Displaying publications 81 - 100 of 470 in total

Abstract:
Sort:
  1. Basivi PK, Ramesh S, Kakani V, Yadav HM, Bathula C, Afsar N, et al.
    Sci Rep, 2021 May 10;11(1):9918.
    PMID: 33972653 DOI: 10.1038/s41598-021-89430-x
    In this study, a novel nanohybrid composite containing nitrogen-doped multiwalled carbon nanotubes/carboxymethylcellulose (N-MWCNT/CMC) was synthesized for supercapacitor applications. The synthesized composite materials were subjected to an ultrasonication-mediated solvothermal hydrothermal reaction. The synthesized nanohybrid composite electrode material was characterized using analytical methods to confirm its structure and morphology. The electrochemical properties of the composite electrode were investigated using cyclic voltammetry (CV), galvanic charge-discharge, and electrochemical impedance spectroscopy (EIS) using a 3 M KOH electrolyte. The fabricated composite material exhibited unique electrochemical properties by delivering a maximum specific capacitance of approximately 274 F g-1 at a current density of 2 A g-1. The composite electrode displayed high cycling stability of 96% after 4000 cycles at 2 A g-1, indicating that it is favorable for supercapacitor applications.
    Matched MeSH terms: Electrodes
  2. Amiri A, Shanbedi M, Ahmadi G, Eshghi H, Kazi SN, Chew BT, et al.
    Sci Rep, 2016 09 08;6:32686.
    PMID: 27604639 DOI: 10.1038/srep32686
    This study reports on a facile and economical method for the scalable synthesis of few-layered graphene sheets by the microwave-assisted functionalization. Herein, single-layered and few-layered graphene sheets were produced by dispersion and exfoliation of functionalized graphite in ethylene glycol. Thermal treatment was used to prepare pure graphene without functional groups, and the pure graphene was labeled as thermally-treated graphene (T-GR). The morphological and statistical studies about the distribution of the number of layers showed that more than 90% of the flakes of T-GR had less than two layers and about 84% of T-GR were single-layered. The microwave-assisted exfoliation approach presents us with a possibility for a mass production of graphene at low cost and great potentials in energy storage applications of graphene-based materials. Owing to unique surface chemistry, the T-GR demonstrates an excellent energy storage performance, and the electrochemical capacitance is much higher than that of the other carbon-based nanostructures. The nanoscopic porous morphology of the T-GR-based electrodes made a significant contribution in increasing the BET surface as well as the specific capacitance of graphene. T-GR, with a capacitance of 354.1 Fg(-1) at 5 mVs(-1) and 264 Fg(-1) at 100 mVs(-1), exhibits excellent performance as a supercapacitor.
    Matched MeSH terms: Electrodes
  3. Hasan SW, Said SM, Sabri MF, Bakar AS, Hashim NA, Hasnan MM, et al.
    Sci Rep, 2016 07 06;6:29328.
    PMID: 27381946 DOI: 10.1038/srep29328
    Thermo-Electrochemical cells (Thermocells/TECs) transform thermal energy into electricity by means of electrochemical potential disequilibrium between electrodes induced by a temperature gradient (ΔT). Heat conduction across the terminals of the cell is one of the primary reasons for device inefficiency. Herein, we embed Poly(Vinylidene Fluoride) (PVDF) membrane in thermocells to mitigate the heat transfer effects - we refer to these membrane-thermocells as MTECs. At a ΔT of 12 K, an improvement in the open circuit voltage (Voc) of the TEC from 1.3 mV to 2.8 mV is obtained by employment of the membrane. The PVDF membrane is employed at three different locations between the electrodes i.e. x = 2 mm, 5 mm, and 8 mm where 'x' defines the distance between the cathode and PVDF membrane. We found that the membrane position at x = 5 mm achieves the closest internal ∆T (i.e. 8.8 K) to the externally applied ΔT of 10 K and corresponding power density is 254 nWcm(-2); 78% higher than the conventional TEC. Finally, a thermal resistivity model based on infrared thermography explains mass and heat transfer within the thermocells.
