Displaying publications 81 - 100 of 569 in total

Abstract:
Sort:
  1. Tiong V, Hassandarvish P, Bakar SA, Mohamed NA, Wan Sulaiman WS, Baharom N, et al.
    Sci Rep, 2021 10 15;11(1):20502.
    PMID: 34654867 DOI: 10.1038/s41598-021-99866-w
    The COVID-19 is difficult to contain due to its high transmissibility rate and a long incubation period of 5 to 14 days. Moreover, more than half of the infected patients were young and asymptomatic. Virus transmission through asymptomatic patients is a major challenge to disease containment. Due to limited treatment options, preventive measures play major role in controlling the disease spread. Gargling with antiseptic formulation may have potential role in eliminating the virus in the throat. Four commercially available mouthwash/gargle formulations were tested for virucidal activity against SARS-CoV-2 in both clean (0.3 g/l BSA) and dirty (0.3 g/l BSA + 3 mL/L human erythrocytes) conditions at time points 30 and 60 s. The virus was isolated and propagated in Vero E6 cells. The cytotoxicity of the products to the Vero E6 was evaluated by kill time assay based on the European Standard EN14476:2013/FprA1:2015 protocol. Virus titres were calculated as 50% tissue culture infectious dose (TCID50/mL) using the Spearman-Karber method. A reduction in virus titer of 4 log10 corresponds to an inactivation of ≥ 99.99%. Formulations with cetylperidinium chloride, chlorhexidine and hexitidine achieved > 4 log10 reduction in viral titres when exposed within 30 s under both clean and dirty conditions. Thymol formulations achieved only 0.5 log10 reduction in viral titres. In addition, salt water was not proven effective. Gargle formulations with cetylperidinium chloride, chlorhexidine and hexetidine have great potential in reducing SAR-CoV-2 at the source of entry into the body, thus minimizing risk of transmission of COVID-19.
    Matched MeSH terms: Anti-Infective Agents, Local
  2. Gaddam SA, Kotakadi VS, Subramanyam GK, Penchalaneni J, Challagundla VN, Dvr SG, et al.
    Sci Rep, 2021 11 09;11(1):21969.
    PMID: 34753977 DOI: 10.1038/s41598-021-01281-8
    The current investigation highlights the green synthesis of silver nanoparticles (AgNPs) by the insectivorous plant Drosera spatulata Labill var. bakoensis, which is the first of its kind. The biosynthesized nanoparticles revealed a UV visible surface plasmon resonance (SPR) band at 427 nm. The natural phytoconstituents which reduce the monovalent silver were identified by FTIR. The particle size of the Ds-AgNPs was detected by the Nanoparticle size analyzer confirms that the average size of nanoparticles was around 23 ± 2 nm. Ds-AgNPs exhibit high stability because of its high negative zeta potential (- 34.1 mV). AFM studies also revealed that the Ds-AgNPs were spherical in shape and average size ranges from 10 to 20 ± 5 nm. TEM analysis also revealed that the average size of Ds-AgNPs was also around 21 ± 4 nm and the shape is roughly spherical and well dispersed. The crystal nature of Ds-AgNPs was detected as a face-centered cube by the XRD analysis. Furthermore, studies on antibacterial and antifungal activities manifested outstanding antimicrobial activities of Ds-AgNPs compared with standard antibiotic Amoxyclav. In addition, demonstration of superior free radical scavenging efficacy coupled with potential in vitro cytotoxic significance on Human colon cancer cell lines (HT-29) suggests that the Ds-AgNPs attain excellent multifunctional therapeutic applications.
    Matched MeSH terms: Anti-Infective Agents/pharmacology
  3. Kong C, Chee CF, Richter K, Thomas N, Abd Rahman N, Nathan S
    Sci Rep, 2018 02 09;8(1):2758.
