). Our approach does not require any feature extraction and employs deep neural networks to learn feature representation of peptide sequences and performing classification thereof. Proposed approach is validated using standard performance evaluation metrics. Among different deep neural networks, convolutional neural network-based predictor achieved best scores on independent dataset with accuracy of 94.7%, AuC score of 0.91 and F1-score of 0.874 which shows the promise of proposed approach. The iCarboxE-Deep server is deployed at https://share.streamlit.io/sheraz-n/carboxyglutamate/app.py .
    Matched MeSH terms: Amino Acid Sequence
  15. Seyedi SS, Tan SG, Namasivayam P, Yong CSY
    Sains Malaysiana, 2016;45:717-727.
    The Hibiscus sabdariffa var. UMKL (Roselle) investigated here may potentially be used as an alternative fibre source. To
    the best of our knowledge, there was no study focusing on the genetics underlying the cellulose biosynthesis machinery
    in Roselle thus far. This paper presents the results of the first isolation of the cellulose synthase gene, HsCesA1 from this
    plant, which is fundamental for working towards understanding the functions of CesA genes in the cellulose biosynthesis
    of Roselle. A full-length HsCesA1 cDNA of 3528 bp in length (accession no: KJ608192) encoding a polypeptide of 974
    amino acid was isolated. The full-length HsCesA1 gene of 5489 bp length (accession no: KJ661223) with 11-introns
    and a promoter region of 737 bp was further isolated. Important and conserved characteristics of a CesA protein were
    identified in the HsCesA1 deduced amino acid sequence, which strengthened the prediction that the isolated gene being
    a cellulose synthase belonging to the processive class of the 2-glycosyltransferase family 2A. Relative gene expression
    analysis by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) on young leaf and stem tissues
    found that HsCesA1 had similar levels of gene expression in both tissues. Phylogenetic and Blast analyses also supported
    the prediction that the isolated HsCesA1 may play roles in the cell wall depositions in both leaf and stem tissues.
    Matched MeSH terms: Amino Acid Sequence
  16. Fong MY, Koh CL, Lam SK
    Res. Virol., 1998 Nov-Dec;149(6):457-64.
    PMID: 9923022
    The limited sequencing approach was used to study the molecular epidemiology of 24 Malaysian dengue 2 viruses which were isolated between 1968 and 1993. The sequences of a 240-nucleotide-long region across the envelope/non-structural 1 protein (E/NS1) gene junction of the isolates were determined and analysed. Alignment and comparison of the nucleotide and deduced amino acid sequences of the isolates revealed that nucleotide changes occurred mostly at the third position of a particular codon and were of the transition (AG, CU) type. Five nucleotide changes resulted in amino acid substitutions. Pairwise comparisons of the nucleotide sequences gave divergence values ranging from 0 to 9.2%. At the amino acid level, the divergence ranged between 0 and 3.8%. Based on the 6% divergence as the cut-off point for genotypic classification, the isolates were grouped into two genotypes, I and II. Comparison of the nucleotide sequences of the Malaysian dengue isolates with those of the dengue viruses of other regions of the world revealed that members of genotypes I and II were closely related to viruses from the Indian Ocean and Western Pacific regions, respectively.
    Matched MeSH terms: Amino Acid Sequence
  17. Chong K, Joshi S, Jin LT, Shu-Chien AC
    Proteomics, 2006 Apr;6(7):2251-8.
    PMID: 16385477
    The discus fish (Symphysodon aequifasciata) is a cichlid demonstrating advanced mode of parental care towards fry. Both male and female fish utilized epidermal mucus secreted from specialized epidermal cells to feed developing fry. We utilized proteomics to compare protein profile from parental and nonparental fish. Gel analysis revealed a total of 35 spots that were up-regulated in parental mucus. In tandem, another 18 spots were uniquely expressed in parental mucus. MS analysis of these spots identified proteins such as fructose biphosphate aldolase, nucleoside diphosphate kinase, and heat shock proteins, which are essential to support energy provision, cell repair and proliferation, stress mediation, and defense mechanism in parental fish during parental-care period. Concurrently, the detection of several antioxidant-related proteins such as thioredoxin peroxidase and hemopexin suggests a need to overcome oxidative stress during hypermucosal production in parental-care behavior. A C-type lectin was also found to be uniquely expressed in parental mucus and could have important role in providing antimicrobial defense to both parental fish and fry. In summary, our study shows that discus mucus proteome undergoes changes in protein expression during parental-care period.