    Matched MeSH terms: Electrodes
  4. Mohd Zaid NA, Idris NH
    Sci Rep, 2016 08 24;6:32082.
    PMID: 27553290 DOI: 10.1038/srep32082
    In this work, Ni nanoparticles were directly decorated on graphene (G) nanosheets via mechanical ball milling. Based on transmission electron microscopy observations, the Ni nanoparticles were well dispersed and attached to the G nanosheet without any agglomerations. Electrochemical results showed that the capacitance of a G/Ni nanocomposite was 275 F g(-1) at a current density of 2 A g(-1), which is higher than the capacitance of bare G (145 F g(-1)) and bare Ni (3 F g(-1)). The G/Ni electrode also showed superior performance at a high current density, exhibiting a capacitance of 190 F g(-1) at a current density of 5 A g(-1) and a capacitance of 144 F g(-1) at a current density of 10 A g(-1). The equivalent series resistance for G/Ni nanocomposites also decreased. The enhanced performance of this hybrid supercapacitor is best described by the synergistic effect, i.e. dual charge-storage mechanism, which is demonstrated by electrical double layer and pseudocapacitance materials. Moreover, a high specific surface area and electrical conductivity of the materials enhanced the capacitance. These results indicate that the G/Ni nanocomposite is a potential supercapacitor.
    Matched MeSH terms: Electrodes
  5. Foo CY, Lim HN, Mahdi MA, Wahid MH, Huang NM
    Sci Rep, 2018 May 09;8(1):7399.
    PMID: 29743664 DOI: 10.1038/s41598-018-25861-3
    Three-dimensional (3D) printing technology provides a novel approach to material fabrication for various applications because of its ability to create low-cost 3D printed platforms. In this study, a printable graphene-based conductive filament was employed to create a range of 3D printed electrodes (3DEs) using a commercial 3D printer. This printing technology provides a simplistic and low-cost approach, which eliminates the need for the ex-situ modification and post-treatment of the product. The conductive nature of the 3DEs provides numerous deposition platforms for electrochemical active nanomaterials such as graphene, polypyrrole, and cadmium sulfide, either through electrochemical or physical approaches. To provide proof-of-concept, these 3DEs were physiochemically and electrochemically evaluated and proficiently fabricated into a supercapacitor and photoelectrochemical sensor. The as-fabricated supercapacitor provided a good capacitance performance, with a specific capacitance of 98.37 Fg-1. In addition, these 3DEs were fabricated into a photoelectrochemical sensing platform. They had a photocurrent response that exceeded expectations (~724.1 μA) and a lower detection limit (0.05 μM) than an ITO/FTO glass electrode. By subsequently modifying the printing material and electrode architecture, this 3D printing approach could provide a facile and rapid manufacturing process for energy devices based on the conceptual design.
    Matched MeSH terms: Electrodes
  6. TermehYousefi A, Tateno K, Bagheri S, Tanaka H
    Sci Rep, 2017 05 09;7(1):1623.
    PMID: 28487527 DOI: 10.1038/s41598-017-01855-5
    A method to fabricate a bioinspired nanobiosensor using electronic-based artificial taste receptors for glucose diagnosis is presented. Fabricated bioinspired glucose nanobiosensor designated based on an artificial taste bud including an amperometric glucose biosensor and taste bud-inspired circuits. In fact, the design of the taste bud-inspired circuits was inspired by the signal-processing mechanism of taste nerves which involves two layers. The first, known as a type II cell, detects the glucose by glucose oxidase and transduces the current signal obtained for the pulse pattern is conducted to the second layer, called type III cell, to induce synchronisation of the neural spiking activity. The oscillation results of fabricated bioinspired glucose nanobiosensor confirmed an increase in the frequency of the output pulse as a function of the glucose concentration. At high glucose concentrations, the bioinspired glucose nanobiosensor showed a pulse train of alternating short and long interpulse intervals. A computational analysis performed to validate the hypothesis, which was successfully reproduced the alternating behaviour of bioinspired glucose our nanobiosensor by increasing the output frequency and alternation of pulse intervals according to the reduction in the resistivity of the biosensor.