    PMID: 29426873 DOI: 10.1038/s41598-018-21141-2
    Staphylococcus aureus is a major cause of nosocomial infections and secretes a diverse spectrum of virulence determinants as well as forms biofilm. The emergence of antibiotic-resistant S. aureus highlights the need for alternative forms of therapeutics other than conventional antibiotics. One route to meet this need is screening small molecule derivatives for potential anti-infective activity. Using a previously optimized C. elegans - S. aureus small molecule screen, we identified a benzimidazole derivative, UM-C162, which rescued nematodes from a S. aureus infection. UM-C162 prevented the formation of biofilm in a dose-dependent manner without interfering with bacterial viability. To examine the effect of UM-C162 on the expression of S. aureus virulence genes, a genome-wide transcriptome analysis was performed on UM-C162-treated pathogen. Our data indicated that the genes associated with biofilm formation, particularly those involved in bacterial attachment, were suppressed in UM-C162-treated bacteria. Additionally, a set of genes encoding vital S. aureus virulence factors were also down-regulated in the presence of UM-C162. Further biochemical analysis validated that UM-C162-mediated disruption of S. aureus hemolysins, proteases and clumping factors production. Collectively, our findings propose that UM-C162 is a promising compound that can be further developed as an anti-virulence agent to control S. aureus infections.
    Matched MeSH terms: Anti-Infective Agents
  4. Ooi MF, Foo HL, Loh TC, Mohamad R, Rahim RA, Ariff A
    Sci Rep, 2021 Apr 07;11(1):7617.
    PMID: 33828119 DOI: 10.1038/s41598-021-87081-6
    Postbiotic RS5, produced by Lactiplantibacillus plantarum RS5, has been identified as a promising alternative feed supplement for various livestock. This study aimed to lower the production cost by enhancing the antimicrobial activity of the postbiotic RS5 by improving the culture density of L. plantarum RS5 and reducing the cost of growth medium. A combination of conventional and statistical-based approaches (Fractional Factorial Design and Central Composite Design of Response Surface Methodology) was employed to develop a refined medium for the enhancement of the antimicrobial activity of postbiotic RS5. A refined medium containing 20 g/L of glucose, 27.84 g/L of yeast extract, 5.75 g/L of sodium acetate, 1.12 g/L of Tween 80 and 0.05 g/L of manganese sulphate enhanced the antimicrobial activity of postbiotic RS5 by 108%. The cost of the production medium was reduced by 85% as compared to the commercially available de Man, Rogosa and Sharpe medium that is typically used for Lactobacillus cultivation. Hence, the refined medium has made the postbiotic RS5 more feasible and cost-effective to be adopted as a feed supplement for various livestock industries.
    Matched MeSH terms: Anti-Infective Agents/metabolism*
  5. Asghar A, Tan YC, Zahoor M, Zainal Abidin SA, Yow YY, Khan E, et al.
    Sci Rep, 2021 Jul 05;11(1):13859.
    PMID: 34226594 DOI: 10.1038/s41598-021-92622-0
    The emergence and spread of antimicrobial resistance have been of serious concern to human health and the management of bacterial infectious diseases. Effective treatment of these diseases requires the development of novel therapeutics, preferably free of side effects. In this regard, natural products are frequently conceived to be potential alternative sources for novel antibacterial compounds. Herein, we have evaluated the antibacterial activity of the epicarp extracts of the Malaysian cultivar of yellow rambutan fruit (Nephelium lappaceum L.) against six pathogens namely, Bacillus subtilis, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Pseudomonas aeruginosa, Klebsiella pneumoniae and Salmonella enterica. Among a series of solvent extracts, fractions of ethyl acetate and acetone have revealed significant activity towards all tested strains. Chemical profiling of these fractions, via HPLC, LC-MS and GC-MS, has generated a library of potentially bioactive compounds. Downstream virtual screening, pharmacological prediction, and receptor-ligand molecular dynamics simulation have eventually unveiled novel potential antibacterial compounds, which can be extracted for medicinal use. We report compounds like catechin, eplerenone and oritin-4-beta-ol to be computationally inhibiting the ATP-binding domain of the chaperone, DnaK of P. aeruginosa and MRSA. Thus, our work follows the objective to propose new antimicrobials capable of perforating the barrier of resistance posed by both the gram positives and the negatives.
    Matched MeSH terms: Anti-Infective Agents/pharmacology; Anti-Infective Agents/chemistry
  6. Nur Anisah Johari, Siti Sarah Diyana Amran, Alya Nur Athirah Kamaruzzaman, Che Amira Izzati Che Man, Mohd Fakharul Zaman Raja Yahya
    Science Letters, 2020;14(2):34-46.