    Matched MeSH terms: Amino Acid Sequence
  18. Karim KMR, Husaini A, Sing NN, Tasnim T, Mohd Sinang F, Hussain H, et al.
    Protein Expr Purif, 2019 12;164:105462.
    PMID: 31351992 DOI: 10.1016/j.pep.2019.105462
    The Aspergillus flavus NSH9 gene, encoding a pH and thermostable glucoamylase with a starch binding domain (SBD), was expressed in Pichia pastoris to produce recombinant glucoamylase (rGA2). The full-length glucoamylase gene (2039 bp), and cDNA (1839 bp) encode a 612 amino acid protein most similar to glucoamylase from Aspergillus oryzae RIB40; the first 19 amino acids are presumed to be a signal peptide for secretion, and the SBD is at the C-terminal. The cDNA was successfully secreted by Pichia at 8.23 U mL-1, and the rGA2 was found to be: a 80 kDa monomer, stable from pH 3.0-9.0, with optimum catalytic activity at pH 5.0, active at temperatures up to 80°C (rGA2 retained 58% of its activity after 60 min of incubation at 70°C), and metal ions such as Na+, K+, Ca++ and Mg++ enhanced rGA2 enzyme activity. The starch degrading ability of rGA2 was also observed on raw sago starch and where prolonged incubation generated larger, deeper, holes on the starch granules, indicating rGA2 is an excellent candidate for industrial starch processing applications.
    Matched MeSH terms: Amino Acid Sequence
  19. Liew KJ, Ngooi CY, Shamsir MS, Sani RK, Chong CS, Goh KM
    Protein Expr Purif, 2019 12;164:105464.
    PMID: 31376486 DOI: 10.1016/j.pep.2019.105464
    Xylanases (EC 3.2.1.8) are essential enzymes due to their applications in various industries such as textile, animal feed, paper and pulp, and biofuel industries. Halo-thermophilic Rhodothermaceae bacterium RA was previously isolated from a hot spring in Malaysia. Genomic analysis revealed that this bacterium is likely to be a new genus of the family Rhodothermaceae. In this study, a xylanase gene (1140 bp) that encoded 379 amino acids from the bacterium was cloned and expressed in Escherichia coli BL21(DE3). Based on InterProScan, this enzyme XynRA1 contained a GH10 domain and a signal peptide sequence. XynRA1 shared low similarity with the currently known xylanases (the closest is 57.2-65.4% to Gemmatimonadetes spp.). The purified XynRA1 achieved maximum activity at pH 8 and 60 °C. The protein molecular weight was 43.1 kDa XynRA1 exhibited an activity half-life (t1/2) of 1 h at 60 °C and remained stable at 50 °C throughout the experiment. However, it was NaCl intolerant, and various types of salt reduced the activity. This enzyme effectively hydrolyzed xylan (beechwood, oat spelt, and Palmaria palmata) and xylodextrin (xylotriose, xylotetraose, xylopentaose, and xylohexaose) to produce predominantly xylobiose. This xylanase is the first functionally characterized enzyme from the bacterium, and this work broadens the knowledge of GH10 xylanases.
    Matched MeSH terms: Amino Acid Sequence
  20. Chin IS, Abdul Murad AM, Mahadi NM, Nathan S, Abu Bakar FD
    Protein Eng. Des. Sel., 2013 May;26(5):369-75.
    PMID: 23468570 DOI: 10.1093/protein/gzt007
    Cutinase has been ascertained as a biocatalyst for biotechnological and industrial bioprocesses. The Glomerella cingulata cutinase was genetically modified to enhance its enzymatic performance to fulfill industrial requirements. Two sites were selected for mutagenesis with the aim of altering the surface electrostatics as well as removing a potentially deamidation-prone asparagine residue. The N177D cutinase variant was affirmed to be more resilient to temperature increase with a 2.7-fold increase in half-life at 50°C as compared with wild-type enzyme, while, the activity at 25°C is not compromised. Furthermore, the increase in thermal tolerance of this variant is accompanied by an increase in optimal temperature. Another variant, the L172K, however, exhibited higher enzymatic performance towards phenyl ester substrates of longer carbon chain length, yet its thermal stability is inversely affected. In order to restore the thermal stability of L172K, we constructed a L172K/N177D double variant and showed that these two mutations yield an improved variant with enhanced activity towards phenyl ester substrates and enhanced thermal stability. Taken together, our study may provide valuable information for enhancing catalytic performance and thermal stability in future engineering endeavors.
    Matched MeSH terms: Amino Acid Sequence
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links