    Matched MeSH terms: Electrodes
  7. Bin Hamzah HH, Keattch O, Covill D, Patel BA
    Sci Rep, 2018 Jun 14;8(1):9135.
    PMID: 29904165 DOI: 10.1038/s41598-018-27188-5
    Additive manufacturing also known as 3D printing is being utilised in electrochemistry to reproducibly develop complex geometries with conductive properties. In this study, we explored if the electrochemical behavior of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes was influenced by printing direction. The electrodes were printed in both horizontal and vertical directions. The horizsontal direction resulted in a smooth surface (HPSS electrode) and a comparatively rougher surface (HPRS electrode) surface. Electrodes were characterized using cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. For various redox couples, the vertical printed (VP) electrode showed enhanced current response when compared the two electrode surfaces generated by horizontal print direction. No differences in the capacitive response was observed, indicating that the conductive surface area of all types of electrodes were identical. The VP electrode had reduced charge transfer resistance and uncompensated solution resistance when compared to the HPSS and HPRS electrodes. Overall, electrodes printed in a vertical direction provide enhanced electrochemical performance and our study indicates that print orientation is a key factor that can be used to enhance sensor performance.
    Matched MeSH terms: Electrodes
  8. Hosseini S, Han SJ, Arponwichanop A, Yonezawa T, Kheawhom S
    Sci Rep, 2018 Jul 26;8(1):11273.
    PMID: 30050161 DOI: 10.1038/s41598-018-29630-0
    Zinc-air flow batteries exhibit high energy density and offer several appealing advantages. However, their low efficiency of zinc utilization resulted from passivation and corrosion of the zinc anodes has limited their broad application. In this work, ethanol, which is considered as an environmentally friendly solvent, is examined as an electrolyte additive to potassium hydroxide (KOH) aqueous electrolyte to improve electrochemical performance of the batteries. Besides, the effects of adding different percentages of ethanol (0-50% v/v) to 8 M KOH aqueous electrolyte were investigated and discussed. Cyclic voltammograms revealed that the presence of 5-10% v/v ethanol is attributed to the enhancement of zinc dissolution and the hindrance of zinc anode passivation. Also, potentiodynamic polarization and electrochemical impedance spectroscopy confirmed that adding 5-10% v/v ethanol could effectively suppress the formation of passivating layers on the active surface of the zinc anodes. Though the addition of ethanol increased solution resistance and hence slightly decreased the discharge potential of the batteries, a significant enhancement of discharge capacity and energy density could be sought. Also, galvanostatic discharge results indicated that the battery using 10% v/v ethanol electrolyte exhibited the highest electrochemical performance with 30% increase in discharge capacity and 16% increase in specific energy over that of KOH electrolyte without ethanol.
    Matched MeSH terms: Electrodes
  9. Hosseini S, Lao-Atiman W, Han SJ, Arpornwichanop A, Yonezawa T, Kheawhom S
    Sci Rep, 2018 Oct 08;8(1):14909.