    MyJurnal
    Biofilm is a microbial community that attaches to a surface and is enclosed in extracellular polymeric substance (EPS) matrix. Formation of biofilm often develops resistance towards a wide spectrum of antimicrobial agents. Since the biofilm-mediated diseases are commonly difficult to treat, there is need to find new anti-biofilm agent. The studies on anti-biofilm activities of plant species have received a great deal of attention over the last few decades. In Malaysia, plant species have been used as alternatives to the conventional antimicrobial therapy. Several Malaysian plant species are known to control biofilm infection by inhibition of quorum sensing pathway, disruption of EPS matrix, alteration of cell permeability and reduction in cell surface hydrophobicity. This review demonstrates that Malaysian plant species may become excellent therapeutic agents in combating the biofilm infection.
    Matched MeSH terms: Anti-Infective Agents
  7. Shrestha N, Sharma S, Khanal B, Bhatta N, Dhakal S
    Scand. J. Infect. Dis., 2005;37(1):64-6.
    PMID: 15764193
    This is a report of the first recognized case of melioidosis in Nepal. Illness began 1 month after returning from Malaysia after a 1 y stay. The case highlights the importance of ascertaining the travel history in any patient with a suspected infectious disease in this age of global travel.
    Matched MeSH terms: Anti-Infective Agents/therapeutic use
  8. Haseeb A, Faidah HS, Al-Gethamy M, Iqbal MS, Alhifany AA, Ali M, et al.
    Saudi Pharm J, 2020 Oct;28(10):1166-1171.
    PMID: 33132709 DOI: 10.1016/j.jsps.2020.08.005
    Antimicrobial stewardship programs (ASPs) are collaborative efforts to optimize antimicrobial use in healthcare institutions through evidence-based quality improvement strategies. The general administration of pharmaceutical care in the Saudi ministry of health (MOH) is putting outstanding efforts in implementing antimicrobial stewardship in Saudi health care settings. Several surveys have been conducted globally and reported many types of antimicrobial stewardship strategies in health institutions and their effectiveness. This study aims to identify ASPs in Makkah region hospitals and their perceived level of success. We administered a regional survey to explore current progress and issues related to the implementation of ASPs in Makkah region hospitals at the pharmacy level (n = 25). Among responding hospitals, 19 (76%) hospitals, the most commonly reported ASP were as following: formulary restrictions (90%) for broad-spectrum antimicrobials and use of prospective feedback on antimicrobial prescribing (68%), use of clinical guidelines and pathways (100%), and use of automatic stop orders (68%) to limit inappropriate antimicrobial therapy. The study outcomes will also be of pivotal importance to devise policies and strategies for antimicrobial stewardship implementation in other non-MOH settings in the Makkah region. Based on our results, all reported institutions have at least one antimicrobial stewardship program in a process with a high success rate. A multidisciplinary ASP approach, active involvement of drug & therapeutic committee, formulary restrictions, and availability of education & training of pharmacists and physicians on ASP are the primary elements for perceived successful antimicrobial stewardship programs in the Makkah region hospitals.
    Matched MeSH terms: Anti-Infective Agents
  9. Haiyan G, Lijuan H, Shaoyu L, Chen Z, Ashraf MA
    Saudi J Biol Sci, 2016 Jul;23(4):524-30.
    PMID: 27298587 DOI: 10.1016/j.sjbs.2016.02.020
    In the study, we evaluated chemical composition and antimicrobial, antibiofilm, and antitumor activities of essential oils from dried leaf essential oil of leaf and flower of Agastache rugosa for the first time. Essential oil of leaf and flower was evaluated with GC and GC-MS methods, and the essential oil of flower revealed the presence of 21 components, whose major compounds were pulegone (34.1%), estragole (29.5%), and p-Menthan-3-one (19.2%). 26 components from essential oil of leaf were identified, the major compounds were p-Menthan-3-one (48.8%) and estragole (20.8%). At the same time, essential oil of leaf, there is a very effective antimicrobial activity with MIC ranging from 9.4 to 42 μg ml(-1) and potential antibiofilm, antitumor activities for essential oils of flower and leaf essential oil of leaf. The study highlighted the diversity in two different parts of A. rugosa grown in Xinjiang region and other places, which have different active constituents. Our results showed that this native plant may be a good candidate for further biological and pharmacological investigations.
    Matched MeSH terms: Anti-Infective Agents
  10. Zhao QQ, Chen MY, He RL, Zhang ZF, Ashraf MA
    Saudi J Biol Sci, 2016 Jan;23(1):S137-41.