    PMID: 30297883 DOI: 10.1038/s41598-018-32806-3
    Zinc-air batteries are a promising technology for large-scale electricity storage. However, their practical deployment has been hindered by some issues related to corrosion and passivation of the zinc anode in an alkaline electrolyte. In this work, anionic surfactant sodium dodecyl sulfate (SDS) and nonionic surfactant Pluronic F-127 (P127) are examined their applicability to enhance the battery performances. Pristine zinc granules in 7 M KOH, pristine zinc granules in 0-8 mM SDS/7 M KOH, pristine zinc granules in 0-1000 ppm P127/7 M KOH, and SDS coated zinc granules in 7 M KOH were examined. Cyclic voltammograms, potentiodynamic polarization, and electrochemical impedance spectroscopy confirmed that using 0.2 mM SDS or 100 ppm P127 effectively suppressed the anode corrosion and passivation. Nevertheless, direct coating SDS on the zinc anode showed adverse effects because the thick layer of SDS coating acted as a passivating film and blocked the removal of the anode oxidation product from the zinc surface. Furthermore, the performances of the zinc-air flow batteries were studied. Galvanostatic discharge results indicated that the improvement of discharge capacity and energy density could be sought by the introduction of the surfactants to the KOH electrolyte. The enhancement of specific discharge capacity for 30% and 24% was observed in the electrolyte containing 100 ppm P127 and 0.2 mM SDS, respectively.
    Matched MeSH terms: Electrodes
  10. Kulandaivalu S, Suhaimi N, Sulaiman Y
    Sci Rep, 2019 Mar 20;9(1):4884.
    PMID: 30894621 DOI: 10.1038/s41598-019-41203-3
    A novel layer-by-layer (LBL) based electrode material for supercapacitor consists of polypyrrole/graphene oxide and polypyrrole/manganese oxide (PPy/GO|PPy/MnO2) has prepared by electrochemical deposition. The formation of LBL assembled nanocomposite is confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction. The field emission scanning electron microscopy images clearly showed that PPy/MnO2 was uniformly coated on PPy/GO. The PPy/GO|PPy/MnO2 symmetrical supercapacitor has revealed outstanding supercapacitive performance with a high specific capacitance of 786.6 F/g, an exceptionally high specific energy of 52.3 Wh/kg at a specific power of 1392.9 W/kg and preserve a good cycling stability over 1000 cycles. It is certain that PPy/GO|PPy/MnO2 has an extraordinary perspective as an electrode for future supercapacitor developments. This finding contributes to a significant impact on the evolution of electrochemical supercapacitor.
    Matched MeSH terms: Electrodes
  11. Ramli MM, Rosman AS, Mazlan NS, Ahmad MF, Halin DSC, Mohamed R, et al.
    Sci Rep, 2021 10 19;11(1):20702.
    PMID: 34667216 DOI: 10.1038/s41598-021-00171-3
    Breast cancer is one of the most reported cancers that can lead to death. Despite the advances in diagnosis and treatment procedures, the possibility of cancer recurrences is still high in many cases. With that in consideration, researchers from all over the world are showing interest in the unique features of Graphene oxide (GO), such as its excellent and versatile physicochemical properties, to explore further its potential and benefits towards breast cancer cell treatment. In this study, the cell viability and electrical response of GO, in terms of resistivity and impedance towards the breast cancer cells (MCF7) and normal breast cells (MCF10a), were investigated by varying the pH and concentration of GO. Firstly, the numbers of MCF7 and MCF10a were measured after being treated with GO for 24 and 48 h. Next, the electrical responses of these cells were evaluated by using interdigitated gold electrodes (IDEs) that are connected to an LCR meter. Based on the results obtained, as the pH of GO increased from pH 5 to pH 7, the number of viable MCF7 cells decreased while the number of viable MCF10a slightly increased after the incubation period of 48 h. Similarly, the MCF7 also experienced higher cytotoxicity effects when treated with GO concentrations of more than 25 µg/mL. The findings from the electrical characterization of the cells observed that the number of viable cells has corresponded to the impedance of the cells. The electrical impedance of MCF7 decreased as the number of highly insulating viable cell membranes decreased. But in contrast, the electrical impedance of MCF10a increased as the number of highly insulating viable cell membranes increased. Hence, it can be deduced that the GO with higher pH and concentration influence the MCF7 cancer cell line and MCF10a normal breast cell.
    Matched MeSH terms: Electrodes
  12. Ringgit G, Siddiquee S, Saallah S, Mohamad Lal MT
    Sci Rep, 2022 Nov 03;12(1):18582.
    PMID: 36329094 DOI: 10.1038/s41598-022-21926-6
    An electrochemical method for detecting the presence of zinc (Zn2+) ions in drinking water was developed using functionalized multi-walled carbon nanotubes (f-MWCNTs) and chitosan (CS). Numerous cylinder-shaped graphene molecules make up f-MWCNTs, which have a high mechanical and electrical conductivity. CS benefits from nanomaterials include biocompatibility, biodegradability, and low toxicity, which are excellent in capacity absorption of metal ions. Dangerous levels of metal ions such as zinc are currently present in drinking water as a result of human and natural activity. Zinc toxicity is associated with a variety of disorders, including Alzheimer's, Parkinson's, diabetes, and cancer. This study incorporated f-MWCNTs and CS with Prussian blue (PB) immobilised on a gold electrode (AuE). Several parameters, including as buffers, pH, scan rate, redox indicator, accumulation time, and volume, were optimised using the cyclic voltammetry (CV) method. According to the CV method, the optimal parameters were phosphate buffered saline (0.1 M, pH 2), 5 mM Prussian blue, 200 mVs-1 scan rate, and 5 s accumulation time. Under ideal circumstances, the differential pulse voltammetry (DPV) method was used to determine the Zn2+ ions concentration range of 0.2-7.0 ppm. The limit of detection (LOD) was 2.60 × 10-7 mol L-1 with a correlation coefficient of R2 = 0.9777. The recovery rate of the developed sensor (f-MWCNTs/CS/PB/AuE) ranged from 95.78 to 98.96%. The developed sensor showed a variety of advantages for detecting Zn2+ in drinking water, including a quick setup process, quick detection, high sensitivity, and mobility. This study developed the essential sensor for monitoring Zn2+ levels in drinking water in the future.
    Matched MeSH terms: Electrodes
  13. Chai MN, Isa MI
    Sci Rep, 2016 Jun 06;6:27328.
    PMID: 27265642 DOI: 10.1038/srep27328
    The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10(-4) S cm(-1) for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor.
    Matched MeSH terms: Electrodes*
  14. Ariffin EY, Zakariah EI, Ruslin F, Kassim M, Yamin BM, Heng LY, et al.
    Sci Rep, 2021 Apr 12;11(1):7883.
    PMID: 33846405 DOI: 10.1038/s41598-021-86939-z
    Ferrocene or ferrocenium has been widely studied in the field of organometallic complexes because of its stable thermodynamic, kinetic and redox properties. Novel hexaferrocenium tri[hexa(isothiocyanato)iron(III)]trihydroxonium (HexaFc) complex was the product from the reaction of ferrocene, maleic acid and ammonium thiocyanate and was confirmed by elemental analysis CHNS, FTIR and single crystal X-ray crystallography. In this study, HexaFc was used for the first time as an electroactive indicator for porcine DNA biosensor. The UV-Vis DNA titrations with this compound showed hypochromism and redshift at 250 nm with increasing DNA concentrations. The binding constant (Kb) for HexaFc complex towards CT-DNA (calf-thymus DNA) was 3.1 × 104 M-1, indicated intercalator behaviour of the complex. To test the usefulness of this complex for DNA biosensor application, a porcine DNA biosensor was constructed. The recognition probes were covalently immobilised onto silica nanospheres (SiNSs) via glutaraldehyde linker on a screen-printed electrode (SPE). After intercalation with the HexaFc complex, the response of the biosensor to the complementary porcine DNA was measured using differential pulse voltammetry. The DNA biosensor demonstrated a linear response range to the complementary porcine DNA from 1 × 10-6 to 1 × 10-3 µM (R2 = 0.9642) with a limit detection of 4.83 × 10-8 µM and the response was stable up to 23 days of storage at 4 °C with 86% of its initial response. The results indicated that HexaFc complex is a feasible indicator for the DNA hybridisation without the use of a chemical label for the detection of porcine DNA.