    PMID: 26858558 DOI: 10.1016/j.sjbs.2015.08.010
    This review summarizes the research on timber construction materials used in bridge construction. It focuses on the application of antiseptic treatments and the use of timber engineering materials in decks and bridges. This review also provides an overview on the future research and prospects of engineered timber materials.
    Matched MeSH terms: Anti-Infective Agents, Local
  11. Ashraf K, Halim H, Lim SM, Ramasamy K, Sultan S
    Saudi J Biol Sci, 2020 Jan;27(1):417-432.
    PMID: 31889866 DOI: 10.1016/j.sjbs.2019.11.003
    Background: Medicinal plants are important source of drugs with pharmacological activities. Therefore, there is always rising demands to discover more therapeutic agents from various species. Orthosiphon stamineus, Gynura procumbens and Ficus deltoidea are high valued medicinal plants of Malaysia contain rich source of phenolic and flavonoid compounds. The aims of the present study were to evaluate anti-oxidant, antimicrobial and anti-proliferative effects on A549, HeGP2 and MCF7 cell lines of four different extracts of Orthosiphon stamineus, Gynura procumbens and Ficus deltoidea.

    Methodology: The leaves of all selected plants were extracted with methanol, chloroform, ethyl acetate and butanol separately with simple cold maceration. Antioxidant activity of all crude extracts were quantitatively measured against DPPH and Ferric Reducing Assay. Antimicrobial evaluation was done by Microdilution and MTT assay and antipoliferative activity of all extracts of selected plant were evaluated against A549, HePG2 and MCF7 cell lines.

    Results: Results showed that methanol extract exhibited highest percentage free radical scavenging activity of almost all extracts of selected plants. Antimicrobials results showed chloroform and methanol extracts of O. stamineus extract were the two most active extracts against resistant MRSA but not S. aureus. Only methanol extract of G. procumbens showed antimicrobial activity against the tested pathogens. Chloroform and methanol extracts of F. deltoidea elicited antimicrobial activity against S. aureus but not MRSA. Antiproliferative activity against three tested cell lines results showed that ethyl acetate extract of O. stamineus showed good effect whereas methanol extract of F. deltoidea and G. procumbens exhibited good antiproliferative activity.

    Conclusions: The results of the present investigation demonstrated significant variations in the antioxidant, antimicrobial and antiproliferative effects of different solvent extracts. These data could be helpful in isolation of pure potent compounds with good biological activities from the extracts of plants.

    Matched MeSH terms: Anti-Infective Agents
  12. Jesús Luengo Fereira, Heraclio Reyes Rivas, Luz Elena Carlos Medrano, Iovanna Toscano, Minerva Anaya Alvarez
    Sains Malaysiana, 2018;47:971-976.
    This study has been carried out to evaluate the clinical and radiographic CTZ (Chloramphenicol-Tetracycline-Zinc
    Eugenol Oxide) antibiotic paste in pulpotomies of primary molars. A Quasi-experimental study in 43 primary molars
    of children aged 3 to 7 years. Pulpotomies were performed on the selected patients with the CTZ antibiotic paste. Teeth
    were restored with glass ionomer and preformed steel metal crowns. Clinical and radiographic evaluation was performed
    at 6 and 12 months. SPSS V-19 program for data analysis and chi-square test was used up to 5%. Success rates were
    observed during the evaluation periods of time. 93% (x2
    = 0.446, p>0.05) and 88.4% (x2
    = 0.431, p>0.05) of the clinical form;
    97.7% (x2
    = 0.534, p>0.05) and 93% (x2
    = 0.553, p>0.05) were radiographic, at 6 and 12 months, respectively. The CTZ antibiotic
    paste is an alternative in the treatment of pulpotomy of molars. It provides an antimicrobial effect, decreased operative time, without
    causing trauma to the pediatric patient.
    Matched MeSH terms: Anti-Infective Agents
  13. FARZAD AALA, UMI KALSOM YUSUF, ROSIMAH NULIT
    Sains Malaysiana, 2013;42:1585-1590.