    Matched MeSH terms: Electrodes
  15. How GT, Pandikumar A, Ming HN, Ngee LH
    Sci Rep, 2014;4:5044.
    PMID: 24853929 DOI: 10.1038/srep05044
    Titanium dioxide (TiO2) with highly exposed {001} facets was synthesized through a facile solvo-thermal method and its surface was decorated by using reduced graphene oxide (rGO) sheets. The morphology and chemical composition of the prepared rGO/TiO2 {001} nanocomposite were examined by using suitable characterization techniques. The rGO/TiO2 {001} nanocomposite was used to modify glassy carbon electrode (GCE), which showed higher electrocatalytic activity towards the oxidation of dopamine (DA) and ascorbic acid (AA), when compared to unmodified GCE. The differential pulse voltammetric studies revealed good sensitivity and selectivity nature of the rGO/TiO2 {001} nanocomposite modified GCE for the detection of DA in the presence of AA. The modified GCE exhibited a low electrochemical detection limit of 6 μM over the linear range of 2-60 μM. Overall, this work provides a simple platform for the development of GCE modified with rGO/TiO2 {001} nanocomposite with highly exposed {001} facets for potential electrochemical sensing applications.
    Matched MeSH terms: Electrodes*
  16. Md Fuad Bahari, Abdul Rahman Omar1, Darius Gnanaraj Solomon, Nor Hayati Saad, Isa Halim
    Scientific Research Journal, 2006;3(2):31-44.
    MyJurnal
    Occupational health is considered as a crucial element in almost every Small
    and Medium Industries (SMIs) and it is believed to be one of vital challenges
    that can influence productivity and competitiveness. It has been known that
    the metal stamping industry involved a lot of materials handling tasks such as
    carrying stamped parts from machine to packaging section, transferring moulds
    from tools store to machines, sorting the finished products and others.
    Appropriate materials handling equipments are not often provided in SMIs
    because of the limitation of capital and lack of ergonomics awareness. The
    workers have to handle the materials and goods manually. These practices
    may lead to occupational injuries particularly back pain and musculoskeletal
    injuries. The objectives of the research are to assess and analyze the muscles
    activity of workers in metal stamping industry. Three male workers who
    performed metal stamping process using manual technique were participated
    in the research. Ergonomic assessment associated with Surface
    Electromyography (SEMG) was used to capture and interpret the data related
    to muscles activity at before and after the ergonomic intervention. For the
    purpose of muscle activity assessment, SEMG electrodes were attached to eight
    critical muscles: deltoid muscle-medial part (left), deltoid muscle-medial part
    (right), trapezius muscle (left), trapezius muscle (right), erector spinae muscle
    (left), erector spinae muscle (right), gastrocnemius muscle (left) and
    Matched MeSH terms: Electrodes
  17. Ibrahim, M.A., Jani, N.A.M., Kudin, T.I.T., Ali, A.M.M., Yusof, R.M., Hassan, O.H.
    MyJurnal
    Materials that can enhance the sensitivity and selectivity of a biosensor are greatly in demand. The nanocomposition of thionine (Th) and graphene can increase the electroconductivity of the working electrode used. Graphene is a very good electrical conductor but is also hydrophobic in nature. Composition with thionine gives it the capability to disperse well in water. Plus, thionine provides the opportunity for DNA probes to be immobilized due to the presence of the amino group in its structure. In this research, the thionine-graphene (Th-G) nanocomposite was synthesized through filtration and characterised using scanning electron microscopy (SEM) to distinguish different elements coexist in the nanocomposite and to investigate the microstructure changes of the nanocomposite to confirm the composition. Different elements were analyzed to test the presence of both thionine and graphene in the composition. Physical characterisation through SEM proved the nanocomposition was a success.