    Trichophyton rubrum is one of dermatophytes that penetrates keratinized tissues such as skin, hair and nail of human and animals. Recently, antifungal drugs such as imodazole and triazole was found to cause side effects, toxicity to patients and also not very efficient due to resistance to these drugs. As an alternative, some plants extract had been used to treat dermatophytes. This studies was done using Garlic extract (Allium sativum) to evaluate its effects on the growth of hypha of Trichophyton using Electron miscroscopy. Garlic had been known to posses antimicrobial, antiinflammatory, antithrombotic and antitumor activities. This studies found that garlic extract as low as 4 mg/mL inhibit the growth of hypha. Scanning electron microscopy studies revealed that hypha treated with garlic extract showed shrinkage, flat and cell wall demolition, similar to hypha treated with allicin (positive control) having rough surface, shrinkage and distortion. The tip of hypa became large after treatment with garlic extract. Transmission electron microscopy studies also found that hypha treated with allicin display cell wall thickening, local thickening, destruction of cytoplasmic content, mean while hypha treated with garlic extract exhibited cell wall thickening, disordered hyphal tip and desolution of cytoplasmic compartments and similar with hypha treated with allicin. These results showed that garlic extract and pure allicin could be use as an alternative to treat dermatophytes.
    Matched MeSH terms: Anti-Infective Agents
  14. Azizah Ahmad Fauzi, Zaleha Shafiei, Badiah Baharin, Nurulhuda Mohd
    Sains Malaysiana, 2013;42:19-24.
    Bacteriocin or Bacteriocin like inhibitory substances (BLIS) is a protein antibiotic that has a relatively narrow spectrum of killing activity. It could potentially serve as a natural alternative to antibiotics in reducing the development of multi-drug resistant bacteria. Antimicrobial activity of the strains of Lactobacillus sp. isolated from healthy subjects (test strains) against Aggregatibacter actinomycetemcomitans and other periodontal pathogens (indicator strains) isolated from subgingival plaques of aggressive periodontitis patients were determined by using deferred antagonism test and agar-well diffusion method. Strains of Lactobacillus sp., Aggregatibacter actinomycetemcomitans and black pigmented bacteria were selectively isolated from TJA, TSBV and TSBA agars, respectively. Mean diameter zone of inhibition of at least 10 mm was considered as positive results for both methods. Out of 25 strains of Lactobacillus sp. screened, only eight test strains of Lactobacillus sp. showed the specific antimicrobial activity against certain strains of indicator periodontal pathogens during deferred antagonism test. However, out of eight potential strains, only three strains, which were Lactobacillus sp. strain S, Lactobacillus sp. strain V and Lactobacillus sp. strain W consistently showed positive inhibitory activity against black pigmented bacteria by deferred antagonism test and agar-well diffusion method. Therefore, these three strains should be considered as potential BLIS producer strains for further study.
    Matched MeSH terms: Anti-Infective Agents
  15. Asmat Armad, Nur Diana Mehat, Usup G, Rahimi Hamid
    Sains Malaysiana, 2014;43:543-550.
    This study was carried out to know the bacteria population density in the blood cockle (Anadara granosa) and green lipped mussel (Perna viridis), to analyse the bacteria resistance towards antibiotics and antimicrobial activity of isolates against selected pathogen. Samples of blood cockle and green lipped mussel were obtained from five areas in Kedah and Negeri Sembilan. Bacterial population densities in mussels and cockles were 3 x 102 - 8 x 108 cFulmL and 5 x 102 - 5 x 108 cFulmL, respectively. A total of 162 isolates were obtained, of which 131 isolates were from mussels and 31 isolates were from cockles. Vibrio sp. was the most dominant genus in both types of samples. Antibiotic testing of all isolates showed most were resistant to Penicillin (10 U) and most were sensitive to Ciprofloxacin (5 Jig). Most isolates (160/162) showed resistance to at least two antibiotics and 10 isolates were resistant to more than five antibiotics. Multiple antibiotic resistance indices (MAR) were calculated based on the antibiotic resistance results. Most isolates had a MAR index value of 02 which indicated the isolates were not contaminated with antibiotic residues. The highest index value was 0 .7 . Fifteen out of 39 isolates which produced beta-lactamase enzyme were tested for antimicrobial activity against selected pathogen. Results indicated that antimicrobial activity were varies among the isolates. Isolate smii-Ip produced antimicrobial activity against six out of the nine tested pathogen and none of the isolates active against Pseudomonas mirabilis.
    Matched MeSH terms: Anti-Infective Agents
  16. Ul Haq MN, Wazir SM, Ullah F, Khan RA, Shah MS, Khatak A
    Sains Malaysiana, 2016;45:1435-1442.
    In this study, the antimicrobial, antioxidant, phytotoxic and phytochemical properties of defatted seeds of Jatropha curcas were evaluated. A crude methanolic extract of defatted seeds was tested against three fungal strains - Aspergillus niger, Aspergillus flavus and Aspergillus fumigatus - and five bacteria: Escherichia coli and Klebsiella pneumoniae (Gram negative) and Micrococcus luteus, Bacillus subtilis and Staphylococcus aureus (Gram positive). The methanolic extract was diluted in dimethylsulfoxide to final concentrations of 1, 2, 3, 4 and 5 mg/10 mL. The largest zones of inhibition against K. pneumoniae, M. luteus and B. subtilis were achieved using the concentration of 5 mg/10 mL. The concentration of 1 mg/10 mL was most effective against S. aureus and E. coli. In a 1, 1-diphenyl-2-picrylahydrazyl (DPPH) radical scavenging assay, the 5 mg/10 mL concentration of the Jatropha seed extract showed the strongest activity. Higher concentrations of the Jatropha seed extract (10 mg/50 mL and 5 mg/50 mL) significantly inhibited the germination of radish seeds and had negative effects on radish seedling relative water content, shoot length, root length, seedling fresh weight and seedling dry weight (p<0.05). Phytochemical analyses of the defatted seeds detected alkaloids (7.3%), flavonoids (0.39%) and soluble phenolics (mg gallic acid equivalents/g extract). Based on these results, it was inferred that J. curcas seeds contain active ingredients that are effective against pathogenic microbes and therefore could be used to formulate drugs to treat various diseases.
    Matched MeSH terms: Anti-Infective Agents
  17. Xin Tong, Xiao-ye Shen, Cheng-lin Hou
    Sains Malaysiana, 2018;47:1685-1692.
    Fungi associated with Vaccinium species play important roles in plant growth and disease control, especially in the final
    blueberry production. Vaccinium dunalianum var. urophyllum (Ericaceae) is a well-known medicinal plant in Southern
    China used to treat inflammation and microbial infections. The endophytic fungi from these plants are therefore anticipated
    as potential new sources of antimicrobials. In this report, the inhibitory effects of endophytes against clinical bacteria
    and yeast were comprehensively screened and 11 isolates indicated high bioactivity by the agar diffusion method. The
    corresponding crude extracts of these fungi under submerged fermentation also demonstrated distinct differences and
    n-butyl alcohol displayed the lowest extraction efficiency among the extracts. The ethyl acetate and dichloromethane
    extracts of filtrates from the Colletotrichum sp. VD001, Epicoccum nigrum VD021 and E. nigrum VD022 strains
    displayed good properties against pathogenic microorganisms according to disc diffusion assays and minimal inhibitory
    concentration (MIC). This study is the first indicating that cultivable endophytic fungi associated with blueberry plants
    produce potential compounds against clinical pathogens.
    Matched MeSH terms: Anti-Infective Agents
  18. Ling Onn M, Teen Lim P, Aazani Mujahid, Proksch P, Müller M
    Sains Malaysiana, 2016;45:1063-1071.
    Endophytic fungi provide protection to their host plant and the fungi often produce antimicrobial compounds to aid the host
    fighting off pathogens. These bioactive compounds were secondary metabolites which were often produced as waste- or
    by-products. In the present study, endophytic fungi isolated from mangrove plants and soils were characterized and their
    antimicrobial production and bioremediation potential of heavy metals copper (Cu) and zinc (Zn) were assessed. Twelve
    (12) isolated and identified endophytic fungi belonged to seven species; Penicillium, Curvularia, Diaporthe, Aspergillus,
    Guignardia, Neusartorya and Eupenicillium. Antimicrobial activities of these 12 fungal endophytes were tested against
    Gram negative bacteria; Bacillus subtilis, Staphylococcus aureus, Gram positive bacteria; Escherichia coli and fungi;
    Candida albicans and Aspergillus niger among others. Two isolates (related to Guignardia sp. and Neusartoya sp.) showed
    strong antimicrobial (and antifungal) activity whereas the rest showed no activity. Compounds were isolated from both
    isolates and screened using HPLC. Both isolates displayed chemically very interesting chromatograms as they possessed a
    high diversity of basic chemical structures and peaks over a wide range of polarities, with structures similar to Trimeric
    catechin and Helenalin among others. For bioremediation assessment, the results showed maximum biosorption capacity
    for two isolates related to Curvularia sp. and Neusartorya sp., with the former removing 25 mg Cu/g biomass and the
    latter removing 24 mg Zn/g biomass. Our results indicated the potential of mangrove endophytic fungi in producing
    bioactive compounds and also highlighted their potential for the treatment of heavy metal-contaminated wastewater.