    Matched MeSH terms: Electrodes
  18. Junaidah Jai, Wan Shabuddin Wan Ali
    Scientific Research Journal, 2011;8(2):49-70.
    MyJurnal
    Aluminium (Al) is a low cost, lightweight and corrosion resistant material, which corrodes when exposed to pitting agents. Palm olein exhibits characteristics, which indicate its suitability as a corrosion inhibitor. Tween 20, hexane and diethyl triamine were used as additives to Palm olein to form the inhibitor formulation POT2OHA. The inhibition efficiency (IE) and behaviour of the POT2OHA were determined using potentiodynamic polarization in which Al 6061 samples were immersed in a 1 M HC1 solution at 26, 50 and 70 °C in the presence of different POT2OHA concentrations: 0, 0.03, 0.07, 0.10, 0.13 and 0.17 M The IE increased with increasing POT2OHA concentration, but decreased with increasing temperature. The work presented indicates that POT2OHA is a mixed-type inhibitor capable of inhibiting both corrosive anodic and cathodic reactions. According to the Langmuir isotherm results POT2OHA adsorbs on the A16061 surface through semiphys iosorption and/or semi-chemisorption. The POT2OHA adsorption mechanism on Al 6061 takes through the protonation of micelles by the HC1 solution, whereby protonated micelles in the presence of chloride ions adsorb on both cathodic and anodic surface corrosion sites.
    Matched MeSH terms: Electrodes
  19. Raba’atun Adawiyah Shamsuddin, Wan Ramli Wan Daud, Kim BH, Jamaliah Md. Jahim, Mimi Hani Abu Bakar, Wan Syaidatul Aqma Wan Mohd Noor
    Sains Malaysiana, 2018;47:3043-3049.
    Microbial fuel cells (MFCs) have a high potential application for simultaneous wastewater treatment and electricity
    generation. However, the choice of the electrode material and its design is critical and directly affect their performance.
    As an electrode of MFCs, the anode material with surface modifications is an attractive strategy to improve the power
    output. In this study, stainless steel (SS) and carbon steel (CS) was chosen as a metal anode, while graphite felt (GF)
    was used as a common anode. Heat treatment was performed to convert SS, CS and GF into efficient anodes for MFCs.
    The maximum current density and power density of the MFC-SS were achieved up till 762.14 mA/m2
    and 827.25 mW/m2
    ,
    respectively, which were higher than MFC-CS (641.95 mA/m2
    and 260.14 mW/m2
    ) and MFC-GF (728.30 mA/m2
    and 307.89
    mW/m2
    ). Electrochemical impedance spectroscopy of MFC-SS showed better catalytic activity compared to MFC-CS and
    MFC-GF anode, also supported by cyclic voltammetry test.
    Matched MeSH terms: Electrodes
  20. Hutagalung SD, Kam CL, Darsono T
    Sains Malaysiana, 2014;43:267-272.
    Many techniques have been applied to fabricate nanostructures via top-down approach such as electron beam lithography. However, most of the techniques are very complicated and involves many process steps, high cost operation as well as the use of hazardous chemicals. Meanwhile, atomic force microscopy (AFM) lithography is a simple technique which is considered maskless and involves only an average cost and less complexity. In AFM lithography, the movement of a probe tip can be controlled to create nanoscale patterns on sample surface. For silicon nanowire (SiNW) fabrication, a conductive tip was operated in non-contact AFM mode to grow nanoscale oxide patterns on silicon-on-insulator (SOI) wafer surface based on local anodic oxidation (LAO) mechanism. The patterned structure was etched through two steps of wet etching processes. First, the TMAH was used as the etchant solution for Si removing. In the second step, diluted HF was used to remove oxide mask in order to produce a completed SiNW based devices. A SiNW based device which is formed by a nanowire channel, source and drain pads with lateral gate structures can be fabricated by well controlling the lithography process (applied tip voltage and writing speed) as well as the etching processes.
    Matched MeSH terms: Electrodes
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links