    Matched MeSH terms: Anti-Infective Agents
  19. Ul Mustafa Z, Salman M, Aldeyab M, Kow CS, Hasan SS
    SN Compr Clin Med, 2021 May 28.
    PMID: 34095752 DOI: 10.1007/s42399-021-00966-5
    The discovery of different antimicrobial agents has revolutionized the treatment against a variety of infections for many decades, but the emergence of antimicrobial resistance require rigorous measures, even amid the coronavirus disease 2019 (COVID-19) pandemic. This retrospective study aimed to examine the consumption of antibiotics in patients with COVID-19 admitted into the five hospitals in the province of Punjab, Pakistan. We collected data on the consumption of antibiotics, classified using the World Health Organization (WHO) AWaRe (Access, Watch, and Reserve), within two months-August and September, 2020, and the corresponding months in 2019. Consumption of antibiotics was presented as daily define dose (DDD) per 100 occupied bed-days. Eight different classes of antibiotics were prescribed to patients with COVID-19 without culture tests being performed, with the prescribing of antibiotics of the Watch category was especially prevalent. The consumption of antibiotics was higher during the COVID-19 pandemic compared to the pre-pandemic period: the consumption of azithromycin increased from 11.5 DDDs per 100 occupied bed-days in 2019 to 17.0 DDDs per 100 occupied bed-days in 2020, while the consumption of ceftriaxone increased from 20.2 DDDs per 100 occupied bed-days in 2019 to 25.1 DDDs per 100 occupied bed-days in 2020. The current study revealed non-evidence-based utilization of antibiotics among patients with COVID-19 admitted into the hospitals in Pakistan. Evidently, the current COVID-19 pandemic is a public health threat of notable dimensions which has compromised the ongoing antimicrobial stewardship program, potentially leading to the emergence of antimicrobial resistance among pathogens.
    Matched MeSH terms: Anti-Infective Agents
  20. Chum JD, Lim DJZ, Sheriff SO, Pulikkotil SJ, Suresh A, Davamani F
    Restor Dent Endod, 2019 Feb;44(1):e8.
    PMID: 30834230 DOI: 10.5395/rde.2019.44.e8
    Objectives: Irrigants are imperative in endodontic therapy for the elimination of pathogens from the infected root canal. The present study compared the antimicrobial efficacy of octenidine dihydrochloride (OCT) with chlorhexidine (CHX) and sodium hypochlorite (NaOCl) against Staphylococcus epidermidis (S. epidermidis) for root canal disinfection.

    Materials and Methods: The minimum inhibitory concentration (MIC) was obtained using serial dilution method. The agar diffusion method was then used to determine the zones of inhibition for each irrigant. Lastly, forty 6-mm dentin blocks were prepared from human mandibular premolars and inoculated with S. epidermidis. Samples were randomly divided into 4 groups of 10 blocks and irrigated for 3 minutes with saline (control), 2% CHX, 3% NaOCl, or 0.1% OCT. Dentin samples were then collected immediately for microbial analysis, including an analysis of colony-forming units (CFUs).

    Results: The MICs of each tested irrigant were 0.05% for CHX, 0.25% for NaOCl, and 0.0125% for OCT. All tested irrigants showed concentration-dependent increase in zones of inhibition, and 3% NaOCl showed the largest zone of inhibition amongst all tested irrigants (p < 0.05). There were no significant differences among the CFU measurements of 2% CHX, 3% NaOCl, and 0.1% OCT showing complete elimination of S. epidermidis in all samples.

    Conclusions: This study showed that OCT was comparable to or even more effective than CHX and NaOCl, demonstrating antimicrobial activity at low concentrations against S. epidermidis.

    Matched MeSH terms: Anti-Infective Agents
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links